torch-mlir/lib/Dialect/Torch/IR/TorchOps.cpp

3008 lines
114 KiB
C++

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Support/LLVM.h"
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/Casting.h"
using namespace mlir;
using namespace mlir::torch;
using namespace mlir::torch::Torch;
//===----------------------------------------------------------------------===//
// Utilities
//===----------------------------------------------------------------------===//
Value mlir::torch::Torch::adjustStaticInformation(OpBuilder &builder,
Location loc, Value value,
Type desiredType,
bool userAllowsRefinement) {
Type type = value.getType();
// If the value is already of the desired type, we're done.
if (type == desiredType)
return value;
// If the type is a tensor, then adjust the static information.
if ((type.isa<ValueTensorType>() && desiredType.isa<ValueTensorType>()) ||
(type.isa<NonValueTensorType>() &&
desiredType.isa<NonValueTensorType>())) {
Value adjusted = builder.create<TensorStaticInfoCastOp>(value.getLoc(),
desiredType, value);
return adjusted;
}
// If the type is a subtype of desiredType, then we need to derefine it to
// desiredType, unless the user allows refinement.
if (isValidSubtype(type, desiredType)) {
if (!userAllowsRefinement) {
Value adjusted =
builder.create<DerefineOp>(value.getLoc(), desiredType, value);
return adjusted;
} else {
return value;
}
}
// If the desiredType is subtype of type, then we assume that the desiredType
// is dynamically valid, so we do an unchecked cast.
if (isValidSubtype(desiredType, type)) {
Value adjusted =
builder.create<PrimUncheckedCastOp>(value.getLoc(), desiredType, value);
return adjusted;
}
// No known adjustment.
return Value();
}
Value mlir::torch::Torch::copyTensorToType(OpBuilder &builder, Location loc,
BaseTensorType newType,
Value tensor) {
auto originalType = tensor.getType().cast<BaseTensorType>();
// Adjust the static information in the type to match between the original and
// new types.
if (!originalType.hasSameSizesAndDtype(newType)) {
tensor = builder.create<TensorStaticInfoCastOp>(
loc, originalType.getWithSizesAndDtypeFrom(newType), tensor);
}
// Unless both the original and new types are both value tensors, we end
// up creating one op that converts between the value and non-value tensor
// domains. If both the original and new types are both non-value tensors,
// then we do the copy by going to a value tensor and back.
if (tensor.getType().isa<NonValueTensorType>())
tensor = builder.create<CopyToValueTensorOp>(loc, tensor);
if (newType.isa<NonValueTensorType>())
tensor = builder.create<CopyToNonValueTensorOp>(loc, tensor);
return tensor;
}
bool mlir::torch::Torch::isListPotentiallyMutated(Value list) {
assert(list.getType().isa<Torch::ListType>());
return llvm::any_of(list.getUsers(), potentiallyMutatesListOperands);
}
bool mlir::torch::Torch::potentiallyMutatesListOperands(Operation *op) {
// TODO: Find a better place to put this assertion.
assert((!op->hasTrait<Torch::OpTrait::HasValueSemantics>() ||
op->hasTrait<OpTrait::ReadOnly>()) &&
"HasValueSemantics should imply ReadOnly!");
// ReadOnly ops trivially do not mutate any list operands.
if (op->hasTrait<Torch::OpTrait::ReadOnly>())
return false;
// Ops with no MemoryEffectOpInterface effects also do not mutate any list
// operands.
if (auto effects = dyn_cast<MemoryEffectOpInterface>(op)) {
if (effects.hasNoEffect())
return false;
}
// Conservatively assume that an op might mutate any list operands.
return true;
}
static IntegerAttr getI64IntegerAttr(MLIRContext *context, int64_t value) {
return IntegerAttr::get(IntegerType::get(context, 64), value);
}
static FloatAttr getF64FloatAttr(MLIRContext *context, double value) {
return FloatAttr::get(Float64Type::get(context), value);
}
static Value getScalarIntValue(Value input, Location loc,
PatternRewriter &rewriter) {
auto inputType = input.getType();
if (inputType.isa<Torch::IntType>()) {
return input;
}
auto inputTensorType = inputType.dyn_cast<BaseTensorType>();
if (!inputTensorType)
return nullptr;
Type inputDtype = inputTensorType.getOptionalDtype();
if (!inputDtype || !inputDtype.isInteger(64))
return nullptr;
std::optional<unsigned> inputRank = getTensorRank(input);
if (!inputRank || *inputRank != 0)
return nullptr;
if (auto valueTensorLiteralOp = input.getDefiningOp<ValueTensorLiteralOp>()) {
auto val = valueTensorLiteralOp.getValue()
.cast<DenseElementsAttr>()
.getSplatValue<int64_t>();
return rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(val));
} else if (auto primNumToTensorScalarOp =
input.getDefiningOp<PrimNumToTensorScalarOp>()) {
return primNumToTensorScalarOp.getA();
} else if (auto tensorIntOp = input.getDefiningOp<AtenTensorIntOp>()) {
return tensorIntOp.getT();
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// MethodOp
//===----------------------------------------------------------------------===//
LogicalResult MethodOp::verifySymbolUses(SymbolTableCollection &symbolTable) {
auto func =
symbolTable.lookupNearestSymbolFrom<func::FuncOp>(*this, getFunctionAttr());
if (!func)
return emitError() << "'@" << getFunction()
<< "' does not reference a valid function";
if (func.getVisibility() != SymbolTable::Visibility::Private)
return emitError() << "'@" << getFunction()
<< "' must reference a private function";
if (func.isDeclaration())
return emitError() << "'@" << getFunction()
<< "' must reference a function that is defined (not "
"merely declared)";
auto expectedReceiverArgType = NnModuleType::get(
getContext(), getOperation()->getParentOfType<ClassTypeOp>().getName());
if (func.getFunctionType().getNumInputs() == 0 ||
func.getFunctionType().getInput(0) != expectedReceiverArgType) {
return emitError() << "the referenced function '" << getFunction()
<< "' must have a first argument of type "
<< expectedReceiverArgType;
}
return success();
}
//===----------------------------------------------------------------------===//
// NnModuleOp
//===----------------------------------------------------------------------===//
LogicalResult NnModuleOp::verify() {
for (Operation &child : *getBody())
if (!isa<SlotOp, NnModuleTerminatorOp>(&child))
return child.emitOpError() << "is not allowed inside 'torch.nn_module'";
return success();
}
LogicalResult NnModuleOp::verifySymbolUses(SymbolTableCollection &symbolTable) {
auto classType = symbolTable.lookupNearestSymbolFrom<ClassTypeOp>(
*this, SymbolRefAttr::get(getContext(), getClassName()));
if (!classType)
return emitError() << "'" << getClassName()
<< "' does not reference a valid class type";
auto attrs = llvm::to_vector<6>(getBody()->getOps<SlotOp>());
auto attrDefs = llvm::to_vector<6>(classType.getBody()->getOps<AttrOp>());
if (attrs.size() != attrDefs.size())
return emitError() << "number of 'torch.slot's in a 'torch.nn_module' must "
"match number of 'torch.attr's in "
"the corresponding 'torch.class_type'";
for (int i = 0, e = attrs.size(); i != e; i++) {
SlotOp attr = attrs[i];
AttrOp attrDef = attrDefs[i];
if (!isValidSubtype(attr.getValue().getType(), attrDef.getType()) ||
attr.getName() != attrDef.getName()) {
return attr.emitOpError()
.append("is expected to match type and name of '",
attrDef.getOperation(), "'")
.attachNote(attrDef.getLoc())
.append("see torch.attr at corresponding index ", i, " here");
}
}
return success();
}
//===----------------------------------------------------------------------===//
// PrimListConstructOp
//===----------------------------------------------------------------------===//
LogicalResult PrimListConstructOp::verify() {
auto resultType = getResult().getType();
auto resultElementType = resultType.dyn_cast<ListType>().getContainedType();
auto matchResultElementType = [&](Type type) {
return isValidSubtype(type, resultElementType);
};
if (!llvm::all_of(getOperandTypes(), matchResultElementType)) {
return emitError() << "operand types should have the same type as the "
"list contained type";
}
return success();
}
//===----------------------------------------------------------------------===//
// PrimDictConstructOp
//===----------------------------------------------------------------------===//
LogicalResult PrimDictConstructOp::verify() {
auto isValidSubTypeOf = [](Type expectedType) {
return [=](Type type) { return isValidSubtype(type, expectedType); };
};
if (!llvm::all_of(getKeys().getTypes(), isValidSubTypeOf(getKeyType())))
return emitError() << "keys should be of Dict key type";
if (!llvm::all_of(getValues().getTypes(), isValidSubTypeOf(getValueType())))
return emitError() << "values should be of Dict value type";
return success();
}
//===----------------------------------------------------------------------===//
// ClassTypeOp
//===----------------------------------------------------------------------===//
LogicalResult ClassTypeOp::verify() {
llvm::StringMap<Operation *> namesToOps;
for (Operation &child : getBody()->without_terminator()) {
if (!isa<AttrOp, MethodOp>(&child))
return child.emitOpError() << "is not allowed inside `torch.class_type`";
StringRef name;
if (auto attr = dyn_cast<AttrOp>(child))
name = attr.getName();
else
name = cast<MethodOp>(child).getName();
auto itAndWasInserted = namesToOps.insert({name, &child});
auto it = itAndWasInserted.first;
bool wasInserted = itAndWasInserted.second;
if (!wasInserted) {
auto diag = emitOpError().append("has duplicate attr/method with name '",
name, "'");
diag.attachNote(it->second->getLoc())
.append("see first conflicting attr/method here");
diag.attachNote(child.getLoc())
.append("see second conflicting attr/method here");
return failure();
}
}
return success();
}
//===----------------------------------------------------------------------===//
// PrimLoopOp
//===----------------------------------------------------------------------===//
OperandRange PrimLoopOp::getEntrySuccessorOperands(RegionBranchPoint point) {
assert(point == getRegion());
return getIterArgsInit();
}
void PrimLoopOp::getSuccessorRegions(
RegionBranchPoint point, SmallVectorImpl<RegionSuccessor> &regions) {
Region &region = getRegion();
if (!point.getRegionOrNull()) {
regions.emplace_back(&region, region.getArguments().slice(1));
return;
}
assert(point == region);
regions.emplace_back(&region, region.getArguments().slice(1));
regions.emplace_back(getResults());
}
bool PrimLoopOp::isForLike() {
bool b;
return matchPattern(getInitialCondition(), m_TorchConstantBool(&b)) && b;
}
//===----------------------------------------------------------------------===//
// PrimLoopConditionOp
//===----------------------------------------------------------------------===//
MutableOperandRange
PrimLoopConditionOp::getMutableSuccessorOperands(RegionBranchPoint point) {
// Pass all operands except the condition to the successor which is the
// parent loop op.
return getIterArgsMutable();
}
//===----------------------------------------------------------------------===//
// PrimIfOp
//===----------------------------------------------------------------------===//
ParseResult PrimIfOp::parse(OpAsmParser &parser, OperationState &result) {
// Create the regions.
result.regions.reserve(2);
Region *thenRegion = result.addRegion();
Region *elseRegion = result.addRegion();
auto &builder = parser.getBuilder();
OpAsmParser::UnresolvedOperand cond;
Type boolType = builder.getType<Torch::BoolType>();
if (parser.parseOperand(cond) ||
parser.resolveOperand(cond, boolType, result.operands))
return failure();
// Parse results type list.
if (parser.parseArrowTypeList(result.types))
return failure();
// Parse the 'then' region.
if (parser.parseRegion(*thenRegion, /*arguments=*/{}, /*argTypes=*/{}))
return failure();
// Parse the 'else' region.
if (parser.parseKeyword("else"))
return failure();
if (parser.parseRegion(*elseRegion, /*arguments=*/{}, /*argTypes=*/{}))
return failure();
// Parse the optional attribute list.
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
return success();
}
void PrimIfOp::print(OpAsmPrinter &p) {
p << " " << getCondition();
p << " -> (" << getResultTypes() << ") ";
p.printRegion(getThenRegion(), /*printEntryBlockArgs=*/false);
p << " else ";
p.printRegion(getElseRegion(), /*printEntryBlockArgs=*/false);
p.printOptionalAttrDict((*this)->getAttrs());
}
void PrimIfOp::getSuccessorRegions(RegionBranchPoint point,
SmallVectorImpl<RegionSuccessor> &regions) {
// The `then` and the `else` region branch back to the parent operation.
if (point.getRegionOrNull()) {
regions.push_back(RegionSuccessor(getResults()));
return;
}
// If the condition is constant, we can give a more precise answer.
bool condition;
if (matchPattern(getCondition(), m_TorchConstantBool(&condition))) {
Region *executedRegion = condition ? &getThenRegion() : &getElseRegion();
regions.push_back(RegionSuccessor(executedRegion));
return;
}
// If the condition isn't constant, both regions may be executed.
regions.push_back(RegionSuccessor(&getThenRegion()));
regions.push_back(RegionSuccessor(&getElseRegion()));
return;
}
/// Replaces the given op with the contents of the given single-block region,
/// using the operands of the block terminator to replace operation results.
static void replaceOpWithRegion(PatternRewriter &rewriter, Operation *op,
Region &region, ValueRange blockArgs = {}) {
assert(llvm::hasSingleElement(region) && "expected single-region block");
Block *block = &region.front();
Operation *terminator = block->getTerminator();
ValueRange results = terminator->getOperands();
rewriter.inlineBlockBefore(block, op, blockArgs);
rewriter.replaceOp(op, results);
rewriter.eraseOp(terminator);
}
void PrimIfOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
// If the condition is constant, delete the dead branch and inline the live
// branch.
patterns.add(+[](PrimIfOp op, PatternRewriter &rewriter) {
auto constantBool = op.getCondition().getDefiningOp<Torch::ConstantBoolOp>();
if (!constantBool)
return rewriter.notifyMatchFailure(op, "non-constant condition");
replaceOpWithRegion(
rewriter, op, constantBool.getValue() ? op.getThenRegion() : op.getElseRegion());
return success();
});
// If the thenRegion and elseRegion yield the same Value's, then use those
// directly.
patterns.add(+[](PrimIfOp op, PatternRewriter &rewriter) {
auto trueTerminator = op.getThenRegion().front().getTerminator();
auto falseTerminator = op.getElseRegion().front().getTerminator();
bool madeChange = false;
SmallVector<int> resultsToErase;
for (auto t : llvm::zip(trueTerminator->getOperands(),
falseTerminator->getOperands(), op->getResults())) {
auto trueVal = std::get<0>(t);
auto falseVal = std::get<1>(t);
auto resultToBeReplaced = std::get<2>(t);
if (trueVal == falseVal) {
madeChange |= !resultToBeReplaced.use_empty();
resultToBeReplaced.replaceAllUsesWith(trueVal);
}
}
// We leave it up to a separate pattern (not yet implemented) to erase the
// results that are now dead. That transformation is independently useful,
// and also pretty tricky to implement because it changes the number of
// results.
return success(madeChange);
});
// Erase any dead results.
patterns.add(+[](PrimIfOp op, PatternRewriter &rewriter) {
llvm::BitVector resultsToErase(op.getNumResults());
for (auto result : llvm::enumerate(op->getResults())) {
if (result.value().use_empty())
resultsToErase.set(result.index());
}
// If no results have uses and there are no side effects, just erase the op.
// Approximate the body having no side effects by checking if it is just a
// terminator.
// Note: We don't want to make this logic too fancy, because in general,
// checking for recursive side effects can result in a quadratic amount of
// work (N nested If's each resulting in O(N) work). It should probably be
// split into its own pattern if we want to make it fancier.
if (resultsToErase.all() &&
llvm::hasSingleElement(op.getThenRegion().front()) &&
llvm::hasSingleElement(op.getElseRegion().front())) {
rewriter.eraseOp(op);
return success();
}
// If there are no results to erase, we're done.
if (!resultsToErase.any())
return failure();
SmallVector<Type> newResultTypes;
for (int i = 0, e = op->getNumResults(); i < e; ++i) {
if (resultsToErase[i])
continue;
newResultTypes.push_back(op->getResult(i).getType());
}
auto newIf =
rewriter.create<PrimIfOp>(op->getLoc(), newResultTypes, op.getCondition());
rewriter.inlineRegionBefore(op.getThenRegion(), newIf.getThenRegion(),
newIf.getThenRegion().end());
rewriter.inlineRegionBefore(op.getElseRegion(), newIf.getElseRegion(),
newIf.getElseRegion().end());
newIf.getThenRegion().front().getTerminator()->eraseOperands(resultsToErase);
newIf.getElseRegion().front().getTerminator()->eraseOperands(resultsToErase);
SmallVector<Value> replacementValues;
for (int i = 0, e = op->getNumResults(), nextNewValue = 0; i < e; ++i) {
if (resultsToErase[i])
replacementValues.push_back(nullptr);
else
replacementValues.push_back(newIf->getResult(nextNewValue++));
}
rewriter.replaceOp(op, replacementValues);
return success();
});
}
//===----------------------------------------------------------------------===//
// RuntimeAssertOp
//===----------------------------------------------------------------------===//
void RuntimeAssertOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](RuntimeAssertOp op, PatternRewriter &rewriter) {
bool value;
if (!matchPattern(op.getCondition(), m_TorchConstantBool(&value)))
return failure();
if (value) {
rewriter.eraseOp(op);
return success();
}
// Even if the condition is statically false, the assert might never be
// executed.
return failure();
});
}
//===----------------------------------------------------------------------===//
// DerefineOp
//===----------------------------------------------------------------------===//
bool DerefineOp::areCastCompatible(mlir::TypeRange inputs,
mlir::TypeRange outputs) {
return isValidSubtype(inputs[0], outputs[0]);
}
OpFoldResult DerefineOp::fold(FoldAdaptor adaptor) {
auto uncheckedCast = getOperand().getDefiningOp<PrimUncheckedCastOp>();
if (!uncheckedCast)
return nullptr;
if (uncheckedCast.getOperand().getType() == getType())
return uncheckedCast.getOperand();
return nullptr;
}
void DerefineOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](DerefineOp op, PatternRewriter &rewriter) {
bool madeChange = false;
for (OpOperand &use : llvm::make_early_inc_range(op->getUses())) {
if (use.getOwner()->hasTrait<OpTrait::AllowsTypeRefinement>()) {
use.set(op.getOperand());
madeChange = true;
}
}
return success(madeChange);
});
}
static OpFoldResult atenIsOrIsNotFoldHelper(Operation *op, bool equalIsTrue) {
Value lhs = op->getOperand(0);
Value rhs = op->getOperand(1);
// Look through DerefineOp's to get more refined static information.
if (auto derefine = lhs.getDefiningOp<DerefineOp>())
lhs = derefine.getOperand();
if (auto derefine = rhs.getDefiningOp<DerefineOp>())
rhs = derefine.getOperand();
Type lhsType = lhs.getType();
Type rhsType = rhs.getType();
// If either type is a NoneType, make it be the lhsType.
if (rhsType.isa<Torch::NoneType>()) {
std::swap(lhsType, rhsType);
std::swap(lhs, rhs);
}
// For now, check a few specific cases.
// If both types are the singleton `!torch.none` type, then we don't even need
// to look at the values.
if (lhsType.isa<Torch::NoneType>() && rhsType.isa<Torch::NoneType>())
return IntegerAttr::get(IntegerType::get(op->getContext(), 1), equalIsTrue);
// If neither type is a subtype of the other, then the result is false.
// TODO: Implement and use subtype infra for this.
// For now, check a specific case.
// If the rhs is not OptionalType, then we know it cannot be None.
if (lhsType.isa<Torch::NoneType>() && !rhsType.isa<Torch::OptionalType>()) {
return IntegerAttr::get(IntegerType::get(op->getContext(), 1),
!equalIsTrue);
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// Aten__RangeLengthOp
//===----------------------------------------------------------------------===//
OpFoldResult Aten__RangeLengthOp::fold(FoldAdaptor adaptor) {
auto lo = adaptor.getLo();
auto hi = adaptor.getHi();
auto step = adaptor.getStep();
if (!lo || !hi || !step)
return nullptr;
auto loInt = lo.dyn_cast_or_null<IntegerAttr>().getValue();
auto hiInt = hi.dyn_cast_or_null<IntegerAttr>().getValue();
auto stepInt = step.dyn_cast_or_null<IntegerAttr>().getValue();
// TODO: Implement folding for negative steps.
if (stepInt.isNegative())
return nullptr;
// From Python language spec:
// r[i] = lo + step*i such that i >= 0 and r[i] < hi
// So maximize `i` such that lo + step * i < hi
// ==> i == ceildiv(hi - lo, step)
return IntegerAttr::get(lo.cast<TypedAttr>().getType(),
llvm::APIntOps::RoundingSDiv(hiInt - loInt, stepInt,
APInt::Rounding::UP));
}
//===----------------------------------------------------------------------===//
// Aten__DeriveIndexOp
//===----------------------------------------------------------------------===//
OpFoldResult Aten__DeriveIndexOp::fold(FoldAdaptor adaptor) {
auto index = adaptor.getIndex();
auto start = adaptor.getStart();
auto step = adaptor.getStep();
if (!index || !start || !step)
return nullptr;
auto indexInt = index.dyn_cast_or_null<IntegerAttr>().getValue();
auto startInt = start.dyn_cast_or_null<IntegerAttr>().getValue();
auto stepInt = step.dyn_cast_or_null<IntegerAttr>().getValue();
return IntegerAttr::get(index.cast<TypedAttr>().getType(),
startInt + stepInt * indexInt);
}
//===----------------------------------------------------------------------===//
// Aten__Is__Op
//===----------------------------------------------------------------------===//
OpFoldResult Aten__Is__Op::fold(FoldAdaptor adaptor) {
return atenIsOrIsNotFoldHelper(*this, /*equalIsTrue=*/true);
}
//===----------------------------------------------------------------------===//
// Aten__Isnot__Op
//===----------------------------------------------------------------------===//
OpFoldResult Aten__Isnot__Op::fold(FoldAdaptor adaptor) {
return atenIsOrIsNotFoldHelper(*this, /*equalIsTrue=*/false);
}
//===----------------------------------------------------------------------===//
// Aten__Not__Op
//===----------------------------------------------------------------------===//
OpFoldResult Aten__Not__Op::fold(FoldAdaptor adaptor) {
bool value;
if (!matchPattern(getOperand(), m_TorchConstantBool(&value)))
return nullptr;
return IntegerAttr::get(IntegerType::get(getContext(), 1), !value);
}
//===----------------------------------------------------------------------===//
// AtenNeBoolOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenNeBoolOp::fold(FoldAdaptor adaptor) {
if (getOperand(0) == getOperand(1))
return IntegerAttr::get(IntegerType::get(getContext(), 1), false);
bool a, b;
if (!matchPattern(getOperand(0), m_TorchConstantBool(&a)))
return nullptr;
if (!matchPattern(getOperand(1), m_TorchConstantBool(&b)))
return nullptr;
return IntegerAttr::get(IntegerType::get(getContext(), 1), a != b);
}
//===----------------------------------------------------------------------===//
// AtenSqueezeOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenSqueezeOp::fold(FoldAdaptor adaptor) {
if (auto tensorType = getOperand().getType().dyn_cast<BaseTensorType>()) {
if (tensorType.hasSizes() && tensorType.getSizes().size() == 0)
return getOperand();
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenSqueezeDimOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenSqueezeDimOp::fold(FoldAdaptor adaptor) {
if (auto tensorType = getOperand(0).getType().dyn_cast<BaseTensorType>()) {
if (tensorType.hasSizes() && tensorType.getSizes().size() == 0)
return getOperand(0);
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenRoundOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenRoundOp::fold(FoldAdaptor adaptor) {
if (auto selfType = getSelf().getType().dyn_cast<BaseTensorType>()) {
if (selfType.hasDtype() && selfType.getDtype().isa<mlir::IntegerType>())
return getSelf();
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenToDtypeOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenToDtypeOp::fold(FoldAdaptor adaptor) {
bool nonBlocking, copyArg;
// The non_blocking arg must be `False`.
if (!matchPattern(getNonBlocking(), m_TorchConstantBool(&nonBlocking)) ||
nonBlocking)
return nullptr;
// The copy arg must be `False`.
if (!matchPattern(getCopy(), m_TorchConstantBool(&copyArg)) || copyArg)
return nullptr;
// The memory_format arg must be `none`.
if (!getMemoryFormat().getType().isa<Torch::NoneType>())
return nullptr;
auto inputType = getSelf().getType().cast<BaseTensorType>();
auto resType = getType().cast<BaseTensorType>();
// If the types aren't equal, then we can't fold.
if (inputType != resType)
return nullptr;
// If the type does not have a statically known dtype, then we cannot fold.
// For example, folding `tensor<*,unk>` to `tensor<*,unk>` would be wrong,
// since the `unk` could be dynamically different for the operand and result.
if (!inputType.hasDtype())
return nullptr;
// Fold when both the input tensor and result are of the same type.
return getOperand(0);
}
//===----------------------------------------------------------------------===//
// AtenToDtypeLayoutOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenToDtypeLayoutOp::fold(FoldAdaptor adaptor) {
// The pin_memory arg should be either constant `False` or `none`.
if (!getPinMemory().getType().isa<Torch::NoneType>()) {
bool pinMemory;
if (!matchPattern(getPinMemory(), m_TorchConstantBool(&pinMemory)))
return nullptr;
else if (pinMemory)
return nullptr;
}
// The non_blocking arg should be constant `False`.
bool nonBlocking;
if (!matchPattern(getNonBlocking(), m_TorchConstantBool(&nonBlocking)))
return nullptr;
else if (nonBlocking)
return nullptr;
// The copy arg should be constant `False`.
bool copyArg;
if (!matchPattern(getCopy(), m_TorchConstantBool(&copyArg)))
return nullptr;
else if (copyArg)
return nullptr;
// The device arg must be `none`.
if (!getDevice().getType().isa<Torch::NoneType>())
return nullptr;
// The memory_format arg must be `none`.
if (!getMemoryFormat().getType().isa<Torch::NoneType>())
return nullptr;
auto inputType = getSelf().getType().cast<BaseTensorType>();
auto resType = getType().cast<BaseTensorType>();
// If the types aren't equal, then we can't fold.
if (inputType != resType)
return nullptr;
// If the type does not have a statically known dtype, then we cannot fold.
// For example, folding `tensor<*,unk>` to `tensor<*,unk>` would be wrong,
// since the `unk` could be dynamically different for the operand and result.
if (!inputType.hasDtype())
return nullptr;
// The layout arg should be either `none` or `0` i.e. strided.
if (!getLayout().getType().isa<Torch::NoneType>()) {
int64_t tensorLayout;
if (!matchPattern(getLayout(), m_TorchConstantInt(&tensorLayout)))
return nullptr;
else if (tensorLayout != torch_upstream::Layout::Strided)
return nullptr;
}
// Fold when both the input tensor and result are of the same type and the
// layout arg is strided.
return getOperand(0);
}
void AtenToDtypeLayoutOp::getCanonicalizationPatterns(
RewritePatternSet &patterns, MLIRContext *context) {
// `to.dtype_layout` -> `to.device/to.dtype` if layout is none and pin memory
// is false
patterns.add(+[](AtenToDtypeLayoutOp op, PatternRewriter &rewriter) {
// The pin_memory arg should be either constant `False` or `none`.
if (!op.getPinMemory().getType().isa<Torch::NoneType>()) {
bool pinMemory;
if (!matchPattern(op.getPinMemory(), m_TorchConstantBool(&pinMemory)))
return failure();
else if (pinMemory)
return failure();
}
// The layout arg should be either `none` or `0` i.e. strided.
if (!op.getLayout().getType().isa<Torch::NoneType>()) {
int64_t tensorLayout;
if (!matchPattern(op.getLayout(), m_TorchConstantInt(&tensorLayout)))
return failure();
else if (tensorLayout != torch_upstream::Layout::Strided)
return failure();
}
if (op.getDevice().getType().isa<Torch::NoneType>()) {
// The device arg is `none`. Rewrite to to.dtype.
AtenToDtypeOp toDtype = rewriter.create<AtenToDtypeOp>(
op.getLoc(), op.getType(), op.getSelf(), op.getDtype(),
op.getNonBlocking(), op.getCopy(), op.getMemoryFormat());
rewriter.replaceOp(op, toDtype->getResults());
} else {
// The device arg is not `none`. Rewrite to to.device.
AtenToDeviceOp toDevice = rewriter.create<AtenToDeviceOp>(
op.getLoc(), op.getType(), op.getSelf(), op.getDevice(),
op.getDtype(), op.getNonBlocking(), op.getCopy(),
op.getMemoryFormat());
rewriter.replaceOp(op, toDevice->getResults());
}
return success();
});
}
//===----------------------------------------------------------------------===//
// AtenToOtherOp
//===----------------------------------------------------------------------===//
void AtenToOtherOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
// Canonicalize `aten.to.other` to `aten.to.device`
patterns.add(+[](AtenToOtherOp op, PatternRewriter &rewriter) {
auto lhs = op.getSelf();
auto rhs = op.getOther();
auto getRhsDevice = rewriter.create<PrimDeviceOp>(op.getLoc(), rhs);
auto getRhsDtype = rewriter.create<PrimDtypeOp>(op.getLoc(), rhs);
rewriter.replaceOpWithNewOp<AtenToDeviceOp>(
op, op.getType(), lhs, getRhsDevice.getResult(),
getRhsDtype.getResult(), op.getNonBlocking(),
op.getCopy(), op.getMemoryFormat());
return success();
});
}
//===----------------------------------------------------------------------===//
// AtenViewOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenViewOp::fold(FoldAdaptor adaptor) {
auto inputType = getOperand(0).getType().dyn_cast<BaseTensorType>();
if (!inputType || !inputType.hasSizes() || inputType.getSizes().size() != 1)
return nullptr;
auto resType = getType().dyn_cast<BaseTensorType>();
if (!resType || !resType.hasSizes() || resType.getSizes().size() != 1)
return nullptr;
// Fold when both the input tensor and result are unity rank tensors.
return getOperand(0);
}
//===----------------------------------------------------------------------===//
// PrimsViewOfOp
//===----------------------------------------------------------------------===//
OpFoldResult PrimsViewOfOp::fold(FoldAdaptor adaptor) {
// Always fold the op with its only input operand.
return getOperand();
}
//===----------------------------------------------------------------------===//
// AtenDimOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenDimOp::fold(FoldAdaptor adaptor) {
if (auto tensorType = getOperand().getType().dyn_cast<BaseTensorType>()) {
if (tensorType.hasSizes())
return IntegerAttr::get(IntegerType::get(getContext(), 64),
tensorType.getSizes().size());
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenLenTOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenLenTOp::fold(FoldAdaptor adaptor) {
// `len([1,1,1])` -> `3`, if it is not mutated.
if (auto listConstruct =
getOperand().getDefiningOp<Torch::PrimListConstructOp>()) {
if (!isListPotentiallyMutated(listConstruct)) {
return IntegerAttr::get(IntegerType::get(getContext(), 64),
listConstruct.getNumOperands());
}
}
return nullptr;
}
void AtenLenTOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
// `len(t.size())` -> `t.ndim`
patterns.add(+[](AtenLenTOp op, PatternRewriter &rewriter) {
auto size = op.getOperand().getDefiningOp<AtenSizeOp>();
if (!size)
return rewriter.notifyMatchFailure(op, "operand not AtenSizeOp");
rewriter.replaceOpWithNewOp<AtenDimOp>(op, size.getOperand());
return success();
});
}
//===----------------------------------------------------------------------===//
// AtenMinOtherOp
//===----------------------------------------------------------------------===//
void AtenMinOtherOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
// `aten.min.other` -> `aten.minimum`
patterns.add(+[](AtenMinOtherOp op, PatternRewriter &rewriter) {
rewriter.replaceOpWithNewOp<AtenMinimumOp>(op, op.getType(), op.getSelf(),
op.getOther());
return success();
});
}
//===----------------------------------------------------------------------===//
// AtenMaxOtherOp
//===----------------------------------------------------------------------===//
void AtenMaxOtherOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
// `aten.max.other` -> `aten.maximum`
patterns.add(+[](AtenMaxOtherOp op, PatternRewriter &rewriter) {
rewriter.replaceOpWithNewOp<AtenMaximumOp>(op, op.getType(), op.getSelf(),
op.getOther());
return success();
});
}
//===----------------------------------------------------------------------===//
// AtenLenStrOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenLenStrOp::fold(FoldAdaptor adaptor) {
if (auto stringConstruct = getS().getDefiningOp<ConstantStrOp>())
return getI64IntegerAttr(getContext(),
stringConstruct.getValueAttr().getValue().size());
return nullptr;
}
LogicalResult rewrite0DBinaryTensorOp(Operation *op,
PatternRewriter &rewriter) {
Location loc = op->getLoc();
// This canonicalization pattern also includes aten div/mul/add/sub ops
// between tensor and scalar, like aten.add.Scalar op
if (op->getNumOperands() < 2) {
return failure();
}
auto lhs = getScalarIntValue(op->getOperand(0), loc, rewriter);
auto rhs = getScalarIntValue(op->getOperand(1), loc, rewriter);
auto outType = op->getResult(0).getType();
if (!lhs || !rhs) {
return rewriter.notifyMatchFailure(
op, "only int scalar lhs or rhs is supported");
}
if (isa<AtenSubTensorOp, AtenSubScalarOp, AtenRsubScalarOp, AtenAddTensorOp,
AtenAddScalarOp>(op)) {
Value alpha = getScalarIntValue(op->getOperand(2), loc, rewriter);
if (!alpha) {
return rewriter.notifyMatchFailure(op,
"only int scalar alpha is supported");
}
if (isa<AtenRsubScalarOp>(op))
lhs = rewriter.create<AtenMulIntOp>(loc, lhs, alpha);
else
rhs = rewriter.create<AtenMulIntOp>(loc, rhs, alpha);
}
if (isa<AtenDivTensorModeOp>(op)) {
// None rounding mode
if (op->getOperand(2).getType().isa<Torch::NoneType>()) {
Value quotient = rewriter.create<AtenDivOp>(loc, lhs, rhs);
rewriter.replaceOpWithNewOp<PrimNumToTensorScalarOp>(op, outType,
quotient);
return success();
}
std::string roundingMode;
if (!matchPattern(op->getOperand(2), m_TorchConstantStr(roundingMode))) {
return rewriter.notifyMatchFailure(
op, "only None, 'floor' or 'trunc' rounding mode is supported");
}
if (roundingMode == "floor") {
Value quotient = rewriter.create<AtenFloordivIntOp>(loc, lhs, rhs);
rewriter.replaceOpWithNewOp<PrimNumToTensorScalarOp>(op, outType,
quotient);
return success();
}
// For "trunc" rounding mode, insted of canonicalizing it into
// aten.abs, aten.floor, aten.sign and aten.mul.int ops, which adds
// complexity but helps little in optimization (such as constant folding),
// we are trying to fold it.
if (roundingMode == "trunc") {
int64_t lhsInt;
int64_t rhsInt;
if (!matchPattern(lhs, m_TorchConstantInt(&lhsInt))) {
return failure();
}
if (!matchPattern(rhs, m_TorchConstantInt(&rhsInt))) {
return failure();
}
int64_t result = (int64_t)std::trunc((double)lhsInt / rhsInt);
Value resultScalar = rewriter.create<ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(result));
rewriter.replaceOpWithNewOp<PrimNumToTensorScalarOp>(op, outType,
resultScalar);
return success();
}
return failure();
}
Value result;
// Other Add/Sub/Mul ops
if (isa<AtenAddTensorOp, AtenAddScalarOp>(op)) {
result = rewriter.create<AtenAddIntOp>(loc, lhs, rhs);
} else if (isa<AtenSubScalarOp, AtenSubTensorOp>(op)) {
result = rewriter.create<AtenSubIntOp>(loc, lhs, rhs);
} else if (isa<AtenRsubScalarOp>(op)) {
result = rewriter.create<AtenSubIntOp>(loc, rhs, lhs);
} else if (isa<AtenMulScalarOp, AtenMulTensorOp>(op)) {
result = rewriter.create<AtenMulIntOp>(loc, lhs, rhs);
}
rewriter.replaceOpWithNewOp<PrimNumToTensorScalarOp>(op, outType, result);
return success();
}
//===----------------------------------------------------------------------===//
// AtenAddTensorOp
//===----------------------------------------------------------------------===//
void AtenAddTensorOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](AtenAddTensorOp op, PatternRewriter &rewriter) {
return rewrite0DBinaryTensorOp(op, rewriter);
});
}
//===----------------------------------------------------------------------===//
// AtenAddScalarOp
//===----------------------------------------------------------------------===//
void AtenAddScalarOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](AtenAddScalarOp op, PatternRewriter &rewriter) {
return rewrite0DBinaryTensorOp(op, rewriter);
});
}
//===----------------------------------------------------------------------===//
// AtenSubTensorOp
//===----------------------------------------------------------------------===//
void AtenSubTensorOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](AtenSubTensorOp op, PatternRewriter &rewriter) {
return rewrite0DBinaryTensorOp(op, rewriter);
});
}
//===----------------------------------------------------------------------===//
// AtenSubScalarOp
//===----------------------------------------------------------------------===//
void AtenSubScalarOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](AtenSubScalarOp op, PatternRewriter &rewriter) {
return rewrite0DBinaryTensorOp(op, rewriter);
});
}
//===----------------------------------------------------------------------===//
// AtenRSubScalarOp
//===----------------------------------------------------------------------===//
void AtenRsubScalarOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](AtenRsubScalarOp op, PatternRewriter &rewriter) {
return rewrite0DBinaryTensorOp(op, rewriter);
});
}
//===----------------------------------------------------------------------===//
// AtenMulTensorOp
//===----------------------------------------------------------------------===//
void AtenMulTensorOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](AtenMulTensorOp op, PatternRewriter &rewriter) {
return rewrite0DBinaryTensorOp(op, rewriter);
});
}
//===----------------------------------------------------------------------===//
// AtenMulScalarOp
//===----------------------------------------------------------------------===//
void AtenMulScalarOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](AtenMulScalarOp op, PatternRewriter &rewriter) {
return rewrite0DBinaryTensorOp(op, rewriter);
});
}
//===----------------------------------------------------------------------===//
// AtenDivTensorModeOp
//===----------------------------------------------------------------------===//
void AtenDivTensorModeOp::getCanonicalizationPatterns(
RewritePatternSet &patterns, MLIRContext *context) {
patterns.add(+[](AtenDivTensorModeOp op, PatternRewriter &rewriter) {
return rewrite0DBinaryTensorOp(op, rewriter);
});
}
//===----------------------------------------------------------------------===//
// Aten__Or__TensorOp
//===----------------------------------------------------------------------===//
void Aten__Or__TensorOp::getCanonicalizationPatterns(
RewritePatternSet &patterns, MLIRContext *context) {
patterns.add(+[](Aten__Or__TensorOp op, PatternRewriter &rewriter) {
rewriter.replaceOpWithNewOp<AtenBitwiseOrTensorOp>(
op, op.getType(), op.getSelf(), op.getOther());
return success();
});
}
//===----------------------------------------------------------------------===//
// AtenScalarImplicitOp
//===----------------------------------------------------------------------===//
void AtenScalarImplicitOp::getCanonicalizationPatterns(
RewritePatternSet &patterns, MLIRContext *context) {
patterns.add(+[](AtenScalarImplicitOp op, PatternRewriter &rewriter) {
Location loc = op.getLoc();
Value a = op.getA();
auto outType = op.getResult().getType();
Value scalarValue = getScalarIntValue(a, loc, rewriter);
if (!scalarValue)
return failure();
rewriter.replaceOpWithNewOp<Torch::DerefineOp>(op, outType, scalarValue);
return success();
});
}
//===----------------------------------------------------------------------===//
// AtenSizeOp
//===----------------------------------------------------------------------===//
// Traces at most 6 parents of `value` to determine the tensor type with known
// dimension size or returns failure if such a type was not found. If `dim` is
// `None`, then all dimension's sizes must be known.
static FailureOr<BaseTensorType>
traceKnownSizeTensorType(Value value, std::optional<int64_t> dim) {
// Function to check if we found a type that contains the queried information.
auto foundType = [](BaseTensorType tensorType, std::optional<int64_t>(dim)) {
if (!tensorType.hasSizes())
return false;
if (dim == std::nullopt)
return tensorType.areAllSizesKnown();
// If the dimension value is negative, then convert it to a positive value.
ArrayRef<int64_t> sizes = tensorType.getSizes();
*dim = toPositiveDim(*dim, sizes.size());
return isValidDim(*dim, sizes.size()) && sizes[*dim] != kUnknownSize;
};
// Limit the loop count to 6 to avoid indefinite compilation times from
// unbounded IR traversals.
for (auto idx = 0; idx < 6; ++idx) {
if (!value || !value.getType().isa<BaseTensorType>())
return failure();
auto tensorType = value.getType().cast<BaseTensorType>();
if (foundType(tensorType, dim))
return tensorType;
auto op = value.getDefiningOp();
if (!op || !isa<CopyToValueTensorOp, CopyToNonValueTensorOp,
TensorStaticInfoCastOp>(op))
return failure();
// In all ops of interest to us, the source tensor is operand #0.
value = op->getOperand(0);
}
return failure();
}
void AtenSizeOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](AtenSizeOp op, PatternRewriter &rewriter) {
auto type = traceKnownSizeTensorType(op.getOperand(), std::nullopt);
if (failed(type))
return rewriter.notifyMatchFailure(op, "all sizes not known");
SmallVector<Value> listElements;
for (int64_t size : type->getSizes()) {
listElements.push_back(rewriter.create<Torch::ConstantIntOp>(
op->getLoc(), rewriter.getI64IntegerAttr(size)));
}
rewriter.replaceOpWithNewOp<Torch::PrimListConstructOp>(
op, Torch::ListType::get(rewriter.getType<Torch::IntType>()),
listElements);
return success();
});
// One-off pattern to erase if dead.
// TODO: Use the effects infra to express the semantics of this op and enable
// a centralized "erase if dead" canonicalization.
// Specifically, we need to mark the op as only MemoryEffects::Allocate
// so that `mlir::wouldOpBeTriviallyDead` does the right thing.
patterns.add(+[](AtenSizeOp op, PatternRewriter &rewriter) {
if (!op.use_empty())
return failure();
rewriter.eraseOp(op);
return failure();
});
}
//===----------------------------------------------------------------------===//
// AtenSizeIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenSizeIntOp::fold(FoldAdaptor adaptor) {
int64_t dim;
if (!matchPattern(this->getDim(), m_TorchConstantInt(&dim)))
return nullptr;
auto type = traceKnownSizeTensorType(this->getSelf(), dim);
if (failed(type))
return nullptr;
ArrayRef<int64_t> sizes = type->getSizes();
dim = toPositiveDim(dim, sizes.size());
if (!isValidDim(dim, sizes.size()))
return nullptr;
return IntegerAttr::get(IntegerType::get(getContext(), 64), sizes[dim]);
}
//===----------------------------------------------------------------------===//
// AtenGtIntOp
//===----------------------------------------------------------------------===//
static IntegerAttr getI1IntegerAttr(MLIRContext *context, bool value) {
return IntegerAttr::get(IntegerType::get(context, 1),
static_cast<int64_t>(value));
}
using ConstantFloatComparator = std::function<bool(double, double)>;
template <typename OpTy>
static OpFoldResult
floatComparatorFoldHelper(OpTy op, ConstantFloatComparator comparator) {
if (op.getOperand(0) == op.getOperand(1))
return getI1IntegerAttr(op.getContext(), comparator(0, 0));
double lhs, rhs;
if (!matchPattern(op.getOperand(0), m_TorchConstantFloat(&lhs)) ||
!matchPattern(op.getOperand(1), m_TorchConstantFloat(&rhs)))
return nullptr;
return getI1IntegerAttr(op.getContext(), comparator(lhs, rhs));
}
//===----------------------------------------------------------------------===//
// AtenLtFloatOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenLtFloatOp::fold(FoldAdaptor adaptor) {
return floatComparatorFoldHelper(*this,
[](double a, double b) { return a < b; });
}
//===----------------------------------------------------------------------===//
// AtenGtFloatOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenGtFloatOp::fold(FoldAdaptor adaptor) {
return floatComparatorFoldHelper(*this,
[](double a, double b) { return a > b; });
}
//===----------------------------------------------------------------------===//
// AtenGeFloatOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenGeFloatOp::fold(FoldAdaptor adaptor) {
return floatComparatorFoldHelper(*this,
[](double a, double b) { return a >= b; });
}
//===----------------------------------------------------------------------===//
// AtenEqFloatOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenEqFloatOp::fold(FoldAdaptor adaptor) {
return floatComparatorFoldHelper(*this,
[](double a, double b) { return a == b; });
}
using ConstantIntComparator = std::function<bool(int64_t, int64_t)>;
template <typename OpTy>
static OpFoldResult intComparatorFoldHelper(OpTy op,
ConstantIntComparator comparator) {
Value lhsValue = op->getOperand(0);
Value rhsValue = op->getOperand(1);
if (lhsValue == rhsValue)
return getI1IntegerAttr(op.getContext(), comparator(0, 0));
int64_t lhs, rhs;
bool lhsIsConstant = matchPattern(lhsValue, m_TorchConstantInt(&lhs));
bool rhsIsConstant = matchPattern(rhsValue, m_TorchConstantInt(&rhs));
if (lhsIsConstant && rhsIsConstant)
return getI1IntegerAttr(op.getContext(), comparator(lhs, rhs));
// Ensure that if there is a constant, it is on the right.
if (lhsIsConstant && !rhsIsConstant) {
std::swap(lhs, rhs);
std::swap(lhsValue, rhsValue);
std::swap(lhsIsConstant, rhsIsConstant);
auto newComparator = [comparator](int64_t lhs, int64_t rhs) {
return comparator(rhs, lhs);
};
comparator = newComparator;
}
// Fold comparisons of AtenSizeIntOp against negative values.
// AtenSizeIntOp is known to always be non-negative.
if (rhsIsConstant && rhs < 0) {
// We can return `comparator(0, -1)` here because of the property:
// If x >= 0 && y < 0, then:
// - cmp(x, y) == cmp(x + 1, y)
// - cmp(x, y) == cmp(x, y - 1)
// By induction all cases here are covered.
if (auto size = lhsValue.getDefiningOp<AtenSizeIntOp>())
return getI1IntegerAttr(op->getContext(), comparator(0, -1));
}
// Fold comparisons of AtenSizeIntOp against 0:
// - torch.aten.size.int >= 0 ==> True.
// - torch.aten.size.int < 0 ==> False.
// (and the operand-swapped versions of the above)
if (rhsIsConstant && rhs == 0) {
if (auto size = lhsValue.getDefiningOp<AtenSizeIntOp>()) {
// >= 0 comparison.
if (comparator(0, 0) && comparator(1, 0))
return getI1IntegerAttr(op->getContext(), true);
// < 0 comparison.
if (!comparator(0, 0) && comparator(-1, 0) && !comparator(1, 0))
return getI1IntegerAttr(op->getContext(), false);
}
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenDetachOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenDetachOp::fold(FoldAdaptor adaptor) { return getSelf(); }
//===----------------------------------------------------------------------===//
// AtenNeIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenNeIntOp::fold(FoldAdaptor adaptor) {
return intComparatorFoldHelper(*this,
[](int64_t a, int64_t b) { return a != b; });
}
//===----------------------------------------------------------------------===//
// AtenEqIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenEqIntOp::fold(FoldAdaptor adaptor) {
return intComparatorFoldHelper(*this,
[](int64_t a, int64_t b) { return a == b; });
}
//===----------------------------------------------------------------------===//
// AtenEqStrOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenEqStrOp::fold(FoldAdaptor adaptor) {
if (getOperand(0) == getOperand(1))
return getI1IntegerAttr(getContext(), true);
auto aStr = getA().getDefiningOp<ConstantStrOp>();
auto bStr = getB().getDefiningOp<ConstantStrOp>();
if (aStr && bStr)
return getI1IntegerAttr(getContext(), aStr == bStr);
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenLtIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenLtIntOp::fold(FoldAdaptor adaptor) {
return intComparatorFoldHelper(*this,
[](int64_t a, int64_t b) { return a < b; });
}
//===----------------------------------------------------------------------===//
// AtenLeIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenLeIntOp::fold(FoldAdaptor adaptor) {
return intComparatorFoldHelper(*this,
[](int64_t a, int64_t b) { return a <= b; });
}
//===----------------------------------------------------------------------===//
// AtenGtIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenGtIntOp::fold(FoldAdaptor adaptor) {
return intComparatorFoldHelper(*this,
[](int64_t a, int64_t b) { return a > b; });
}
//===----------------------------------------------------------------------===//
// AtenGeIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenGeIntOp::fold(FoldAdaptor adaptor) {
return intComparatorFoldHelper(*this,
[](int64_t a, int64_t b) { return a >= b; });
}
//===----------------------------------------------------------------------===//
// AtenBoolFloatOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenBoolFloatOp::fold(FoldAdaptor adaptor) {
double c;
if (matchPattern(getOperand(), m_TorchConstantFloat(&c)))
return getI1IntegerAttr(getContext(), c != 0.0);
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenBoolIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenBoolIntOp::fold(FoldAdaptor adaptor) {
int64_t c;
if (matchPattern(getOperand(), m_TorchConstantInt(&c)))
return getI1IntegerAttr(getContext(), c != 0);
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenAnyBoolOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenAnyBoolOp::fold(FoldAdaptor adaptor) {
auto inputConstruct = getSelf().getDefiningOp<Torch::PrimListConstructOp>();
if (!inputConstruct || isListPotentiallyMutated(inputConstruct))
return nullptr;
// If any operand is a constant true, return true.
for (auto operand : inputConstruct.getOperands()) {
bool b = false;
if (matchPattern(operand, m_TorchConstantBool(&b)) && b) {
return getI1IntegerAttr(getContext(), true);
}
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenFloatScalarOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenFloatScalarOp::fold(FoldAdaptor adaptor) {
// Constant fold int -> float conversion.
if (auto integerAttr = adaptor.getA().dyn_cast_or_null<IntegerAttr>()) {
return FloatAttr::get(
mlir::Float64Type::get(getContext()),
static_cast<double>(integerAttr.getValue().getSExtValue()));
}
// If the input is float type already, the op is an identity.
if (getType() == getOperand().getType())
return getOperand();
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenIntFloatOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenIntFloatOp::fold(FoldAdaptor adaptor) {
// Constant fold float -> int conversion.
if (auto floatAttr = adaptor.getA().dyn_cast_or_null<FloatAttr>()) {
return IntegerAttr::get(
mlir::IntegerType::get(getContext(), 64),
static_cast<int64_t>(floatAttr.getValue().convertToDouble()));
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenIntScalarOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenIntScalarOp::fold(FoldAdaptor adaptor) {
// Constant fold float -> int conversion.
if (auto floatAttr = adaptor.getA().dyn_cast_or_null<FloatAttr>()) {
return IntegerAttr::get(
mlir::IntegerType::get(getContext(), 64),
static_cast<long>(floatAttr.getValue().convertToDouble()));
}
// If the input is int type already, the op is an identity.
if (getType() == getOperand().getType())
return getOperand();
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenIntBoolOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenIntBoolOp::fold(FoldAdaptor adaptor) {
bool b;
if (matchPattern(getOperand(), m_TorchConstantBool(&b))) {
return getI64IntegerAttr(getContext(), static_cast<long>(b));
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenSortIntOp
//===----------------------------------------------------------------------===//
void AtenSortIntOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](AtenSortIntOp op, PatternRewriter &rewriter) {
SmallVector<int64_t> listElements;
if (!matchPattern(op.getSelf(), m_TorchListOfConstantInts(listElements)))
return rewriter.notifyMatchFailure(
op, "all input list elements must be constant ints");
bool reverse;
if (!matchPattern(op.getReverse(), m_TorchConstantBool(&reverse)))
return rewriter.notifyMatchFailure(
op, "Expected reverse arg to be constant bool.");
std::sort(listElements.begin(), listElements.end());
if (reverse)
std::reverse(listElements.begin(), listElements.end());
SmallVector<Value> sortedListElements;
for (int64_t elem : listElements)
sortedListElements.push_back(rewriter.create<Torch::ConstantIntOp>(
op->getLoc(), rewriter.getI64IntegerAttr(elem)));
Value result = rewriter.create<Torch::PrimListConstructOp>(
op->getLoc(), Torch::ListType::get(rewriter.getType<Torch::IntType>()),
sortedListElements);
op.getSelf().replaceAllUsesWith(result);
rewriter.eraseOp(op);
return success();
});
}
//===----------------------------------------------------------------------===//
// NonValueTensorLiteralOp
//===----------------------------------------------------------------------===//
LogicalResult NonValueTensorLiteralOp::inferReturnTypes(
MLIRContext *context, std::optional<Location> location, ValueRange operands,
DictionaryAttr attributes, OpaqueProperties properties, RegionRange regions,
SmallVectorImpl<Type> &inferredReturnTypes) {
auto attr = properties.as<Properties *>()
->getValue()
.dyn_cast_or_null<ElementsAttr>();
if (!attr)
return failure();
RankedTensorType tensorType = attr.getType().cast<RankedTensorType>();
NonValueTensorType returnType =
NonValueTensorType::get(tensorType.getContext(), tensorType.getShape(),
tensorType.getElementType());
inferredReturnTypes.push_back(returnType);
return success();
}
static bool areSizesAndDtypesCompatible(BaseTensorType a, BaseTensorType b) {
if (a.hasSizes() && b.hasSizes()) {
if (failed(verifyCompatibleShape(makeShapeLLVMCompatible(a.getSizes()),
makeShapeLLVMCompatible(b.getSizes()))))
return false;
}
if (a.hasDtype() && b.hasDtype()) {
if (a.getDtype() != b.getDtype())
return false;
}
return true;
}
bool NonValueTensorLiteralOp::isCompatibleReturnTypes(TypeRange inferred,
TypeRange actual) {
if (!actual[0].isa<BaseTensorType>())
return false;
return areSizesAndDtypesCompatible(inferred[0].cast<BaseTensorType>(),
actual[0].cast<BaseTensorType>());
}
//===----------------------------------------------------------------------===//
// ValueTensorLiteralOp
//===----------------------------------------------------------------------===//
LogicalResult ValueTensorLiteralOp::inferReturnTypes(
MLIRContext *context, std::optional<Location> location, ValueRange operands,
DictionaryAttr attributes, OpaqueProperties properties, RegionRange regions,
SmallVectorImpl<Type> &inferredReturnTypes) {
auto attr = properties.as<Properties *>()
->getValue()
.dyn_cast_or_null<ElementsAttr>();
if (!attr)
return failure();
RankedTensorType tensorType = attr.getType().cast<RankedTensorType>();
ValueTensorType returnType =
ValueTensorType::get(tensorType.getContext(), tensorType.getShape(),
tensorType.getElementType());
inferredReturnTypes.push_back(returnType);
return success();
}
OpFoldResult ValueTensorLiteralOp::fold(FoldAdaptor adaptor) {
return getValueAttr();
}
//----------------------------------------------------------------------------//
// TensorStaticInfoCast
//----------------------------------------------------------------------------//
bool TensorStaticInfoCastOp::areCastCompatible(mlir::TypeRange inputs,
mlir::TypeRange outputs) {
return areSizesAndDtypesCompatible(inputs[0].cast<BaseTensorType>(),
outputs[0].cast<BaseTensorType>());
}
void TensorStaticInfoCastOp::getCanonicalizationPatterns(
RewritePatternSet &patterns, MLIRContext *context) {
patterns.add(+[](TensorStaticInfoCastOp op, PatternRewriter &rewriter) {
auto reverseCast =
op.getOperand().getDefiningOp<Torch::TensorStaticInfoCastOp>();
if (!reverseCast || reverseCast.getOperand().getType() != op.getType())
return failure();
rewriter.replaceOp(op, reverseCast.getOperand());
return success();
});
patterns.add(+[](TensorStaticInfoCastOp op, PatternRewriter &rewriter) {
if (isValidSubtype(op.getOperand().getType(), op.getType())) {
SmallVector<std::reference_wrapper<OpOperand>> usesToChange(
llvm::make_filter_range(op->getUses(), [](OpOperand &operand) {
return operand.getOwner()
->hasTrait<mlir::torch::Torch::OpTrait::AllowsTypeRefinement>();
}));
if (usesToChange.empty())
return failure();
for (OpOperand &use : usesToChange) {
Operation *user = use.getOwner();
user->setOperand(use.getOperandNumber(), op.getOperand());
}
return success();
}
return failure();
});
}
//===----------------------------------------------------------------------===//
// CopyToNonValueTensorOp
//===----------------------------------------------------------------------===//
LogicalResult CopyToNonValueTensorOp::verify() {
auto resultType = getResult().getType().cast<BaseTensorType>();
auto operandType = getOperand().getType().cast<BaseTensorType>();
if (!resultType.hasSameSizesAndDtype(operandType))
return emitError() << "operand and result must have same sizes and dtype";
return success();
}
LogicalResult CopyToNonValueTensorOp::inferReturnTypes(
MLIRContext *context, std::optional<Location> location, ValueRange operands,
DictionaryAttr attributes, OpaqueProperties properties, RegionRange regions,
SmallVectorImpl<Type> &inferredReturnTypes) {
auto resultType = operands[0].getType().cast<ValueTensorType>();
inferredReturnTypes.push_back(resultType.getWithoutValueSemantics());
return success();
}
void CopyToNonValueTensorOp::getEffects(
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
&effects) {
effects.emplace_back(MemoryEffects::Allocate::get(), getResult());
}
//===----------------------------------------------------------------------===//
// CopyToValueTensorOp
//===----------------------------------------------------------------------===//
LogicalResult CopyToValueTensorOp::verify() {
auto resultType = getResult().getType().cast<BaseTensorType>();
auto operandType = getOperand().getType().cast<BaseTensorType>();
if (!resultType.hasSameSizesAndDtype(operandType))
return emitError() << "operand and result must have same sizes and dtype";
return success();
}
LogicalResult CopyToValueTensorOp::inferReturnTypes(
MLIRContext *context, std::optional<Location> location, ValueRange operands,
DictionaryAttr attributes, OpaqueProperties properties, RegionRange regions,
SmallVectorImpl<Type> &inferredReturnTypes) {
auto resultType = operands[0].getType().cast<NonValueTensorType>();
inferredReturnTypes.push_back(resultType.getWithValueSemantics());
return success();
}
void CopyToValueTensorOp::getEffects(
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
&effects) {
effects.emplace_back(MemoryEffects::Read::get(), getOperand());
}
//===----------------------------------------------------------------------===//
// ConstantNoneOp
//===----------------------------------------------------------------------===//
OpFoldResult ConstantNoneOp::fold(FoldAdaptor adaptor) {
return TypeAttr::get(Torch::NoneType::get(getContext()));
}
void ConstantNoneOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
setNameFn(getResult(), "none");
}
//===----------------------------------------------------------------------===//
// ConstantStrOp
//===----------------------------------------------------------------------===//
OpFoldResult ConstantStrOp::fold(FoldAdaptor adaptor) { return getValueAttr(); }
void ConstantStrOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
setNameFn(getResult(), "str");
}
//===----------------------------------------------------------------------===//
// ConstantDeviceOp
//===----------------------------------------------------------------------===//
void ConstantDeviceOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
setNameFn(getResult(), getValue());
}
//===----------------------------------------------------------------------===//
// ConstantIntOp
//===----------------------------------------------------------------------===//
ParseResult ConstantIntOp::parse(OpAsmParser &parser, OperationState &result) {
Builder builder(result.getContext());
result.addTypes(builder.getType<Torch::IntType>());
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
int64_t value;
if (parser.parseInteger(value))
return failure();
result.addAttribute("value", builder.getI64IntegerAttr(value));
return success();
}
void ConstantIntOp::print(OpAsmPrinter &p) {
p << " ";
p << getValueAttr().getInt();
p.printOptionalAttrDict((*this)->getAttrs(), {"value"});
}
OpFoldResult Torch::ConstantIntOp::fold(FoldAdaptor adaptor) {
return getValueAttr();
}
void Torch::ConstantIntOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
SmallVector<char> buf;
llvm::raw_svector_ostream os(buf);
os << "int" << getValueAttr().getInt();
setNameFn(getResult(), os.str());
}
//===----------------------------------------------------------------------===//
// ConstantFloatOp
//===----------------------------------------------------------------------===//
OpFoldResult Torch::ConstantFloatOp::fold(FoldAdaptor adaptor) {
return getValueAttr();
}
void Torch::ConstantFloatOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
// Calculate a stringified version of the number, compatible with MLIR
// identifier syntax. (in practice, this just removes the '+' from 'e+' in
// float string representation).
SmallVector<char> buf;
getValue().toString(buf, /*FormatPrecision=*/6, /*FormatMaxPadding=*/0,
/*TruncateZero=*/false);
auto isValidMLIRIdentifierChar = [](char c) {
return isalpha(c) || isdigit(c) || c == '_' || c == '$' || c == '.' ||
c == '-';
};
auto numberStr = llvm::to_vector<16>(
llvm::make_filter_range(buf, isValidMLIRIdentifierChar));
// Construct the identifier string.
buf.clear();
llvm::append_range(buf, StringRef("float"));
llvm::append_range(buf, numberStr);
setNameFn(getResult(), StringRef(buf.data(), buf.size()));
}
//===----------------------------------------------------------------------===//
// ConstantNumberOp
//===----------------------------------------------------------------------===//
OpFoldResult Torch::ConstantNumberOp::fold(FoldAdaptor adaptor) {
return getValueAttr();
}
void Torch::ConstantNumberOp::getCanonicalizationPatterns(
RewritePatternSet &patterns, MLIRContext *context) {
patterns.add(+[](Torch::ConstantNumberOp op, PatternRewriter &rewriter) {
Location loc = op->getLoc();
Value constValue;
Attribute value = op.getValueAttr();
if (auto floatValue = value.dyn_cast<mlir::FloatAttr>()) {
constValue = rewriter.create<Torch::ConstantFloatOp>(loc, floatValue);
} else if (auto intValue = value.dyn_cast<mlir::IntegerAttr>()) {
constValue = rewriter.create<Torch::ConstantIntOp>(loc, intValue);
} else {
return failure();
}
rewriter.replaceOpWithNewOp<Torch::DerefineOp>(op, op.getType(),
constValue);
return success();
});
}
//===----------------------------------------------------------------------===//
// ConstantBoolOp
//===----------------------------------------------------------------------===//
OpFoldResult Torch::ConstantBoolOp::fold(FoldAdaptor adaptor) {
return getValueAttr();
}
void Torch::ConstantBoolOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
setNameFn(getResult(), getValue() ? "true" : "false");
}
//===----------------------------------------------------------------------===//
// PrimUncheckedCastOp
//===----------------------------------------------------------------------===//
bool PrimUncheckedCastOp::areCastCompatible(mlir::TypeRange inputs,
mlir::TypeRange outputs) {
return isValidSubtype(outputs[0], inputs[0]);
}
OpFoldResult PrimUncheckedCastOp::fold(FoldAdaptor adaptor) {
if (auto derefineOp = getX().getDefiningOp<Torch::DerefineOp>()) {
if (derefineOp.getOperand().getType() == getType())
return derefineOp.getOperand();
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// Aten__Getitem__TOp
//===----------------------------------------------------------------------===//
void Aten__Getitem__TOp::getCanonicalizationPatterns(
RewritePatternSet &patterns, MLIRContext *context) {
patterns.add(+[](Aten__Getitem__TOp op, PatternRewriter &rewriter) {
auto torchList = op.getOperand(0);
if (isListPotentiallyMutated(torchList))
return failure();
auto listConstruct = torchList.getDefiningOp<Torch::PrimListConstructOp>();
if (!listConstruct)
return failure();
// Get the index, but be careful because it might be statically invalid.
std::optional<int64_t> indexOpt = matchLegalConstantIndexIntoListOfSize(
op.getOperand(1), listConstruct.getNumOperands());
if (!indexOpt)
return rewriter.notifyMatchFailure(op, "statically invalid index");
rewriter.replaceOp(op, {listConstruct.getOperand(*indexOpt)});
return success();
});
patterns.add(+[](Aten__Getitem__TOp op, PatternRewriter &rewriter) {
auto sizeOp = op.getList().getDefiningOp<AtenSizeOp>();
if (!sizeOp)
return failure();
// This assumes tht the size doesn't change between the
// AtenSizeOp and the Aten__Getitem__TOp.
// `t_` is the only op I can find that changes the shape in-place. It seems
// like otherwise we can treat the size of a tensor as having value
// semantics. The other view-like ops don't have in-place variants --
// they always return a new SSA value that is aliased to the input.
// Can we have a pass to normalize the `t_` case and then elsewhere in the
// compiler treat the size as having value semantics?
// There's a small number of such ops, and they are marked as `inplace_view`
// in PyTorch's `native_functions.yaml` file.
rewriter.replaceOpWithNewOp<AtenSizeIntOp>(op, sizeOp.getSelf(), op.getIdx());
return success();
});
}
//===----------------------------------------------------------------------===//
// AtenIsFloatingPointOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenIsFloatingPointOp::fold(FoldAdaptor adaptor) {
auto operandType = getSelf().getType().dyn_cast<BaseTensorType>();
if (!operandType)
return nullptr;
if (operandType.hasDtype()) {
bool isFloatType = operandType.getDtype().isa<mlir::FloatType>();
return IntegerAttr::get(IntegerType::get(getContext(), 1), isFloatType);
}
// doesn't has dtype
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenAddTOp
//===----------------------------------------------------------------------===//
void AtenAddTOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](AtenAddTOp op, PatternRewriter &rewriter) {
auto lhsListConstruct = op.getA().getDefiningOp<Torch::PrimListConstructOp>();
if (!lhsListConstruct || isListPotentiallyMutated(lhsListConstruct))
return failure();
auto rhsListConstruct = op.getB().getDefiningOp<Torch::PrimListConstructOp>();
if (!rhsListConstruct || isListPotentiallyMutated(rhsListConstruct))
return failure();
SmallVector<Value> concatenatedList;
for (auto a : lhsListConstruct.getOperands()) {
concatenatedList.push_back(a);
}
for (auto b : rhsListConstruct.getOperands()) {
concatenatedList.push_back(b);
}
rewriter.replaceOpWithNewOp<Torch::PrimListConstructOp>(op, op.getType(),
concatenatedList);
return success();
});
}
//===----------------------------------------------------------------------===//
// AtenSliceTOp
//===----------------------------------------------------------------------===//
void AtenSliceTOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](AtenSliceTOp op, PatternRewriter &rewriter) {
auto valueList = op.getL();
auto listConstructOp = valueList.getDefiningOp<PrimListConstructOp>();
if (!listConstructOp || isListPotentiallyMutated(listConstructOp)) {
return failure();
}
SmallVector<Value> listElements =
llvm::to_vector<4>(listConstructOp.getElements());
int64_t size = static_cast<int64_t>(listElements.size());
int64_t start;
int64_t end;
int64_t step;
if (op.getStart().getType().isa<Torch::NoneType>()) {
start = 0;
} else if (!matchPattern(op.getStart(), m_TorchConstantInt(&start))) {
return failure();
}
if (op.getEnd().getType().isa<Torch::NoneType>()) {
end = listElements.size();
} else if (!matchPattern(op.getEnd(), m_TorchConstantInt(&end))) {
return failure();
}
if (!matchPattern(op.getStep(), m_TorchConstantInt(&step))) {
return failure();
}
start = start >= 0 ? start : start + size;
start = start >= 0 ? start : 0;
end = end >= 0 ? end : end + size;
end = end < size ? end : size;
SmallVector<Value> newListElements;
for (int64_t i = start; i < end; i += step) {
newListElements.push_back(listElements[i]);
}
rewriter.replaceOpWithNewOp<PrimListConstructOp>(
op, Torch::ListType::get(listElements[0].getType()), newListElements);
return success();
});
}
//===----------------------------------------------------------------------===//
// AtenEqIntListOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenEqIntListOp::fold(FoldAdaptor adaptor) {
auto lhsLiteral = getA().getDefiningOp<Torch::PrimListConstructOp>();
if (!lhsLiteral)
return nullptr;
auto rhsLiteral = getB().getDefiningOp<Torch::PrimListConstructOp>();
if (!rhsLiteral)
return nullptr;
// If the sizes don't match, then we know the lists aren't equal.
if (lhsLiteral.getNumOperands() != rhsLiteral.getNumOperands())
return getI1IntegerAttr(getContext(), false);
// If the sizes match and all corresponding list elements are the same Value,
// then we know the lists are equal.
// Note that we can't prove that the lists are not-equal with this method,
// since two different Value's might dynamically be equal.
if (llvm::all_of(
llvm::zip(lhsLiteral.getOperands(), rhsLiteral.getOperands()),
[](const auto &pair) {
return std::get<0>(pair) == std::get<1>(pair);
}))
return getI1IntegerAttr(getContext(), true);
return nullptr;
}
//===----------------------------------------------------------------------===//
// PrimTupleConstructOp
//===----------------------------------------------------------------------===//
LogicalResult PrimTupleConstructOp::verify() {
if (!(isValidSubtype(
Torch::TupleType::get(getContext(),
llvm::to_vector<6>(getElements().getType())),
getResult().getType())))
return emitOpError(
"failed to verify that contained types correspond to operand types");
return success();
}
//===----------------------------------------------------------------------===//
// PrimTupleIndexOp
//===----------------------------------------------------------------------===//
void PrimTupleIndexOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](PrimTupleIndexOp op, PatternRewriter &rewriter) {
auto tupleConstruct = op.getTup().getDefiningOp<Torch::PrimTupleConstructOp>();
if (!tupleConstruct)
return failure();
int64_t i;
if (!matchPattern(op.getI(), m_TorchConstantInt(&i)))
return failure();
if (i >= (int64_t)tupleConstruct.getElements().size())
return failure();
// TODO: We should have a clear picture of whether we want to consistently
// allow refinement, and where. It seems desirable to require precise
// type equality for TupleConstruct / TupleIndex, but that might break
// things.
Value replacement = tupleConstruct.getElements()[i];
if (replacement.getType() != op.getType()) {
if (op.getType().isa<BaseTensorType>()) {
replacement = rewriter.create<Torch::TensorStaticInfoCastOp>(
op.getLoc(), op.getType(), replacement);
} else {
return failure();
}
}
rewriter.replaceOp(op, replacement);
return success();
});
}
//===----------------------------------------------------------------------===//
// PrimUninitializedOp
//===----------------------------------------------------------------------===//
void PrimUninitializedOp::getCanonicalizationPatterns(
RewritePatternSet &patterns, MLIRContext *context) {
patterns.add(+[](PrimUninitializedOp op, PatternRewriter &rewriter) {
if (!op.use_empty())
return failure();
rewriter.eraseOp(op);
return success();
});
}
//===----------------------------------------------------------------------===//
// PrimTupleUnpackOp
//===----------------------------------------------------------------------===//
void PrimTupleUnpackOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](PrimTupleUnpackOp op, PatternRewriter &rewriter) {
auto tupleConstruct = op.getTup().getDefiningOp<Torch::PrimTupleConstructOp>();
if (!tupleConstruct)
return failure();
llvm::SmallVector<Value> derefinedElements;
// The result types may be supertypes of the tuple element types.
// Ensure we maintain the exact type, with identity `derefine`s being
// folded.
for (auto [type, element] :
llvm::zip(op.getResultTypes(), tupleConstruct.getElements())) {
derefinedElements.push_back(
rewriter.createOrFold<DerefineOp>(op.getLoc(), type, element));
}
rewriter.replaceOp(op, derefinedElements);
return success();
});
}
//===----------------------------------------------------------------------===//
// PrimListUnpackOp
//===----------------------------------------------------------------------===//
void PrimListUnpackOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](PrimListUnpackOp op, PatternRewriter &rewriter) {
auto torchList = op.getOperand();
if (isListPotentiallyMutated(torchList)) {
return failure();
}
auto listConstruct = torchList.getDefiningOp<Torch::PrimListConstructOp>();
if (!listConstruct)
return failure();
rewriter.replaceOp(op, listConstruct.getElements());
return success();
});
}
static PrimDictConstructOp getDictConstructIfNotModified(Value torchDict) {
if (!llvm::all_of(torchDict.getUsers(), [](Operation *op) {
return isa<Aten__Getitem__DictStrOp, Aten__Contains__StrOp,
AtenKeysStrOp, AtenGetDefaultStrOp, PrimDictConstructOp>(op);
}))
return nullptr;
return torchDict.getDefiningOp<Torch::PrimDictConstructOp>();
}
//===----------------------------------------------------------------------===//
// Aten__Getitem__DictStrOp
//===----------------------------------------------------------------------===//
OpFoldResult Aten__Getitem__DictStrOp::fold(FoldAdaptor adaptor) {
auto dictConstruct = getDictConstructIfNotModified(getSelf());
if (!dictConstruct)
return nullptr;
auto targetKey = getKey();
for (auto i : llvm::zip(dictConstruct.getKeys(), dictConstruct.getValues())) {
auto k = std::get<0>(i);
if (k == targetKey)
return std::get<1>(i);
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// Aten__Contains__StrOp
//===----------------------------------------------------------------------===//
OpFoldResult Aten__Contains__StrOp::fold(FoldAdaptor adaptor) {
auto dictConstruct = getDictConstructIfNotModified(getDict());
if (!dictConstruct)
return nullptr;
auto targetKey = getKey();
for (auto key : dictConstruct.getKeys()) {
if (key == targetKey)
return getI1IntegerAttr(getContext(), true);
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// Aten__Contains__IntListOp
//===----------------------------------------------------------------------===//
static bool isListConstructNotModified(Value torchList) {
return llvm::all_of(torchList.getUsers(), [](Operation *op) {
return isa<Aten__Contains__IntListOp>(op);
});
}
OpFoldResult Aten__Contains__IntListOp::fold(FoldAdaptor adaptor) {
auto itemConstruct = getItem();
if (!isListConstructNotModified(getL()))
return nullptr;
int64_t item;
SmallVector<int64_t> list;
if (!matchPattern(itemConstruct, m_TorchConstantInt(&item)))
return nullptr;
if (!matchPattern(getL(), m_TorchListOfConstantInts(list)))
return nullptr;
for (auto elem : list) {
if (elem == item)
return getI1IntegerAttr(getContext(), true);
}
return getI1IntegerAttr(getContext(), false);
}
using BinaryIntOperatorFn = std::function<int64_t(int64_t, int64_t)>;
static OpFoldResult
atenBinaryIntOperatorFoldHelper(ArrayRef<Attribute> operands,
BinaryIntOperatorFn f) {
auto intLhs = operands[0].dyn_cast_or_null<IntegerAttr>();
auto intRhs = operands[1].dyn_cast_or_null<IntegerAttr>();
if (!intLhs || !intRhs) {
return nullptr;
}
return IntegerAttr::get(
intLhs.getType(),
f(intLhs.getValue().getSExtValue(), intRhs.getValue().getSExtValue()));
}
using BinaryFloatOperatorFn = std::function<double(double, double)>;
static OpFoldResult
atenBinaryFloatOperatorFoldHelper(ArrayRef<Attribute> operands,
BinaryFloatOperatorFn f) {
double lhs, rhs;
auto parseDoubleAttribute = [](Attribute attr, double &value) -> bool {
if (auto intLhs = attr.dyn_cast_or_null<IntegerAttr>()) {
value = static_cast<double>(intLhs.getValue().getSExtValue());
} else if (auto floatLhs = attr.dyn_cast_or_null<FloatAttr>()) {
value = floatLhs.getValue().convertToDouble();
} else {
return false;
}
return true;
};
if (!parseDoubleAttribute(operands[0], lhs) ||
!parseDoubleAttribute(operands[1], rhs)) {
return nullptr;
}
return getF64FloatAttr(operands[0].getContext(), f(lhs, rhs));
}
//===----------------------------------------------------------------------===//
// AtenAliasOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenAliasOp::fold(FoldAdaptor adaptor) {
return getOperand();
}
//===----------------------------------------------------------------------===//
// AtenFloordivIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenFloordivIntOp::fold(FoldAdaptor adaptor) {
return atenBinaryIntOperatorFoldHelper(
adaptor.getOperands(),
[](int64_t a, int64_t b) { return std::floor(a / (double)b); });
}
//===----------------------------------------------------------------------===//
// AtenRemainderIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenRemainderIntOp::fold(FoldAdaptor adaptor) {
return atenBinaryIntOperatorFoldHelper(
adaptor.getOperands(), [](int64_t a, int64_t b) { return a % b; });
}
//===----------------------------------------------------------------------===//
// AtenAddIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenAddIntOp::fold(FoldAdaptor adaptor) {
return atenBinaryIntOperatorFoldHelper(
adaptor.getOperands(), [](int64_t a, int64_t b) { return a + b; });
}
//===----------------------------------------------------------------------===//
// AtenSubIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenSubIntOp::fold(FoldAdaptor adaptor) {
return atenBinaryIntOperatorFoldHelper(
adaptor.getOperands(), [](int64_t a, int64_t b) { return a - b; });
}
//===----------------------------------------------------------------------===//
// AtenCatOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenCatOp::fold(FoldAdaptor adaptor) {
auto list = getOperand(0).getDefiningOp<PrimListConstructOp>();
if (!list || !list->hasOneUse() || list.getElements().size() != 1)
return nullptr;
return list.getElements()[0];
}
//===----------------------------------------------------------------------===//
// AtenStackOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenStackOp::fold(FoldAdaptor adaptor) {
auto list = getOperand(0).getDefiningOp<PrimListConstructOp>();
if (!list || !list->hasOneUse() || list.getElements().size() != 1)
return nullptr;
return list.getElements()[0];
}
//===----------------------------------------------------------------------===//
// AtenBroadcastToOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenBroadcastToOp::fold(FoldAdaptor adaptor) {
auto inType = getOperand(0).getType().dyn_cast<BaseTensorType>();
auto outType = getResult().getType().dyn_cast<BaseTensorType>();
if (!inType || !outType || !inType.hasSizes() || !outType.hasSizes())
return nullptr;
if (inType.getSizes().size() != outType.getSizes().size())
return nullptr;
for (size_t i = 0; i < inType.getSizes().size(); ++i) {
if (inType.getSizes()[i] != outType.getSizes()[i])
return nullptr;
}
return getOperand(0);
}
//===----------------------------------------------------------------------===//
// AtenBroadcastToOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenBroadcastToOp::fold(FoldAdaptor adaptor) {
auto inType = getOperand(0).getType().dyn_cast<BaseTensorType>();
auto outType = getResult().getType().dyn_cast<BaseTensorType>();
if (!inType || !outType || !inType.hasSizes() || !outType.hasSizes())
return nullptr;
if (inType.getSizes().size() != outType.getSizes().size() ||
!inType.areAllSizesKnown() || !outType.areAllSizesKnown())
return nullptr;
for (size_t i = 0; i < inType.getSizes().size(); ++i) {
if (inType.getSizes()[i] != outType.getSizes()[i])
return nullptr;
}
return getOperand(0);
}
//===----------------------------------------------------------------------===//
// AtenSliceTensorOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenSliceTensorOp::fold(FoldAdaptor adaptor) {
int64_t start, end, step;
if (matchPattern(getStart(), m_TorchConstantInt(&start)) &&
matchPattern(getEnd(), m_TorchConstantInt(&end)) &&
matchPattern(getStep(), m_TorchConstantInt(&step))
&& step == 1
&& start == 0
&& end == std::numeric_limits<int64_t>::max())
return getOperand(0);
auto inType = getOperand(0).getType().dyn_cast<BaseTensorType>();
auto outType = getResult().getType().dyn_cast<BaseTensorType>();
if (!inType || !outType || !inType.hasSizes() || !outType.hasSizes())
return nullptr;
if (inType.getSizes().size() != outType.getSizes().size() ||
!inType.areAllSizesKnown() || !outType.areAllSizesKnown())
return nullptr;
for (size_t i = 0; i < inType.getSizes().size(); ++i) {
if (inType.getSizes()[i] != outType.getSizes()[i])
return nullptr;
}
return getOperand(0);
}
//===----------------------------------------------------------------------===//
// AtenMulIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenMulIntOp::fold(FoldAdaptor adaptor) {
int64_t lhs, rhs;
bool lConstant = matchPattern(getOperand(0), m_TorchConstantInt(&lhs));
bool rConstant = matchPattern(getOperand(1), m_TorchConstantInt(&rhs));
if ((lConstant && lhs == 0) || (rConstant && rhs == 0))
return getI64IntegerAttr(getContext(), 0);
if (lConstant && rConstant)
return getI64IntegerAttr(getContext(), lhs * rhs);
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenMulFloatOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenMulFloatOp::fold(FoldAdaptor adaptor) {
return atenBinaryFloatOperatorFoldHelper(
adaptor.getOperands(), [](double a, double b) { return a * b; });
}
//===----------------------------------------------------------------------===//
// AtenSubFloatOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenSubFloatOp::fold(FoldAdaptor adaptor) {
return atenBinaryFloatOperatorFoldHelper(
adaptor.getOperands(), [](double a, double b) { return a - b; });
}
//===----------------------------------------------------------------------===//
// AtenAddOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenAddOp::fold(FoldAdaptor adaptor) {
if (!adaptor.getA() || !adaptor.getB()) {
return nullptr;
}
if (adaptor.getA().isa<IntegerAttr>() && adaptor.getB().isa<IntegerAttr>()) {
return atenBinaryIntOperatorFoldHelper(
adaptor.getOperands(),
[](int64_t a, int64_t b) -> int64_t { return a + b; });
}
return atenBinaryFloatOperatorFoldHelper(
adaptor.getOperands(),
[](double a, double b) -> double { return a + b; });
}
//===----------------------------------------------------------------------===//
// AtenSubOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenSubOp::fold(FoldAdaptor adaptor) {
if (!adaptor.getA() || !adaptor.getB()) {
return nullptr;
}
if (adaptor.getA().isa<IntegerAttr>() && adaptor.getB().isa<IntegerAttr>()) {
return atenBinaryIntOperatorFoldHelper(
adaptor.getOperands(),
[](int64_t a, int64_t b) -> int64_t { return a - b; });
}
return atenBinaryFloatOperatorFoldHelper(
adaptor.getOperands(),
[](double a, double b) -> double { return a - b; });
}
//===----------------------------------------------------------------------===//
// AtenDivOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenDivOp::fold(FoldAdaptor adaptor) {
if (!adaptor.getA() || !adaptor.getB()) {
return nullptr;
}
// Since AtenDivOp always returns float value, we don't need to deal with the
// case where the operands are both integers separately.
return atenBinaryFloatOperatorFoldHelper(
adaptor.getOperands(),
[](double a, double b) -> double { return a / b; });
}
//===----------------------------------------------------------------------===//
// AtenAddFloatIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenAddFloatIntOp::fold(FoldAdaptor adaptor) {
if (!adaptor.getA() || !adaptor.getB()) {
return nullptr;
}
return atenBinaryFloatOperatorFoldHelper(
adaptor.getOperands(), [](double a, double b) { return a + b; });
}
//===----------------------------------------------------------------------===//
// AtenPowIntFloatOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenPowIntFloatOp::fold(FoldAdaptor adaptor) {
if (!adaptor.getA() || !adaptor.getB()) {
return nullptr;
}
return atenBinaryFloatOperatorFoldHelper(
adaptor.getOperands(), [](double a, double b) { return std::pow(a, b); });
}
//===----------------------------------------------------------------------===//
// AtenCeilScalarOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenCeilScalarOp::fold(FoldAdaptor adaptor) {
if (!adaptor.getA()) {
return nullptr;
}
auto floatValue = adaptor.getA().dyn_cast_or_null<FloatAttr>();
if (!floatValue) {
return nullptr;
}
return getI64IntegerAttr(
getContext(),
static_cast<int64_t>(std::ceil(floatValue.getValue().convertToDouble())));
}
//===----------------------------------------------------------------------===//
// AtenNegIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenNegIntOp::fold(FoldAdaptor adaptor) {
int64_t c;
if (matchPattern(getOperand(), m_TorchConstantInt(&c)))
return getI64IntegerAttr(getContext(), -c);
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenNegFloatOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenNegFloatOp::fold(FoldAdaptor adaptor) {
if (!adaptor.getA()) {
return nullptr;
}
auto value = adaptor.getA().dyn_cast_or_null<FloatAttr>();
if (!value) {
return nullptr;
}
return getF64FloatAttr(getContext(), -value.getValue().convertToDouble());
}
//===----------------------------------------------------------------------===//
// AtenSqrtIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenSqrtIntOp::fold(FoldAdaptor adaptor) {
int64_t c;
if (matchPattern(getOperand(), m_TorchConstantInt(&c)))
return getF64FloatAttr(getContext(), std::sqrt(c));
return nullptr;
}
//===----------------------------------------------------------------------===//
// PrimDtypeOp
//===----------------------------------------------------------------------===//
OpFoldResult PrimDtypeOp::fold(FoldAdaptor adaptor) {
BaseTensorType tensorType = getA().getType().cast<BaseTensorType>();
if (tensorType.hasDtype()) {
torch_upstream::ScalarType scalarType =
Torch::getScalarTypeForType(tensorType.getDtype());
return getI64IntegerAttr(getContext(), static_cast<int64_t>(scalarType));
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// PrimDeviceOp
//===----------------------------------------------------------------------===//
void PrimDeviceOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](PrimDeviceOp op, PatternRewriter &rewriter) {
// Device information isn't relevant to torch-mlir, just replace it with
// "cpu".
rewriter.replaceOpWithNewOp<Torch::ConstantDeviceOp>(op, "cpu");
return success();
});
}
//===----------------------------------------------------------------------===//
// AtenCudaOp
//===----------------------------------------------------------------------===//
void AtenCudaOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](AtenCudaOp op, PatternRewriter &rewriter) {
// Device information isn't relevant to torch-mlir
auto inputTensor = op.getSelf();
rewriter.replaceOp(op, inputTensor);
return success();
});
}
//===----------------------------------------------------------------------===//
// AtenDeviceWithIndexOp
//===----------------------------------------------------------------------===//
void AtenDeviceWithIndexOp::getCanonicalizationPatterns(
RewritePatternSet &patterns, MLIRContext *context) {
patterns.add(+[](AtenDeviceWithIndexOp op, PatternRewriter &rewriter) {
std::string type;
int64_t index;
if (!matchPattern(op.getType(), m_TorchConstantStr(type))) {
return rewriter.notifyMatchFailure(
op, "unimplemented: type must be a constant string");
}
if (!matchPattern(op.getIndex(), m_TorchConstantInt(&index))) {
return rewriter.notifyMatchFailure(
op, "unimplemented: index must be a constant integer");
}
rewriter.replaceOpWithNewOp<Torch::ConstantDeviceOp>(
op, type + ":" + std::to_string(index));
return success();
});
}
//===----------------------------------------------------------------------===//
// AtenIntTensorOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenIntTensorOp::fold(FoldAdaptor adaptor) {
// If a scalar number is converted to a 0-d tensor and passed on to
// aten.Int.Tensor, fold to the scalar number.
if (auto numToTensorScalar = getA().getDefiningOp<PrimNumToTensorScalarOp>())
return numToTensorScalar.getA();
if (auto tensorIntOp = getA().getDefiningOp<AtenTensorIntOp>())
return tensorIntOp.getT();
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenFloatTensorOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenFloatTensorOp::fold(FoldAdaptor adaptor) {
// If a scalar number is converted to a 0-d tensor and passed on to
// aten.Float.Tensor, fold to the scalar number.
if (auto numToTensorScalar = getA().getDefiningOp<PrimNumToTensorScalarOp>())
return numToTensorScalar.getA();
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenDivFloatOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenDivFloatOp::fold(FoldAdaptor adaptor) {
double lhs, rhs;
bool lConstant = matchPattern(getOperand(0), m_TorchConstantFloat(&lhs));
bool rConstant = matchPattern(getOperand(1), m_TorchConstantFloat(&rhs));
if (lConstant && lhs == 0.0)
return getF64FloatAttr(getContext(), 0.0);
if (lConstant && rConstant && rhs == 1.0)
return getF64FloatAttr(getContext(), lhs);
if (lConstant && rConstant)
return getF64FloatAttr(getContext(), lhs / rhs);
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenDivIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenDivIntOp::fold(FoldAdaptor adaptor) {
int64_t lhs, rhs;
bool lConstant = matchPattern(getOperand(0), m_TorchConstantInt(&lhs));
bool rConstant = matchPattern(getOperand(1), m_TorchConstantInt(&rhs));
if (lConstant && rConstant)
return getF64FloatAttr(getContext(), double(lhs) / rhs);
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenCeilFloatOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenCeilFloatOp::fold(FoldAdaptor adaptor) {
double c;
if (matchPattern(getOperand(), m_TorchConstantFloat(&c)))
return getI64IntegerAttr(getContext(), std::ceil(c));
return nullptr;
}
//===----------------------------------------------------------------------===//
// PrimMaxIntOp
//===----------------------------------------------------------------------===//
OpFoldResult PrimMaxIntOp::fold(FoldAdaptor adaptor) {
// If both operands are the same, then the operation is an identity.
if (getA() == getB())
return getA();
auto lhs = adaptor.getA().dyn_cast_or_null<IntegerAttr>();
auto rhs = adaptor.getB().dyn_cast_or_null<IntegerAttr>();
if (!lhs || !rhs)
return nullptr;
// Torch semantics are that !torch.int is 64-bit signed.
return IntegerAttr::get(
lhs.getType(),
std::max(lhs.getValue().getSExtValue(), rhs.getValue().getSExtValue()));
}
//===----------------------------------------------------------------------===//
// PrimMinSelfIntOp
//===----------------------------------------------------------------------===//
OpFoldResult PrimMinSelfIntOp::fold(FoldAdaptor adaptor) {
auto list = getOperand().getDefiningOp<PrimListConstructOp>();
if (!list)
return nullptr;
// TODO: What does it return for an empty list?
if (list->getNumOperands() == 0)
return nullptr;
SmallVector<int64_t> values;
for (auto operand : list->getOperands()) {
int64_t value;
if (!matchPattern(operand, m_TorchConstantInt(&value)))
return nullptr;
values.push_back(value);
}
return getI64IntegerAttr(getContext(),
*std::min_element(values.begin(), values.end()));
}
//===----------------------------------------------------------------------===//
// PrimMinIntOp
//===----------------------------------------------------------------------===//
OpFoldResult PrimMinIntOp::fold(FoldAdaptor adaptor) {
// If both operands are the same, then the operation is an identity.
if (getA() == getB())
return getA();
auto lhs = adaptor.getA().dyn_cast_or_null<IntegerAttr>();
auto rhs = adaptor.getB().dyn_cast_or_null<IntegerAttr>();
if (!lhs || !rhs)
return nullptr;
// Torch semantics are that !torch.int is 64-bit signed.
return IntegerAttr::get(
lhs.getType(),
std::min(lhs.getValue().getSExtValue(), rhs.getValue().getSExtValue()));
}
//===----------------------------------------------------------------------===//
// ShapeCalculateOp
//===----------------------------------------------------------------------===//
template <typename CalculateOp>
static void
getSuccessorRegionsForCalculateOp(CalculateOp op, RegionBranchPoint point,
SmallVectorImpl<RegionSuccessor> &regions) {
if (!point.getRegionOrNull()) {
// First thing the op does is branch into the calculation.
regions.emplace_back(&op.getCalculation());
return;
}
if (point == op.getBody()) {
// Body returns control to the outer op, passing through results.
regions.emplace_back(op.getResults());
return;
}
assert(point == op.getCalculation());
// Calculation branches to the body.
regions.emplace_back(&op.getBody());
}
void ShapeCalculateOp::getSuccessorRegions(
RegionBranchPoint point, SmallVectorImpl<RegionSuccessor> &regions) {
getSuccessorRegionsForCalculateOp(*this, point, regions);
}
//===----------------------------------------------------------------------===//
// DtypeCalculateOp
//===----------------------------------------------------------------------===//
void DtypeCalculateOp::getSuccessorRegions(
RegionBranchPoint point, SmallVectorImpl<RegionSuccessor> &regions) {
getSuccessorRegionsForCalculateOp(*this, point, regions);
}
//===----------------------------------------------------------------------===//
// ShapeCalculateYieldShapesOp
//===----------------------------------------------------------------------===//
MutableOperandRange ShapeCalculateYieldShapesOp::getMutableSuccessorOperands(
RegionBranchPoint point) {
// The shape operands don't get forwarded to the body.
// MutableOperandRange always has an owning operation, even if empty, so
// create a 0-length range.
return MutableOperandRange(*this, /*start=*/0, /*length=*/0);
}
LogicalResult ShapeCalculateYieldShapesOp::verify() {
auto parent = cast<ShapeCalculateOp>(getOperation()->getParentOp());
if (parent.getNumResults() != getNumOperands())
return emitOpError("expected number of shapes to match number of results");
return success();
}
//===----------------------------------------------------------------------===//
// DtypeCalculateYieldDtypesOp
//===----------------------------------------------------------------------===//
MutableOperandRange DtypeCalculateYieldDtypesOp::getMutableSuccessorOperands(
RegionBranchPoint point) {
// The dtype operands don't get forwarded to the body.
// MutableOperandRange always has an owning operation, even if empty, so
// create a 0-length range.
return MutableOperandRange(*this, /*start=*/0, /*length=*/0);
}
LogicalResult DtypeCalculateYieldDtypesOp::verify() {
auto parent = cast<DtypeCalculateOp>(getOperation()->getParentOp());
if (parent.getNumResults() != getNumOperands())
return emitOpError("expected number of dtypes to match number of results");
return success();
}
//===----------------------------------------------------------------------===//
// GlobalSlotModuleInitializerOp
//===----------------------------------------------------------------------===//
LogicalResult GlobalSlotModuleInitializerOp::verify() {
// We centralize all verification of the global slots and the
// InitializeGlobalSlotsOp into here, since it requires processing the whole
// module.
// TODO: We should really have a `torch.module` and have this initializer be
// a region attached to it.
ModuleOp module = cast<ModuleOp>(getOperation()->getParentOp());
for (auto op : module.getOps<GlobalSlotModuleInitializerOp>()) {
if (op.getOperation() != getOperation())
return op.emitError("there must be only one global slot initializer");
}
// Collect the relevant symbol names we will verify.
DenseSet</*StringAttr*/ Attribute> knownGlobalSlots;
for (auto op : module.getOps<GlobalSlotOp>())
knownGlobalSlots.insert(op.getSymNameAttr());
DenseSet</*StringAttr*/ Attribute> initializedGlobalSlots;
auto initialize = cast<InitializeGlobalSlotsOp>(getBody()->getTerminator());
for (Attribute symName : initialize.getSlotSymNames()) {
auto wasInserted = initializedGlobalSlots
.insert(symName.cast<FlatSymbolRefAttr>().getAttr())
.second;
if (!wasInserted)
return initialize.emitError("duplicate initialization of global slot: ")
<< symName;
}
auto lessThanByStringValue = [](Attribute lhs, Attribute rhs) {
return lhs.cast<StringAttr>().getValue() <
rhs.cast<StringAttr>().getValue();
};
auto known = llvm::to_vector(knownGlobalSlots);
llvm::sort(known, lessThanByStringValue);
auto initialized = llvm::to_vector(initializedGlobalSlots);
llvm::sort(initialized, lessThanByStringValue);
// Check that the global slots in the module are all initialized.
SymbolTable symbolTable(module);
if (initializedGlobalSlots != knownGlobalSlots) {
InFlightDiagnostic diag = initialize.emitOpError(
"must have one initializer for each global slot in the module");
for (auto knownGlobalSlot : known) {
auto symName = FlatSymbolRefAttr::get(knownGlobalSlot.cast<StringAttr>());
if (!initializedGlobalSlots.count(knownGlobalSlot)) {
diag.attachNote(
symbolTable.lookup<GlobalSlotOp>(symName.getAttr()).getLoc())
.append("missing global slot initializer for ", symName);
}
}
for (auto initializedGlobalSlot : initialized) {
if (!knownGlobalSlots.count(initializedGlobalSlot)) {
diag.attachNote().append(
"unexpected global slot initializer for non-existent global slot ",
FlatSymbolRefAttr::get(initializedGlobalSlot.cast<StringAttr>()));
}
}
return diag;
}
// Check that initial values satisfy type bounds.
for (int i = 0, e = initialize.getNumOperands(); i < e; ++i) {
auto symName = initialize.getSlotSymNames()[i].cast<FlatSymbolRefAttr>();
auto initialValue = initialize.getOperand(i);
auto globalSlotOp = symbolTable.lookup<GlobalSlotOp>(symName.getValue());
if (!isValidSubtype(initialValue.getType(), globalSlotOp.getTypeBound())) {
return initialize.emitOpError().append(
"initial value for global slot ", symName, " has type ",
initialValue.getType(), " which is not within the bound ",
globalSlotOp.getTypeBound());
}
}
auto walkResult = getOperation()->walk([](Operation *op) {
// We only permit a small set of ops in the module initializer.
// These ops are essentially those which can be produced by the IValue
// importer.
if (op->hasTrait<mlir::torch::Torch::OpTrait::AllowedInModuleInitializer>())
return WalkResult::advance();
op->emitOpError() << "is not allowed in a module initializer";
return WalkResult::interrupt();
});
if (walkResult.wasInterrupted())
return failure();
return success();
}
//===----------------------------------------------------------------------===//
// InitializeGlobalSlotsOp
//===----------------------------------------------------------------------===//
ParseResult InitializeGlobalSlotsOp::parse(OpAsmParser &parser,
OperationState &result) {
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
if (parser.parseLSquare())
return failure();
SmallVector<Attribute> slotSymNames;
while (!succeeded(parser.parseOptionalRSquare())) {
NamedAttrList dummy;
StringAttr slotSymName;
if (parser.parseSymbolName(slotSymName, "dummy", dummy))
return failure();
slotSymNames.push_back(FlatSymbolRefAttr::get(slotSymName));
if (parser.parseLParen())
return failure();
OpAsmParser::UnresolvedOperand initialValue;
if (parser.parseOperand(initialValue))
return failure();
Type initialValueType;
if (parser.parseColonType(initialValueType))
return failure();
if (parser.parseRParen())
return failure();
if (parser.resolveOperand(initialValue, initialValueType, result.operands))
return failure();
}
result.addAttribute("slotSymNames",
ArrayAttr::get(parser.getContext(), slotSymNames));
return success();
}
void InitializeGlobalSlotsOp::print(OpAsmPrinter &p) {
p.printOptionalAttrDict(getOperation()->getAttrs(),
/*elidedAttrs=*/{"slotSymNames"});
p << " [";
p.printNewline();
for (int i = 0, e = getNumOperands(); i < e; ++i) {
p << " " << getSlotSymNames()[i] << "(" << getInitialValues()[i] << " : "
<< getInitialValues()[i].getType() << ")";
p.printNewline();
}
p << "]";
}
LogicalResult InitializeGlobalSlotsOp::verify() {
if (getInitialValues().size() != getSlotSymNames().size())
return emitOpError("expected number of operands to match number of slots");
return success();
}