mirror of https://github.com/llvm/torch-mlir
168 lines
6.5 KiB
Python
168 lines
6.5 KiB
Python
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
# See https://llvm.org/LICENSE.txt for license information.
|
|
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
# Also available under a BSD-style license. See LICENSE.
|
|
|
|
# Script for generating the torch-mlir wheel.
|
|
# ```
|
|
# $ python setup.py bdist_wheel
|
|
# ```
|
|
#
|
|
# It is recommended to build with Ninja and ccache. To do so, set environment
|
|
# variables by prefixing to above invocations:
|
|
# ```
|
|
# CMAKE_GENERATOR=Ninja CMAKE_C_COMPILER_LAUNCHER=ccache CMAKE_CXX_COMPILER_LAUNCHER=ccache
|
|
# ```
|
|
#
|
|
# On CIs, it is often advantageous to re-use/control the CMake build directory.
|
|
# This can be set with the TORCH_MLIR_CMAKE_BUILD_DIR env var.
|
|
# Additionally, the TORCH_MLIR_CMAKE_BUILD_DIR_ALREADY_BUILT env var will
|
|
# prevent this script from attempting to build the directory, and will simply
|
|
# use the (presumed already built) directory as-is.
|
|
#
|
|
# The package version can be set with the TORCH_MLIR_PYTHON_PACKAGE_VERSION
|
|
# environment variable. For example, this can be "20220330.357" for a snapshot
|
|
# release on 2022-03-30 with build number 357.
|
|
#
|
|
# Implementation notes:
|
|
# The contents of the wheel is just the contents of the `python_packages`
|
|
# directory that our CMake build produces. We go through quite a bit of effort
|
|
# on the CMake side to organize that directory already, so we avoid duplicating
|
|
# that here, and just package up its contents.
|
|
import os
|
|
import shutil
|
|
import subprocess
|
|
import sys
|
|
import sysconfig
|
|
|
|
from distutils.command.build import build as _build
|
|
from distutils.sysconfig import get_python_inc
|
|
from setuptools import setup, Extension
|
|
from setuptools.command.build_ext import build_ext
|
|
from setuptools.command.build_py import build_py
|
|
|
|
import torch
|
|
|
|
PACKAGE_VERSION = os.environ.get("TORCH_MLIR_PYTHON_PACKAGE_VERSION") or "0.0.1"
|
|
|
|
# If true, enable LTC build by default
|
|
TORCH_MLIR_ENABLE_LTC_DEFAULT = True
|
|
|
|
# Build phase discovery is unreliable. Just tell it what phases to run.
|
|
class CustomBuild(_build):
|
|
|
|
def run(self):
|
|
self.run_command("build_py")
|
|
self.run_command("build_ext")
|
|
self.run_command("build_scripts")
|
|
|
|
class CMakeBuild(build_py):
|
|
|
|
def run(self):
|
|
target_dir = self.build_lib
|
|
cmake_build_dir = os.getenv("TORCH_MLIR_CMAKE_BUILD_DIR")
|
|
if not cmake_build_dir:
|
|
cmake_build_dir = os.path.abspath(
|
|
os.path.join(target_dir, "..", "cmake_build"))
|
|
python_package_dir = os.path.join(cmake_build_dir,
|
|
"tools", "torch-mlir", "python_packages",
|
|
"torch_mlir")
|
|
if not os.getenv("TORCH_MLIR_CMAKE_BUILD_DIR_ALREADY_BUILT"):
|
|
src_dir = os.path.abspath(os.path.dirname(__file__))
|
|
llvm_dir = os.path.join(
|
|
src_dir, "externals", "llvm-project", "llvm")
|
|
|
|
enable_ltc = int(os.environ.get('TORCH_MLIR_ENABLE_LTC', TORCH_MLIR_ENABLE_LTC_DEFAULT))
|
|
|
|
cmake_args = [
|
|
f"-DCMAKE_BUILD_TYPE=Release",
|
|
f"-DPython3_EXECUTABLE={sys.executable}",
|
|
f"-DPython3_FIND_VIRTUALENV=ONLY",
|
|
f"-DLLVM_TARGETS_TO_BUILD=host",
|
|
f"-DMLIR_ENABLE_BINDINGS_PYTHON=ON",
|
|
f"-DLLVM_ENABLE_PROJECTS=mlir",
|
|
f"-DLLVM_ENABLE_ZSTD=OFF",
|
|
f"-DLLVM_EXTERNAL_PROJECTS=torch-mlir;torch-mlir-dialects",
|
|
f"-DLLVM_EXTERNAL_TORCH_MLIR_SOURCE_DIR={src_dir}",
|
|
f"-DLLVM_EXTERNAL_TORCH_MLIR_DIALECTS_SOURCE_DIR={src_dir}/externals/llvm-external-projects/torch-mlir-dialects",
|
|
# Optimization options for building wheels.
|
|
f"-DCMAKE_VISIBILITY_INLINES_HIDDEN=ON",
|
|
f"-DCMAKE_C_VISIBILITY_PRESET=hidden",
|
|
f"-DCMAKE_CXX_VISIBILITY_PRESET=hidden",
|
|
f"-DTORCH_MLIR_ENABLE_LTC={'ON' if enable_ltc else 'OFF'}",
|
|
]
|
|
|
|
os.makedirs(cmake_build_dir, exist_ok=True)
|
|
cmake_cache_file = os.path.join(cmake_build_dir, "CMakeCache.txt")
|
|
if os.path.exists(cmake_cache_file):
|
|
os.remove(cmake_cache_file)
|
|
# NOTE: With repeated builds for different Python versions, the
|
|
# prior version binaries will continue to accumulate. IREE uses
|
|
# a separate install step and cleans the install directory to
|
|
# keep this from happening. That is the most robust. Here we just
|
|
# delete the directory where we build native extensions to keep
|
|
# this from happening but still take advantage of most of the
|
|
# build cache.
|
|
mlir_libs_dir = os.path.join(python_package_dir, "torch_mlir", "_mlir_libs")
|
|
if os.path.exists(mlir_libs_dir):
|
|
print(f"Removing _mlir_mlibs dir to force rebuild: {mlir_libs_dir}")
|
|
shutil.rmtree(mlir_libs_dir)
|
|
else:
|
|
print(f"Not removing _mlir_libs dir (does not exist): {mlir_libs_dir}")
|
|
|
|
subprocess.check_call(["cmake", llvm_dir] +
|
|
cmake_args, cwd=cmake_build_dir)
|
|
subprocess.check_call(["cmake",
|
|
"--build", ".",
|
|
"--target", "TorchMLIRPythonModules"],
|
|
cwd=cmake_build_dir)
|
|
|
|
if os.path.exists(target_dir):
|
|
shutil.rmtree(target_dir, ignore_errors=False, onerror=None)
|
|
|
|
shutil.copytree(python_package_dir,
|
|
target_dir,
|
|
symlinks=False)
|
|
|
|
|
|
class CMakeExtension(Extension):
|
|
|
|
def __init__(self, name, sourcedir=""):
|
|
Extension.__init__(self, name, sources=[])
|
|
self.sourcedir = os.path.abspath(sourcedir)
|
|
|
|
|
|
class NoopBuildExtension(build_ext):
|
|
|
|
def build_extension(self, ext):
|
|
pass
|
|
|
|
|
|
with open("README.md", "r", encoding="utf-8") as fh:
|
|
long_description = fh.read()
|
|
|
|
|
|
setup(
|
|
name="torch-mlir",
|
|
version=f"{PACKAGE_VERSION}",
|
|
author="Sean Silva",
|
|
author_email="silvasean@google.com",
|
|
description="First-class interop between PyTorch and MLIR",
|
|
long_description=long_description,
|
|
long_description_content_type="text/markdown",
|
|
include_package_data=True,
|
|
cmdclass={
|
|
"build": CustomBuild,
|
|
"built_ext": NoopBuildExtension,
|
|
"build_py": CMakeBuild,
|
|
},
|
|
ext_modules=[
|
|
CMakeExtension("torch_mlir._mlir_libs._jit_ir_importer"),
|
|
],
|
|
install_requires=[
|
|
"numpy",
|
|
f"torch=={torch.__version__}".split("+", 1)[0],
|
|
],
|
|
zip_safe=False,
|
|
)
|