mirror of https://github.com/llvm/torch-mlir
330 lines
13 KiB
C++
330 lines
13 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
// Also available under a BSD-style license. See LICENSE.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "torch-mlir/Conversion/Utils/Utils.h"
|
|
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
|
|
#include "mlir/Dialect/Linalg/IR/Linalg.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
|
|
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
|
|
|
|
namespace mlir {
|
|
namespace torch {
|
|
namespace Torch {
|
|
|
|
LogicalResult verifyLinalgCompatibleTypes(Operation *op,
|
|
PatternRewriter &rewriter) {
|
|
// Check the value tensor is ranked as expected by Linalg.
|
|
// TODO: Remove this check but use a separate verification pass to verify the
|
|
// invariants expected by later passes.
|
|
auto isValidLinalgType = [](Type type) {
|
|
if (type.isa<NonValueTensorType>())
|
|
return false;
|
|
auto tensor = type.dyn_cast<ValueTensorType>();
|
|
return !tensor ||
|
|
tensor.toBuiltinTensor().dyn_cast_or_null<RankedTensorType>();
|
|
};
|
|
|
|
bool valid = llvm::all_of(op->getOperandTypes(), isValidLinalgType) &&
|
|
llvm::all_of(op->getResultTypes(), isValidLinalgType);
|
|
if (!valid)
|
|
return rewriter.notifyMatchFailure(op, "type cannot be lowered to linalg");
|
|
return success();
|
|
}
|
|
|
|
LogicalResult checkNotNone(PatternRewriter &rewriter, Operation *op, Value v) {
|
|
Type type = v.getType();
|
|
if (type.isa<OptionalType>() || type.isa<Torch::NoneType>() ||
|
|
type.isa<mlir::NoneType>())
|
|
return rewriter.notifyMatchFailure(op, "unimplemented None type arg");
|
|
return success();
|
|
}
|
|
|
|
// Generate IR: dim = dim >= 0 ? dim : dim + inputRank
|
|
Value toPositiveDimDynamic(OpBuilder &b, Location loc, Value dim,
|
|
Value inputRank) {
|
|
assert(dim.getType().isa<IntegerType>() &&
|
|
"dim arg of toPositiveDim must be integer type");
|
|
Value dimAddInputRank = b.create<arith::AddIOp>(loc, dim, inputRank);
|
|
Value cst0 =
|
|
b.create<arith::ConstantOp>(loc, b.getZeroAttr(inputRank.getType()));
|
|
Value predDimGEZero =
|
|
b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sge, dim, cst0);
|
|
Value dimInt =
|
|
b.create<arith::SelectOp>(loc, predDimGEZero, dim, dimAddInputRank);
|
|
return dimInt;
|
|
}
|
|
|
|
// Generate IR: assert(dim >= 0 && dim < inputRank)
|
|
void assertIsValidDim(OpBuilder &b, Location loc, Value dim, Value inputRank) {
|
|
assert(dim.getType().isa<IntegerType>() &&
|
|
"dim arg of assertIsValidDim must be integer type");
|
|
Value cst0 =
|
|
b.create<arith::ConstantOp>(loc, b.getZeroAttr(inputRank.getType()));
|
|
Value predGEZero =
|
|
b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sge, dim, cst0);
|
|
b.create<cf::AssertOp>(
|
|
loc, predGEZero, b.getStringAttr("dim must be greater or equal to zero"));
|
|
Value predLTInputRank =
|
|
b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, dim, inputRank);
|
|
b.create<cf::AssertOp>(loc, predLTInputRank,
|
|
b.getStringAttr("dim must be smaller than inputRank"));
|
|
}
|
|
|
|
// Hack to deal with the Torch list type arguments which is not supported end
|
|
// to end. Constant values can be be extracted directly and non constant
|
|
// list values are not supported.
|
|
// TODO: loose this constraint when properly support list type
|
|
bool isConstantIntListMatching(Value value, SmallVectorImpl<int64_t> &expects) {
|
|
SmallVector<int64_t> intValues;
|
|
if (!matchPattern(value, m_TorchListOfConstantInts(intValues)))
|
|
return false;
|
|
|
|
if (intValues.size() != expects.size())
|
|
return false;
|
|
|
|
for (auto it : llvm::zip(intValues, expects)) {
|
|
if (std::get<0>(it) != std::get<1>(it))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void checkDimEqualHelper(OpBuilder &b, Location loc, Value lhsDim,
|
|
Value rhsDim) {
|
|
Type lhsType = lhsDim.getType();
|
|
Type rhsType = rhsDim.getType();
|
|
auto checkIntOrIndex = [](Type type) {
|
|
assert(type.isa<IntegerType>() ||
|
|
type.isa<IndexType>() && "must be either integer or index type");
|
|
};
|
|
checkIntOrIndex(lhsType);
|
|
checkIntOrIndex(rhsType);
|
|
Value lhsDimInt =
|
|
lhsType.isIndex() ? castIndexToInt64(b, loc, lhsDim) : lhsDim;
|
|
Value rhsDimInt =
|
|
rhsType.isIndex() ? castIndexToInt64(b, loc, rhsDim) : rhsDim;
|
|
Value contractingDimEqual = b.create<arith::CmpIOp>(
|
|
loc, arith::CmpIPredicate::eq, lhsDimInt, rhsDimInt);
|
|
b.create<cf::AssertOp>(loc, contractingDimEqual,
|
|
b.getStringAttr("mismatching contracting dimension"));
|
|
}
|
|
|
|
// Creates a tensor with required `sizes` and `elemTy` and fills it with
|
|
// initElem.
|
|
Value createInitTensor(OpBuilder &b, Location loc, ValueRange sizes,
|
|
Type elemTy, Value initElem) {
|
|
Value initTensor =
|
|
b.create<tensor::EmptyOp>(loc, getAsOpFoldResult(sizes), elemTy);
|
|
return b.create<linalg::FillOp>(loc, initElem, initTensor).getResult(0);
|
|
}
|
|
|
|
Value createZeroInitTensor(OpBuilder &b, Location loc, ValueRange sizes,
|
|
Type elemTy) {
|
|
Value initTensor =
|
|
b.create<tensor::EmptyOp>(loc, getAsOpFoldResult(sizes), elemTy);
|
|
RankedTensorType type = initTensor.getType().cast<RankedTensorType>();
|
|
Value c0 =
|
|
b.create<arith::ConstantOp>(loc, b.getZeroAttr(type.getElementType()));
|
|
return b.create<linalg::FillOp>(loc, c0, initTensor).getResult(0);
|
|
}
|
|
|
|
Value castIntToIndex(OpBuilder &b, Location loc, Value v) {
|
|
assert(v.getType().isa<IntegerType>() && "must be called with integer type");
|
|
return b.create<arith::IndexCastOp>(loc, b.getIndexType(), v);
|
|
}
|
|
|
|
Value castIndexToInt64(OpBuilder &b, Location loc, Value idx) {
|
|
assert(idx.getType().isa<IndexType>() && "must be called with integer type");
|
|
return b.create<arith::IndexCastOp>(loc, b.getI64Type(), idx);
|
|
}
|
|
|
|
SmallVector<Value>
|
|
castIntVectorToIndexVector(OpBuilder &b, Location loc,
|
|
SmallVectorImpl<Value> &intValues) {
|
|
SmallVector<Value> indexValues;
|
|
for (Value v : intValues)
|
|
indexValues.push_back(castIntToIndex(b, loc, v));
|
|
return indexValues;
|
|
}
|
|
|
|
SmallVector<Value>
|
|
castIndexVectorToInt64Vector(OpBuilder &b, Location loc,
|
|
SmallVectorImpl<Value> &indexValues) {
|
|
SmallVector<Value> intValues;
|
|
for (Value v : indexValues)
|
|
intValues.push_back(castIndexToInt64(b, loc, v));
|
|
return intValues;
|
|
}
|
|
|
|
Value getDimOp(OpBuilder &b, Location loc, Value v, int dim) {
|
|
return b.createOrFold<tensor::DimOp>(loc, v, dim);
|
|
}
|
|
|
|
SmallVector<Value> getTensorSizesUntilDim(OpBuilder &b, Location loc,
|
|
Value tensor, int dim) {
|
|
RankedTensorType type = tensor.getType().cast<RankedTensorType>();
|
|
assert(dim < type.getRank() &&
|
|
"The given dim must be smaller than tensor rank");
|
|
(void)type;
|
|
SmallVector<Value> sizes;
|
|
for (int i = 0; i <= dim; i++)
|
|
sizes.push_back(getDimOp(b, loc, tensor, i));
|
|
return sizes;
|
|
}
|
|
|
|
SmallVector<Value> getTensorSizes(OpBuilder &b, Location loc, Value tensor) {
|
|
RankedTensorType type = tensor.getType().cast<RankedTensorType>();
|
|
return getTensorSizesUntilDim(b, loc, tensor, type.getRank() - 1);
|
|
}
|
|
|
|
Value getTensorSize(OpBuilder &b, Location loc, Value tensor) {
|
|
SmallVector<Value> sizes(getTensorSizes(b, loc, tensor));
|
|
Value productResult = b.create<arith::ConstantOp>(loc, b.getIndexAttr(1));
|
|
for (Value size : sizes)
|
|
productResult = b.create<arith::MulIOp>(loc, productResult, size);
|
|
return castIndexToInt64(b, loc, productResult);
|
|
}
|
|
|
|
// Creates a constant of type `elemType` with value `val`.
|
|
Value getConstant(OpBuilder &b, Location loc, int64_t val, Type elemType) {
|
|
Attribute attr = {};
|
|
if (elemType.isa<mlir::FloatType>())
|
|
attr = b.getFloatAttr(elemType, val);
|
|
if (elemType.isa<mlir::IndexType>())
|
|
attr = b.getIndexAttr(val);
|
|
if (elemType.isa<mlir::IntegerType>())
|
|
attr = b.getIntegerAttr(
|
|
elemType, APInt(elemType.cast<IntegerType>().getWidth(), val));
|
|
if (!attr)
|
|
return nullptr;
|
|
return b.create<arith::ConstantOp>(loc, elemType, attr);
|
|
}
|
|
|
|
SmallVector<Value> getAsConstantIntValues(OpBuilder &b, Location loc,
|
|
SmallVectorImpl<int64_t> &ints) {
|
|
return llvm::to_vector<4>(llvm::map_range(ints, [&](int64_t val) -> Value {
|
|
return b.create<arith::ConstantOp>(loc,
|
|
b.getIntegerAttr(b.getI64Type(), val));
|
|
}));
|
|
}
|
|
|
|
SmallVector<Value> getAsConstantIndexValues(OpBuilder &b, Location loc,
|
|
SmallVectorImpl<int64_t> &ints) {
|
|
return llvm::to_vector<4>(llvm::map_range(ints, [&](int64_t val) -> Value {
|
|
return b.create<arith::ConstantOp>(loc, b.getIndexAttr(val));
|
|
}));
|
|
}
|
|
|
|
// This is a temporary solution to deal with types that are not fully supported
|
|
// like list, dict. For those container tyes, this helper can be used to
|
|
// convert their elements to valid target type.
|
|
// TODO: remove this when list gets full support.
|
|
SmallVector<Value> getTypeConvertedValues(OpBuilder &b, Location loc,
|
|
TypeConverter *converter,
|
|
SmallVectorImpl<Value> &vs) {
|
|
return llvm::to_vector<4>(llvm::map_range(vs, [&](Value v) {
|
|
return converter->materializeTargetConversion(
|
|
b, loc, converter->convertType(v.getType()), v);
|
|
}));
|
|
}
|
|
|
|
mlir::RankedTensorType GetTypeFromTensorShape(llvm::ArrayRef<int64_t> shape,
|
|
mlir::Type elementType,
|
|
mlir::Attribute encoding) {
|
|
return mlir::RankedTensorType::get(makeShapeLLVMCompatible(shape),
|
|
elementType, encoding);
|
|
}
|
|
|
|
// Convert a scalar value to the target type. The scalar value can be an element
|
|
// from a tensor or a scalar in the pytorch dialect. Both the scalar and dtype
|
|
// should be converted builtin types.
|
|
Value convertScalarToDtype(OpBuilder &b, Location loc, Value scalar, Type dtype,
|
|
std::optional<Type> srcOriginalDtype) {
|
|
Type scalarType = scalar.getType();
|
|
if (scalarType == dtype)
|
|
return scalar;
|
|
|
|
auto isByteOrChar = [](Type type) {
|
|
if (auto integerTy = type.dyn_cast<mlir::IntegerType>()) {
|
|
return integerTy.getWidth() == 8;
|
|
}
|
|
return false;
|
|
};
|
|
|
|
// We only support conversion from Byte or Char scalarType not to Byte or Char
|
|
// dtype.
|
|
if (isByteOrChar(dtype) && !scalarType.isa<mlir::IntegerType>()) {
|
|
mlir::emitError(loc) << "unsupported: conversion to byte or char type for "
|
|
"convertScalarToDtype "
|
|
<< scalarType << "(scalar type) -> " << dtype
|
|
<< "(dtype)";
|
|
return nullptr;
|
|
}
|
|
|
|
// If the dtype is i1, i.e., a boolean type.
|
|
if (dtype.isSignlessInteger(1)) {
|
|
Type scalarType = scalar.getType();
|
|
Value cstZero = b.create<arith::ConstantOp>(loc, b.getZeroAttr(scalarType));
|
|
if (scalarType.isa<mlir::FloatType>()) {
|
|
return b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::UNE, scalar,
|
|
cstZero);
|
|
} else if (scalarType.isa<mlir::IntegerType>()) {
|
|
return b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ne, scalar,
|
|
cstZero);
|
|
} else {
|
|
mlir::emitError(loc)
|
|
<< "unsupported scalar type for convertScalarToDtype " << scalarType
|
|
<< "(scalar type) -> " << dtype << "(dtype)";
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
if (auto dtypeFloat = dtype.dyn_cast<mlir::FloatType>()) {
|
|
if (auto scalarFloat = scalarType.dyn_cast<mlir::FloatType>()) {
|
|
if (scalarFloat.getWidth() > dtypeFloat.getWidth())
|
|
return b.create<arith::TruncFOp>(loc, dtype, scalar);
|
|
// Only scalarFloat width < dtypeFloat width can reach here.
|
|
return b.create<arith::ExtFOp>(loc, dtype, scalar);
|
|
}
|
|
assert(scalarType.isa<mlir::IntegerType>());
|
|
if (scalarType.isSignlessInteger(1) ||
|
|
(srcOriginalDtype.has_value() && srcOriginalDtype->isUnsignedInteger()))
|
|
return b.create<arith::UIToFPOp>(loc, dtype, scalar);
|
|
// It's safe to use SIToFPOp because ui8/si8 are the only ones where
|
|
// unsigned handling is needed, and we checked for that case above.
|
|
return b.create<arith::SIToFPOp>(loc, dtype, scalar);
|
|
}
|
|
|
|
if (auto dtypeInteger = dtype.dyn_cast<mlir::IntegerType>()) {
|
|
if (auto scalarFloat = scalarType.dyn_cast<mlir::FloatType>())
|
|
return b.create<arith::FPToSIOp>(loc, dtype, scalar);
|
|
assert(scalarType.isa<mlir::IntegerType>());
|
|
auto scalarInteger = scalarType.cast<mlir::IntegerType>();
|
|
if (scalarInteger.getWidth() > dtypeInteger.getWidth())
|
|
return b.create<arith::TruncIOp>(loc, dtype, scalar);
|
|
if (scalarType.isSignlessInteger(1) ||
|
|
(srcOriginalDtype.has_value() && srcOriginalDtype->isUnsignedInteger()))
|
|
return b.create<arith::ExtUIOp>(loc, dtype, scalar);
|
|
// Only scalarInteger width < dtypeInteger width can reach here.
|
|
// It's safe to use ExtSIOp here because ui8/si8 are the only ones where
|
|
// unsigned handling is needed, and we checked for that case above.
|
|
return b.create<arith::ExtSIOp>(loc, dtype, scalar);
|
|
}
|
|
|
|
llvm_unreachable("convertScalarToDtype should handle all the types");
|
|
}
|
|
|
|
} // namespace Torch
|
|
} // namespace torch
|
|
} // namespace mlir
|