mirror of https://github.com/llvm/torch-mlir
241 lines
8.2 KiB
C++
241 lines
8.2 KiB
C++
//===------------------------------------------------------------*- C++ -*-===//
|
|
//
|
|
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
// Also available under a BSD-style license. See LICENSE.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Stand-alone ONNX -> MLIR importer.
|
|
// This library only depends on ONNX (and transitively protobuf, of course)
|
|
// and the MLIR C API. It does this to minimize its dependency surface area
|
|
// and make it possible to integrate as source code into other systems while
|
|
// retaining this implementation as the source of truth.
|
|
//
|
|
// It uses a hybrid of LLVM and Google C++ coding style, preferring the latter
|
|
// for class members/accessors because canonical protobuf coding presumes
|
|
// this kind of style.
|
|
|
|
#include "mlir-c/IR.h"
|
|
#include "onnx/onnx_pb.h"
|
|
|
|
#include <optional>
|
|
#include <string_view>
|
|
#include <unordered_map>
|
|
|
|
namespace torch_mlir_onnx {
|
|
|
|
struct Config;
|
|
class GraphInfo;
|
|
class ModelInfo;
|
|
|
|
struct Config {
|
|
// Ancient ONNX exporters would often add a model input for anything that
|
|
// might be mutable, providing an initializer for it as well. More modern
|
|
// tools tools realized this is a really bad idea for a lot of reasons.
|
|
// We choose to assume more recent norms, even if encountering older
|
|
// models. Setting this to False probably won't do what you want but
|
|
// should produce interesting errors to waste your time deciphering.
|
|
// We mainly use it as a way to document in the code that we are
|
|
// making an assumption.
|
|
bool elide_initialized_inputs = true;
|
|
};
|
|
|
|
/// A light-weight status. It only encapsulates success/failure.
|
|
/// Full error information will be set on the ModelInfo.
|
|
class Status {
|
|
public:
|
|
static Status success(bool isSuccess = true) { return Status(isSuccess); }
|
|
static Status failure(bool isFailure = true) { return Status(!isFailure); }
|
|
|
|
bool is_success() { return is_success_; }
|
|
|
|
private:
|
|
Status(bool is_success) : is_success_(is_success) {}
|
|
bool is_success_;
|
|
};
|
|
|
|
static inline Status success() { return Status::success(); }
|
|
static inline Status failure() { return Status::failure(); }
|
|
static inline bool succeeded(Status status) { return status.is_success(); }
|
|
static inline bool failed(Status status) { return !status.is_success(); }
|
|
|
|
// Accounting for a GraphProto.
|
|
class GraphInfo {
|
|
public:
|
|
GraphInfo(ModelInfo &model_info, const onnx::GraphProto &graph_proto)
|
|
: model_info_(model_info), graph_proto_(graph_proto) {}
|
|
ModelInfo &model_info() { return model_info_; }
|
|
const onnx::GraphProto &graph_proto() { return graph_proto_; }
|
|
|
|
/// Post-construction, failable initialization.
|
|
Status Initialize();
|
|
|
|
/// Finds a TypeProto for the given value name. If returning nullptr, then
|
|
/// an error will have been set.
|
|
const onnx::TypeProto *FindTypeProtoForName(std::string_view name);
|
|
|
|
/// Attempts to access the raw or external data of the TensorProto. If the
|
|
/// the data is located in those positions, returns a types pointer to it
|
|
/// and stores the number of elements to `out_size`. Otherwise, nullptr is
|
|
/// returned (and no error is set).
|
|
template <typename ElementType>
|
|
const ElementType *GetOptionalRawData(const onnx::TensorProto &tp,
|
|
size_t &out_size) {
|
|
if (tp.has_raw_data()) {
|
|
out_size = tp.raw_data().size() / sizeof(ElementType);
|
|
return reinterpret_cast<const ElementType *>(tp.raw_data().data());
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
std::vector<const onnx::ValueInfoProto *> &inputs() { return inputs_; }
|
|
std::unordered_map<std::string_view, const onnx::ValueInfoProto &> &
|
|
input_map() {
|
|
return input_map_;
|
|
}
|
|
std::vector<const onnx::ValueInfoProto *> &outputs() { return outputs_; }
|
|
std::unordered_map<std::string_view, const onnx::ValueInfoProto &> &
|
|
output_map() {
|
|
return output_map_;
|
|
}
|
|
|
|
std::unordered_map<std::string_view, const onnx::TensorProto &> &
|
|
initializer_map() {
|
|
return initializer_map_;
|
|
}
|
|
|
|
private:
|
|
ModelInfo &model_info_;
|
|
const onnx::GraphProto &graph_proto_;
|
|
|
|
std::unordered_map<std::string_view, const onnx::TensorProto &>
|
|
initializer_map_;
|
|
std::unordered_map<std::string_view, const onnx::ValueInfoProto &>
|
|
value_info_map_;
|
|
|
|
std::vector<const onnx::ValueInfoProto *> declared_inputs_;
|
|
std::vector<const onnx::ValueInfoProto *> inputs_;
|
|
std::vector<const onnx::ValueInfoProto *> outputs_;
|
|
std::unordered_map<std::string_view, const onnx::ValueInfoProto &> input_map_;
|
|
std::unordered_map<std::string_view, const onnx::ValueInfoProto &>
|
|
output_map_;
|
|
};
|
|
|
|
/// Top-level accounting and accessors for an ONNX model.
|
|
class ModelInfo {
|
|
public:
|
|
ModelInfo();
|
|
Config &config() { return config_; }
|
|
onnx::ModelProto &model_proto() { return model_proto_; }
|
|
|
|
/// Post-construction, failable initialization.
|
|
Status Initialize();
|
|
|
|
GraphInfo &main_graph() { return *main_graph_; }
|
|
const std::string &error_message() { return error_message_; }
|
|
|
|
Status SetError(std::string msg) {
|
|
error_message_ = std::move(msg);
|
|
return failure();
|
|
}
|
|
|
|
void DebugDumpProto();
|
|
|
|
private:
|
|
Config config_;
|
|
onnx::ModelProto model_proto_;
|
|
std::unique_ptr<GraphInfo> main_graph_;
|
|
|
|
std::string error_message_;
|
|
};
|
|
|
|
class ContextCache {
|
|
public:
|
|
ContextCache(ModelInfo &model_info, MlirContext context)
|
|
: model_info_(model_info), context_(context) {}
|
|
|
|
MlirContext context() { return context_; }
|
|
|
|
/// Converts the TypeProto to an MlirType, returning a null type and
|
|
/// setting an error if not possible.
|
|
MlirType ConvertTypeProto(const onnx::TypeProto &tp);
|
|
|
|
/// Converts the ONNX element type code to an MlirType, returning a null type
|
|
/// and setting an error if not possible.
|
|
MlirType ConvertTensorElementType(int element_type_code);
|
|
|
|
/// Converts an ONNX TensorProto to an MlirAttribute, returning a null
|
|
/// attribute and setting an error if not possible.
|
|
MlirAttribute ConvertTensorProtoToAttr(const onnx::TensorProto &tp);
|
|
|
|
/// Converts the ONNX TensorProto to an Mlir RankedTensor type.
|
|
MlirType ConvertTensorProtoToBuiltinType(const onnx::TensorProto &tp);
|
|
|
|
/// Converts the ONNX TensorProto to a !torch.vtensor type.
|
|
MlirType ConvertTensorProtoToVtensorType(const onnx::TensorProto &tp);
|
|
|
|
/// Gets a !torch.vtensor type for the given dims and element type.
|
|
/// Dynamic dims are represented as -1.
|
|
/// If it was not possible to create the type, sets an error and returns
|
|
/// the null type.
|
|
MlirType GetVtensorType(const std::vector<int64_t> &dims,
|
|
MlirType element_type);
|
|
|
|
private:
|
|
ModelInfo &model_info_;
|
|
MlirContext context_;
|
|
|
|
std::unordered_map<int, MlirType> elem_type_map_;
|
|
std::unordered_map<std::string, MlirType> asm_type_map_;
|
|
std::vector<int64_t> shared_dims_;
|
|
};
|
|
|
|
/// Imports graph nodes into a function.
|
|
class NodeImporter {
|
|
public:
|
|
NodeImporter(GraphInfo &graph_info, ContextCache &cc,
|
|
MlirOperation module_op);
|
|
|
|
/// Called after construction to define the function in the module. Must be
|
|
/// called prior to importing nodes.
|
|
Status DefineFunction(std::optional<std::string> name = {});
|
|
|
|
/// Imports all nodes topologically.
|
|
Status ImportAll();
|
|
|
|
void DebugDumpModule();
|
|
|
|
private:
|
|
void PopulateGraphAttrs(MlirOperation container_op);
|
|
Status ImportInitializer(const onnx::TensorProto &initializer);
|
|
Status ImportNode(const onnx::NodeProto &node);
|
|
MlirAttribute ImportGeneralAttribute(const onnx::AttributeProto &onnx_attr);
|
|
|
|
// Special-form nodes.
|
|
Status ImportGeneralNode(const onnx::NodeProto &node);
|
|
Status ImportConstantOfShapeNode(const onnx::NodeProto &node);
|
|
|
|
/// Looks for an initializer for `name` and attempts to treat it as a 1D
|
|
/// shape, filling `shape` if successful. Returns failure and sets an error
|
|
/// if not.
|
|
Status GetImmediateShapeTensor(const std::string &name,
|
|
std::vector<int64_t> &shape);
|
|
|
|
Status SetError(std::string msg) {
|
|
return graph_info_.model_info().SetError(std::move(msg));
|
|
}
|
|
|
|
GraphInfo &graph_info_;
|
|
ContextCache &cc_;
|
|
MlirContext context_;
|
|
MlirOperation module_op_;
|
|
MlirOperation func_op_;
|
|
MlirBlock body_block_;
|
|
MlirLocation default_loc_;
|
|
std::unordered_map<std::string_view, MlirValue> nv_map_;
|
|
};
|
|
|
|
} // namespace torch_mlir_onnx
|