torch-mlir/lib/Dialect/Torch/Transforms/DecomposeComplexOps.cpp

199 lines
7.4 KiB
C++

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Transforms/DialectConversion.h"
#include "torch-mlir/Dialect/Torch/IR/TorchDialect.h"
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
#include "torch-mlir/Dialect/Torch/Transforms/Passes.h"
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
#include "llvm/ADT/StringExtras.h"
using namespace mlir;
using namespace mlir::torch;
using namespace mlir::torch::Torch;
// Helper funtion to get rank of `Base tensor type`.
// -1 is returned if the tensorRank can't be determined.
static int getTensorRank(Value tensor) {
int tensorRank = -1;
BaseTensorType tensorType = tensor.getType().cast<BaseTensorType>();
if (tensorType.hasSizes()) {
ArrayRef<int64_t> tensorShape = tensorType.getSizes();
tensorRank = tensorShape.size();
}
return tensorRank;
}
// Decompose softmax into: exp(x) / sum(exp(x))
namespace {
class DecomposeAtenSoftmaxIntOp : public OpRewritePattern<AtenSoftmaxIntOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenSoftmaxIntOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value self = op.self();
Value dim = op.dim();
if (!op.dtype().getType().isa<Torch::NoneType>())
return rewriter.notifyMatchFailure(
op, "Unimplemented non-None dtype for softmax");
BaseTensorType tensorType = self.getType().cast<BaseTensorType>();
if (!tensorType.hasDtype() || !tensorType.getDtype().isa<mlir::FloatType>())
return rewriter.notifyMatchFailure(op, "Only support floating type");
// exp(x)
Value exp = rewriter.create<AtenExpOp>(loc, tensorType, self);
// sum(exp(x))
Value dimList = rewriter.create<PrimListConstructOp>(
loc, Torch::ListType::get(dim.getType()), dim);
Value keepDim = rewriter.create<ConstantBoolOp>(loc, true);
Value dtype = rewriter.create<ConstantNoneOp>(loc);
SmallVector<int64_t> sizes;
int64_t dimInt;
if (tensorType.hasSizes()) {
ArrayRef<int64_t> inputShape = tensorType.getSizes();
int64_t inputRank = inputShape.size();
if (matchPattern(dim, m_TorchConstantInt(&dimInt))) {
dimInt = toPositiveDim(dimInt, inputRank);
if (!isValidDim(dimInt, inputRank))
return rewriter.notifyMatchFailure(op, "dim is not a valid dim");
sizes.append(inputShape.begin(), inputShape.end());
sizes[dimInt] = 1;
} else {
sizes.resize(inputRank, kUnknownSize);
}
}
Type resultType = tensorType.getWithSizesAndDtype(
sizes.size() == 0 ? Optional<ArrayRef<int64_t>>()
: llvm::makeArrayRef(sizes),
tensorType.getDtype());
Value sum = rewriter.create<AtenSumDimIntListOp>(loc, resultType, exp,
dimList, keepDim, dtype);
// exp(x) / sum(exp(x))
Value result = rewriter.create<AtenDivTensorOp>(loc, tensorType, exp, sum);
rewriter.replaceOpWithNewOp<TensorStaticInfoCastOp>(op, op.getType(),
result);
return success();
}
};
} // namespace
// Decompose aten.log_softmax op into: log(softmax(x))
namespace {
class DecomposeAtenLogSoftmaxIntOp
: public OpRewritePattern<AtenLogSoftmaxIntOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenLogSoftmaxIntOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value self = op.self();
Value dim = op.dim();
if (!op.dtype().getType().isa<Torch::NoneType>())
return rewriter.notifyMatchFailure(
op, "Unimplemented non-None dtype for log_softmax");
BaseTensorType tensorType = self.getType().cast<BaseTensorType>();
if (!tensorType.hasDtype() || !tensorType.getDtype().isa<mlir::FloatType>())
return rewriter.notifyMatchFailure(op, "Only support floating type");
// softmax(x, dim)
Value softmax = rewriter.create<AtenSoftmaxIntOp>(loc, tensorType, self,
dim, op.dtype());
rewriter.replaceOpWithNewOp<AtenLogOp>(op, op.getType(), softmax);
return success();
}
};
} // namespace
// Decompose torch.matmul into: torch.mm and torch.bmm according to ranks.
namespace {
class DecomposeAtenMatmulOp : public OpRewritePattern<AtenMatmulOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenMatmulOp op,
PatternRewriter &rewriter) const override {
Value lhs = op.self();
Value rhs = op.other();
int lhsRank = getTensorRank(lhs);
int rhsRank = getTensorRank(rhs);
// If both lhs and rhs ranks are 2 then map it to `aten.mm` op.
if (lhsRank == 2 && rhsRank == 2)
rewriter.replaceOpWithNewOp<AtenMmOp>(op, op.getType(), lhs, rhs);
// If both lhs and rhs ranks are 3 then map it to `aten.bmm` op.
if (lhsRank == 3 && rhsRank == 3)
rewriter.replaceOpWithNewOp<AtenBmmOp>(op, op.getType(), lhs, rhs);
return success();
}
};
} // namespace
// Decompose torch.expand into torch.broadcast_to op.
namespace {
class DecomposeAtenExpandOp : public OpRewritePattern<AtenExpandOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenExpandOp op,
PatternRewriter &rewriter) const override {
bool implicit = false;
if (!matchPattern(op.implicit(), m_TorchConstantBool(&implicit)) ||
implicit) {
return rewriter.notifyMatchFailure(
op, "unimplemented: requires implicit to be false");
}
rewriter.replaceOpWithNewOp<AtenBroadcastToOp>(op, op.getType(), op.self(),
op.size());
return success();
}
};
} // namespace
namespace {
class DecomposeComplexOpsPass
: public DecomposeComplexOpsBase<DecomposeComplexOpsPass> {
void runOnOperation() override {
MLIRContext *context = &getContext();
RewritePatternSet patterns(context);
ConversionTarget target(*context);
target.addLegalDialect<Torch::TorchDialect>();
patterns.add<DecomposeAtenSoftmaxIntOp>(context);
target.addIllegalOp<AtenSoftmaxIntOp>();
patterns.add<DecomposeAtenLogSoftmaxIntOp>(context);
target.addIllegalOp<AtenLogSoftmaxIntOp>();
patterns.add<DecomposeAtenExpandOp>(context);
target.addIllegalOp<AtenExpandOp>();
patterns.add<DecomposeAtenMatmulOp>(context);
target.addDynamicallyLegalOp<AtenMatmulOp>([](AtenMatmulOp op) {
int lhsRank = getTensorRank(op.self());
int rhsRank = getTensorRank(op.other());
// Make aten.matmul legal if the following condition is satisfied.
return (lhsRank != 2 || rhsRank != 2) && (lhsRank != 3 || rhsRank != 3);
});
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns)))) {
return signalPassFailure();
}
}
};
} // namespace
std::unique_ptr<OperationPass<FuncOp>>
mlir::torch::Torch::createDecomposeComplexOpsPass() {
return std::make_unique<DecomposeComplexOpsPass>();
}