torch-mlir/lib/Conversion/TCFToTCP/TCFToTCP.cpp

181 lines
6.6 KiB
C++

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "npcomp/Conversion/TCFToTCP/TCFToTCP.h"
#include "../PassDetail.h"
#include "mlir/Dialect/Shape/IR/Shape.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/Traits.h"
#include "mlir/Transforms/DialectConversion.h"
#include "npcomp/Dialect/TCF/IR/TCFOps.h"
#include "npcomp/Dialect/TCP/IR/TCPDialect.h"
#include "npcomp/Dialect/TCP/IR/TCPOps.h"
using namespace mlir;
using namespace mlir::NPCOMP;
static RankedTensorType getExtentTensorType(Builder &builder) {
return RankedTensorType::get({ShapedType::kDynamicSize},
builder.getIndexType());
}
// Non-templated version of the body of ConvertBinaryElementwise to keep things
// simple.
static LogicalResult
matchAndRewriteBinaryElementwise(Operation *op, PatternRewriter &rewriter) {
Value lhs = op->getOperand(0);
Value rhs = op->getOperand(1);
Location loc = op->getLoc();
Value result = op->getResult(0);
auto lhsType = lhs.getType().dyn_cast<RankedTensorType>();
auto rhsType = rhs.getType().dyn_cast<RankedTensorType>();
if (!lhsType || !rhsType)
return rewriter.notifyMatchFailure(op, "requires ranked tensors");
Value lhsShape = rewriter.create<shape::ShapeOfOp>(loc, lhs);
Value rhsShape = rewriter.create<shape::ShapeOfOp>(loc, rhs);
// Create the constraints, and the assuming region.
Value witness =
rewriter.create<shape::CstrBroadcastableOp>(loc, lhsShape, rhsShape);
auto assuming = rewriter.create<shape::AssumingOp>(
loc, ArrayRef<Type>{result.getType()}, witness);
// Start building the region body.
rewriter.createBlock(&assuming.doRegion());
Value broadcastedShape = rewriter.create<shape::BroadcastOp>(
loc, getExtentTensorType(rewriter), lhsShape, rhsShape,
/*error=*/nullptr);
// TODO: It's annoying to do the dynamic broadcast above then
// do the static transfer function here. Would be nice if they could
// somehow be unified.
SmallVector<int64_t, 6> broadcastedStaticShape;
OpTrait::util::getBroadcastedShape(lhsType.getShape(), rhsType.getShape(),
broadcastedStaticShape);
auto resultType =
RankedTensorType::get(broadcastedStaticShape, lhsType.getElementType());
Value lhsBroadcasted = rewriter.create<tcp::BroadcastToOp>(
loc, resultType, lhs, broadcastedShape);
Value rhsBroadcasted = rewriter.create<tcp::BroadcastToOp>(
loc, resultType, rhs, broadcastedShape);
Value binaryOpResult;
if (isa<tcf::AddOp>(op)) {
binaryOpResult = rewriter.create<tcp::AddOp>(
loc, result.getType(), lhsBroadcasted, rhsBroadcasted);
} else if (isa<tcf::MaxOp>(op)) {
binaryOpResult = rewriter.create<tcp::MaxOp>(
loc, result.getType(), lhsBroadcasted, rhsBroadcasted);
} else {
op->dump();
llvm::report_fatal_error(
"unhandled op (see dump above): TCF->TCP binary elementwise");
}
rewriter.create<shape::AssumingYieldOp>(loc, binaryOpResult);
// Finally, replace with the results of the shape.assuming
rewriter.replaceOp(op, assuming.getResults());
return success();
}
namespace {
template <typename SourceOp>
class ConvertBinaryElementwise : public OpRewritePattern<SourceOp> {
public:
using OpRewritePattern<SourceOp>::OpRewritePattern;
LogicalResult matchAndRewrite(SourceOp op,
PatternRewriter &rewriter) const override {
return matchAndRewriteBinaryElementwise(op, rewriter);
}
};
} // namespace
static LogicalResult
matchAndRewriteUnaryElementwise(Operation *op, PatternRewriter &rewriter) {
if (isa<tcf::ExpOp>(op)) {
rewriter.replaceOpWithNewOp<tcp::ExpOp>(op, op->getOperand(0));
} else if (isa<tcf::TanhOp>(op)) {
rewriter.replaceOpWithNewOp<tcp::TanhOp>(op, op->getOperand(0));
} else {
op->dump();
llvm::report_fatal_error(
"unhandled op (see dump above): TCF->TCP unary elementwise");
}
return success();
}
namespace {
template <typename SourceOp>
class ConvertUnaryElementwise : public OpRewritePattern<SourceOp> {
public:
using OpRewritePattern<SourceOp>::OpRewritePattern;
LogicalResult matchAndRewrite(SourceOp op,
PatternRewriter &rewriter) const override {
return matchAndRewriteUnaryElementwise(op, rewriter);
}
};
} // namespace
namespace {
class ConvertMatmul : public OpRewritePattern<tcf::MatmulOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(tcf::MatmulOp op,
PatternRewriter &rewriter) const override {
// Create the constraints, and the assuming region.
Value lhsK = rewriter.create<DimOp>(op.getLoc(), op.lhs(), 1);
Value rhsK = rewriter.create<DimOp>(op.getLoc(), op.rhs(), 0);
Value matchingK =
rewriter.create<CmpIOp>(op.getLoc(), CmpIPredicate::eq, lhsK, rhsK);
Value witness = rewriter.create<shape::CstrRequireOp>(
op.getLoc(), matchingK, "mismatching contracting dimension for matmul");
auto assuming = rewriter.create<shape::AssumingOp>(
op.getLoc(), ArrayRef<Type>{op.getType()}, witness);
// Build the region body.
rewriter.createBlock(&assuming.doRegion());
Value matmul = rewriter.create<tcp::MatmulOp>(op.getLoc(), op.getType(),
op.lhs(), op.rhs());
rewriter.create<shape::AssumingYieldOp>(op.getLoc(), matmul);
// Finally, replace with the results of the shape.assuming
rewriter.replaceOp(op, assuming.getResults());
return success();
}
};
} // namespace
namespace {
class ConvertTCFToTCP : public ConvertTCFToTCPBase<ConvertTCFToTCP> {
public:
void getDependentDialects(DialectRegistry &registry) const override {
registry.insert<shape::ShapeDialect, tcp::TCPDialect>();
}
void runOnOperation() override {
ModuleOp module = getOperation();
MLIRContext *context = &getContext();
OwningRewritePatternList patterns;
patterns.insert<ConvertUnaryElementwise<tcf::ExpOp>,
ConvertUnaryElementwise<tcf::TanhOp>>(context);
patterns.insert<ConvertBinaryElementwise<tcf::AddOp>,
ConvertBinaryElementwise<tcf::MaxOp>>(context);
patterns.insert<ConvertMatmul>(context);
(void)applyPatternsAndFoldGreedily(module, patterns);
}
};
} // namespace
std::unique_ptr<OperationPass<ModuleOp>>
mlir::NPCOMP::createConvertTCFToTCPPass() {
return std::make_unique<ConvertTCFToTCP>();
}