mirror of https://github.com/llvm/torch-mlir
96 lines
4.2 KiB
C++
96 lines
4.2 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
// Also available under a BSD-style license. See LICENSE.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "torch-mlir/Conversion/TorchToLinalg/TorchToLinalg.h"
|
|
|
|
#include "../PassDetail.h"
|
|
#include "PopulatePatterns.h"
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/Complex/IR/Complex.h"
|
|
#include "mlir/Dialect/ControlFlow/IR/ControlFlow.h"
|
|
#include "mlir/Dialect/Linalg/IR/Linalg.h"
|
|
#include "mlir/Dialect/Math/IR/Math.h"
|
|
#include "mlir/Dialect/SCF/IR/SCF.h"
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
|
|
#include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionOps.h"
|
|
#include "torch-mlir/Dialect/TorchConversion/Transforms/BackendTypeConversion.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::torch;
|
|
using namespace mlir::torch::Torch;
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// The pass
|
|
// -----------------------------------------------------------------------------
|
|
// Patterns for individual ops should live in one of the other files, and
|
|
// added via the relevant `populate*PatternsAndLegality` functions.
|
|
// This file is just for the pass definition itself.
|
|
|
|
namespace {
|
|
class ConvertTorchToLinalg
|
|
: public ConvertTorchToLinalgBase<ConvertTorchToLinalg> {
|
|
public:
|
|
void getDependentDialects(DialectRegistry ®istry) const override {
|
|
registry.insert<linalg::LinalgDialect>();
|
|
registry.insert<math::MathDialect>();
|
|
registry.insert<func::FuncDialect>();
|
|
registry.insert<tensor::TensorDialect>();
|
|
registry.insert<arith::ArithDialect>();
|
|
registry.insert<cf::ControlFlowDialect>();
|
|
registry.insert<scf::SCFDialect>();
|
|
registry.insert<complex::ComplexDialect>();
|
|
TorchConversion::getBackendTypeConversionDependentDialects(registry);
|
|
}
|
|
|
|
void runOnOperation() override {
|
|
MLIRContext *context = &getContext();
|
|
ConversionTarget target(*context);
|
|
target.addLegalDialect<
|
|
linalg::LinalgDialect, func::FuncDialect, cf::ControlFlowDialect,
|
|
math::MathDialect, scf::SCFDialect, sparse_tensor::SparseTensorDialect,
|
|
tensor::TensorDialect, arith::ArithDialect, complex::ComplexDialect>();
|
|
target.addLegalOp<TorchConversion::GetNextSeedOp>();
|
|
|
|
TypeConverter typeConverter;
|
|
typeConverter.addConversion([](Type type) { return type; });
|
|
TorchConversion::setupBackendTypeConversion(target, typeConverter);
|
|
|
|
RewritePatternSet patterns(context);
|
|
|
|
torch_to_linalg::populateTensorScalarInteropPatternsAndLegality(
|
|
typeConverter, patterns, target);
|
|
torch_to_linalg::populateLinearPatternsAndLegality(typeConverter, patterns,
|
|
target);
|
|
torch_to_linalg::populatePoolingPatternsAndLegality(typeConverter, patterns,
|
|
target);
|
|
torch_to_linalg::populateRandomPatternsAndLegality(typeConverter, patterns,
|
|
target);
|
|
torch_to_linalg::populateUncategorizedPatternsAndLegality(typeConverter,
|
|
patterns, target);
|
|
torch_to_linalg::populateReductionPatternsAndLegality(typeConverter,
|
|
patterns, target);
|
|
torch_to_linalg::populateDataMovementPatternsAndLegality(typeConverter,
|
|
patterns, target);
|
|
torch_to_linalg::populateIndirectDataMovementPatternsAndLegality(
|
|
typeConverter, patterns, target);
|
|
torch_to_linalg::populateTensorConstructorsPatternsAndLegality(
|
|
typeConverter, patterns, target);
|
|
|
|
if (failed(applyPartialConversion(getOperation(), target,
|
|
std::move(patterns))))
|
|
return signalPassFailure();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
std::unique_ptr<OperationPass<func::FuncOp>>
|
|
mlir::torch::createConvertTorchToLinalgPass() {
|
|
return std::make_unique<ConvertTorchToLinalg>();
|
|
}
|