mirror of https://github.com/llvm/torch-mlir
181 lines
6.6 KiB
C++
181 lines
6.6 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "npcomp/Conversion/TCFToTCP/TCFToTCP.h"
|
|
|
|
#include "../PassDetail.h"
|
|
#include "mlir/Dialect/Shape/IR/Shape.h"
|
|
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
|
#include "mlir/Dialect/Traits.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "npcomp/Dialect/TCF/IR/TCFOps.h"
|
|
#include "npcomp/Dialect/TCP/IR/TCPDialect.h"
|
|
#include "npcomp/Dialect/TCP/IR/TCPOps.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::NPCOMP;
|
|
|
|
static RankedTensorType getExtentTensorType(Builder &builder) {
|
|
return RankedTensorType::get({ShapedType::kDynamicSize},
|
|
builder.getIndexType());
|
|
}
|
|
|
|
// Non-templated version of the body of ConvertBinaryElementwise to keep things
|
|
// simple.
|
|
static LogicalResult
|
|
matchAndRewriteBinaryElementwise(Operation *op, PatternRewriter &rewriter) {
|
|
Value lhs = op->getOperand(0);
|
|
Value rhs = op->getOperand(1);
|
|
Location loc = op->getLoc();
|
|
Value result = op->getResult(0);
|
|
|
|
auto lhsType = lhs.getType().dyn_cast<RankedTensorType>();
|
|
auto rhsType = rhs.getType().dyn_cast<RankedTensorType>();
|
|
if (!lhsType || !rhsType)
|
|
return rewriter.notifyMatchFailure(op, "requires ranked tensors");
|
|
|
|
Value lhsShape = rewriter.create<shape::ShapeOfOp>(loc, lhs);
|
|
Value rhsShape = rewriter.create<shape::ShapeOfOp>(loc, rhs);
|
|
|
|
// Create the constraints, and the assuming region.
|
|
Value witness =
|
|
rewriter.create<shape::CstrBroadcastableOp>(loc, lhsShape, rhsShape);
|
|
auto assuming = rewriter.create<shape::AssumingOp>(
|
|
loc, ArrayRef<Type>{result.getType()}, witness);
|
|
|
|
// Start building the region body.
|
|
rewriter.createBlock(&assuming.doRegion());
|
|
Value broadcastedShape = rewriter.create<shape::BroadcastOp>(
|
|
loc, getExtentTensorType(rewriter), lhsShape, rhsShape,
|
|
/*error=*/nullptr);
|
|
|
|
// TODO: It's annoying to do the dynamic broadcast above then
|
|
// do the static transfer function here. Would be nice if they could
|
|
// somehow be unified.
|
|
SmallVector<int64_t, 6> broadcastedStaticShape;
|
|
OpTrait::util::getBroadcastedShape(lhsType.getShape(), rhsType.getShape(),
|
|
broadcastedStaticShape);
|
|
auto resultType =
|
|
RankedTensorType::get(broadcastedStaticShape, lhsType.getElementType());
|
|
Value lhsBroadcasted = rewriter.create<tcp::BroadcastToOp>(
|
|
loc, resultType, lhs, broadcastedShape);
|
|
Value rhsBroadcasted = rewriter.create<tcp::BroadcastToOp>(
|
|
loc, resultType, rhs, broadcastedShape);
|
|
Value binaryOpResult;
|
|
if (isa<tcf::AddOp>(op)) {
|
|
binaryOpResult = rewriter.create<tcp::AddOp>(
|
|
loc, result.getType(), lhsBroadcasted, rhsBroadcasted);
|
|
} else if (isa<tcf::MaxOp>(op)) {
|
|
binaryOpResult = rewriter.create<tcp::MaxOp>(
|
|
loc, result.getType(), lhsBroadcasted, rhsBroadcasted);
|
|
} else {
|
|
op->dump();
|
|
llvm::report_fatal_error(
|
|
"unhandled op (see dump above): TCF->TCP binary elementwise");
|
|
}
|
|
rewriter.create<shape::AssumingYieldOp>(loc, binaryOpResult);
|
|
|
|
// Finally, replace with the results of the shape.assuming
|
|
rewriter.replaceOp(op, assuming.getResults());
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
template <typename SourceOp>
|
|
class ConvertBinaryElementwise : public OpRewritePattern<SourceOp> {
|
|
public:
|
|
using OpRewritePattern<SourceOp>::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(SourceOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
return matchAndRewriteBinaryElementwise(op, rewriter);
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
static LogicalResult
|
|
matchAndRewriteUnaryElementwise(Operation *op, PatternRewriter &rewriter) {
|
|
if (isa<tcf::ExpOp>(op)) {
|
|
rewriter.replaceOpWithNewOp<tcp::ExpOp>(op, op->getOperand(0));
|
|
} else if (isa<tcf::TanhOp>(op)) {
|
|
rewriter.replaceOpWithNewOp<tcp::TanhOp>(op, op->getOperand(0));
|
|
} else {
|
|
op->dump();
|
|
llvm::report_fatal_error(
|
|
"unhandled op (see dump above): TCF->TCP unary elementwise");
|
|
}
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
template <typename SourceOp>
|
|
class ConvertUnaryElementwise : public OpRewritePattern<SourceOp> {
|
|
public:
|
|
using OpRewritePattern<SourceOp>::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(SourceOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
return matchAndRewriteUnaryElementwise(op, rewriter);
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class ConvertMatmul : public OpRewritePattern<tcf::MatmulOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(tcf::MatmulOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
// Create the constraints, and the assuming region.
|
|
Value lhsK = rewriter.create<DimOp>(op.getLoc(), op.lhs(), 1);
|
|
Value rhsK = rewriter.create<DimOp>(op.getLoc(), op.rhs(), 0);
|
|
Value matchingK =
|
|
rewriter.create<CmpIOp>(op.getLoc(), CmpIPredicate::eq, lhsK, rhsK);
|
|
Value witness = rewriter.create<shape::CstrRequireOp>(
|
|
op.getLoc(), matchingK, "mismatching contracting dimension for matmul");
|
|
auto assuming = rewriter.create<shape::AssumingOp>(
|
|
op.getLoc(), ArrayRef<Type>{op.getType()}, witness);
|
|
|
|
// Build the region body.
|
|
rewriter.createBlock(&assuming.doRegion());
|
|
Value matmul = rewriter.create<tcp::MatmulOp>(op.getLoc(), op.getType(),
|
|
op.lhs(), op.rhs());
|
|
rewriter.create<shape::AssumingYieldOp>(op.getLoc(), matmul);
|
|
|
|
// Finally, replace with the results of the shape.assuming
|
|
rewriter.replaceOp(op, assuming.getResults());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class ConvertTCFToTCP : public ConvertTCFToTCPBase<ConvertTCFToTCP> {
|
|
public:
|
|
void getDependentDialects(DialectRegistry ®istry) const override {
|
|
registry.insert<shape::ShapeDialect, tcp::TCPDialect>();
|
|
}
|
|
|
|
void runOnOperation() override {
|
|
ModuleOp module = getOperation();
|
|
MLIRContext *context = &getContext();
|
|
|
|
OwningRewritePatternList patterns;
|
|
patterns.insert<ConvertUnaryElementwise<tcf::ExpOp>,
|
|
ConvertUnaryElementwise<tcf::TanhOp>>(context);
|
|
patterns.insert<ConvertBinaryElementwise<tcf::AddOp>,
|
|
ConvertBinaryElementwise<tcf::MaxOp>>(context);
|
|
patterns.insert<ConvertMatmul>(context);
|
|
(void)applyPatternsAndFoldGreedily(module, patterns);
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
std::unique_ptr<OperationPass<ModuleOp>>
|
|
mlir::NPCOMP::createConvertTCFToTCPPass() {
|
|
return std::make_unique<ConvertTCFToTCP>();
|
|
}
|