mirror of https://github.com/llvm/torch-mlir
471 lines
18 KiB
C++
471 lines
18 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "npcomp/Dialect/Torch/IR/TorchOps.h"
|
|
|
|
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/BuiltinOps.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/IR/TypeUtilities.h"
|
|
#include "npcomp/Dialect/Basicpy/IR/BasicpyDialect.h"
|
|
#include "npcomp/Dialect/Basicpy/IR/BasicpyOps.h"
|
|
#include "llvm/ADT/StringMap.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::NPCOMP;
|
|
using namespace mlir::NPCOMP::Torch;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utilities
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Value mlir::NPCOMP::Torch::copyTensorToType(OpBuilder &builder, Location loc,
|
|
BaseTensorType newType,
|
|
Value tensor) {
|
|
auto originalType = tensor.getType().cast<BaseTensorType>();
|
|
// Adjust the static information in the type to match between the original and
|
|
// new types.
|
|
if (!originalType.hasSameSizesAndDtype(newType)) {
|
|
tensor = builder.create<TensorStaticInfoCastOp>(
|
|
loc, originalType.getWithSizesAndDtypeFrom(newType), tensor);
|
|
}
|
|
// If both the original and new types already have value semantics, a copy is
|
|
// pointless.
|
|
if (originalType.isa<ValueTensorType>() && newType.isa<ValueTensorType>())
|
|
return tensor;
|
|
return builder.create<CopyTensorOp>(loc, newType, tensor);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MethodOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult MethodOp::verifySymbolUses(SymbolTableCollection &symbolTable) {
|
|
auto func = symbolTable.lookupNearestSymbolFrom<FuncOp>(*this, function());
|
|
if (!func)
|
|
return emitError() << "'@" << function()
|
|
<< "' does not reference a valid function";
|
|
if (func.getVisibility() != SymbolTable::Visibility::Private)
|
|
return emitError() << "'@" << function()
|
|
<< "' must reference a private function";
|
|
if (func.isDeclaration())
|
|
return emitError() << "'@" << function()
|
|
<< "' must reference a function that is defined (not "
|
|
"merely declared)";
|
|
auto expectedReceiverArgType = NnModuleType::get(
|
|
getContext(), getOperation()->getParentOfType<ClassTypeOp>().getName());
|
|
if (func.getType().getNumInputs() == 0 ||
|
|
func.getType().getInput(0) != expectedReceiverArgType) {
|
|
return emitError() << "the referenced function '" << function()
|
|
<< "' must have a first argument of type "
|
|
<< expectedReceiverArgType;
|
|
}
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// NnModuleOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static LogicalResult verify(NnModuleOp op) {
|
|
for (Operation &child : *op.getBody())
|
|
if (!isa<SlotOp, NnModuleTerminatorOp>(&child))
|
|
return child.emitOpError() << "is not allowed inside 'torch.nn_module'";
|
|
return success();
|
|
}
|
|
|
|
// PyTorch has a well-developed notion of subtyping.
|
|
//
|
|
// This is a restricted subset of it.
|
|
//
|
|
// TODO: Flesh this out.
|
|
// TODO: Decide / properly model the distinction between PEP 483 / Python
|
|
// subtyping vs "more static information".
|
|
bool isValidSubtype(Type subtype, Type type) {
|
|
if (subtype == type)
|
|
return true;
|
|
if (auto optional = type.dyn_cast<OptionalType>())
|
|
return subtype == optional.getContainedType() ||
|
|
subtype.isa<Basicpy::NoneType>();
|
|
// TODO: This is not subtyping according to PEP 483. See description
|
|
// of NonValueTensorType.
|
|
if (subtype.isa<NonValueTensorType>() && type.isa<NonValueTensorType>() &&
|
|
type ==
|
|
NonValueTensorType::getWithLeastStaticInformation(type.getContext()))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
LogicalResult NnModuleOp::verifySymbolUses(SymbolTableCollection &symbolTable) {
|
|
auto classType =
|
|
symbolTable.lookupNearestSymbolFrom<ClassTypeOp>(*this, getClassName());
|
|
if (!classType)
|
|
return emitError() << "'" << getClassName()
|
|
<< "' does not reference a valid class type";
|
|
|
|
auto attrs = llvm::to_vector<6>(getBody()->getOps<SlotOp>());
|
|
auto attrDefs = llvm::to_vector<6>(classType.getBody()->getOps<AttrOp>());
|
|
if (attrs.size() != attrDefs.size())
|
|
return emitError() << "number of 'torch.slot's in a 'torch.nn_module' must "
|
|
"match number of 'torch.attr's in "
|
|
"the corresponding 'torch.class_type'";
|
|
for (int i = 0, e = attrs.size(); i != e; i++) {
|
|
SlotOp attr = attrs[i];
|
|
AttrOp attrDef = attrDefs[i];
|
|
if (!isValidSubtype(attr.value().getType(), attrDef.type()) ||
|
|
attr.name() != attrDef.name()) {
|
|
return attr.emitOpError()
|
|
.append("is expected to match type and name of '",
|
|
attrDef.getOperation(), "'")
|
|
.attachNote(attrDef.getLoc())
|
|
.append("see torch.attr at corresponding index ", i, " here");
|
|
}
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PrimListConstructOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static LogicalResult verify(PrimListConstructOp op) {
|
|
auto resultType = op.getResult().getType();
|
|
auto resultElementType = resultType.dyn_cast<ListType>().getContainedType();
|
|
auto matchResultElementType = [&](Type type) {
|
|
return type.getTypeID() == resultElementType.getTypeID();
|
|
};
|
|
if (llvm::all_of(op->getOperandTypes(), matchResultElementType))
|
|
return success();
|
|
else return failure();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ClassTypeOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static LogicalResult verify(ClassTypeOp op) {
|
|
llvm::StringMap<Operation *> namesToOps;
|
|
for (Operation &child : op.getBody()->without_terminator()) {
|
|
if (!isa<AttrOp, MethodOp>(&child))
|
|
return child.emitOpError() << "is not allowed inside `torch.class_type`";
|
|
StringRef name;
|
|
if (auto attr = dyn_cast<AttrOp>(child))
|
|
name = attr.name();
|
|
else
|
|
name = cast<MethodOp>(child).name();
|
|
auto itAndWasInserted = namesToOps.insert({name, &child});
|
|
auto it = itAndWasInserted.first;
|
|
bool wasInserted = itAndWasInserted.second;
|
|
if (!wasInserted) {
|
|
auto diag = op.emitOpError().append(
|
|
"has duplicate attr/method with name '", name, "'");
|
|
diag.attachNote(it->second->getLoc())
|
|
.append("see first conflicting attr/method here");
|
|
diag.attachNote(child.getLoc())
|
|
.append("see second conflicting attr/method here");
|
|
return failure();
|
|
}
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PrimLoopOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OperandRange PrimLoopOp::getSuccessorEntryOperands(unsigned index) {
|
|
assert(index == 0);
|
|
return iterArgsInit();
|
|
}
|
|
|
|
void PrimLoopOp::getSuccessorRegions(
|
|
Optional<unsigned> index, ArrayRef<Attribute> operands,
|
|
SmallVectorImpl<RegionSuccessor> ®ions) {
|
|
(void)operands;
|
|
|
|
if (!index.hasValue()) {
|
|
regions.emplace_back(®ion(), region().getArguments().slice(1));
|
|
return;
|
|
}
|
|
assert(*index == 0);
|
|
regions.emplace_back(®ion(), region().getArguments().slice(1));
|
|
regions.emplace_back(getResults());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DerefineOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool DerefineOp::areCastCompatible(mlir::TypeRange inputs,
|
|
mlir::TypeRange outputs) {
|
|
return isValidSubtype(inputs[0], outputs[0]);
|
|
}
|
|
|
|
void DerefineOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
|
|
MLIRContext *context) {
|
|
patterns.add(+[](DerefineOp op, PatternRewriter &rewriter) {
|
|
// TODO: Extend RefineTypes for this case and delete this canonicalization,
|
|
// since we don't want control flow or calls to randomly block this fold
|
|
// (this canonicalization pattern makes the compiler brittle to control flow
|
|
// and calls).
|
|
bool allAllowRefinement =
|
|
llvm::all_of(op.getResult().getUsers(), allowsTypeRefinement);
|
|
if (!allAllowRefinement)
|
|
return failure();
|
|
rewriter.replaceOp(op, op.getOperand());
|
|
return success();
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Aten__Is__Op
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult Aten__Is__Op::fold(ArrayRef<Attribute> operands) {
|
|
auto lhsType = self().getType();
|
|
auto rhsType = obj().getType();
|
|
// If either type is a NoneType, make it be the lhsType.
|
|
if (rhsType.isa<Basicpy::NoneType>())
|
|
std::swap(lhsType, rhsType);
|
|
// TODO: Implement and use subtype infra for this.
|
|
// If neither type is a subtype of the other, then the result is false.
|
|
if (lhsType.isa<Basicpy::NoneType>() && !rhsType.isa<Torch::OptionalType>())
|
|
return IntegerAttr::get(IntegerType::get(getContext(), 1), 0);
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenLenTOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenDimOp::fold(ArrayRef<Attribute> operands) {
|
|
if (auto tensorType = getOperand().getType().dyn_cast<BaseTensorType>()) {
|
|
if (tensorType.hasSizes())
|
|
return IntegerAttr::get(IntegerType::get(getContext(), 64),
|
|
tensorType.getSizes().size());
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenLenTOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenLenTOp::fold(ArrayRef<Attribute> operands) {
|
|
// `len([1,1,1])` -> `3`
|
|
if (auto listConstruct = getOperand().getDefiningOp<Torch::PrimListConstructOp>()) {
|
|
return IntegerAttr::get(IntegerType::get(getContext(), 64),
|
|
listConstruct.getNumOperands());
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void AtenLenTOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
|
|
MLIRContext *context) {
|
|
// `len(t.size())` -> `t.ndim`
|
|
patterns.add(+[](AtenLenTOp op, PatternRewriter &rewriter) {
|
|
auto size = op.getOperand().getDefiningOp<AtenSizeOp>();
|
|
if (!size)
|
|
return rewriter.notifyMatchFailure(op, "operand not AtenSizeOp");
|
|
// TODO: Normalize all the torch scalar integer types to consistently use
|
|
// a `!torch.int` type so that this op and others can automatically infer
|
|
// their type. An additional benefit is that there's already enough of a
|
|
// semantic gap between Python ints (which tend to be arbitrary precision)
|
|
// and Torch/et-al ints (fixed bit depth, usually 64), it would be nice to
|
|
// preserve the fact that we are working on a !torch.int and not just a
|
|
// thing that was prematurely pinned to an `i64`.
|
|
rewriter.replaceOpWithNewOp<AtenDimOp>(op, rewriter.getI64Type(),
|
|
size.getOperand());
|
|
return success();
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenSizeOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void AtenSizeOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
|
|
MLIRContext *context) {
|
|
patterns.add(+[](AtenSizeOp op, PatternRewriter &rewriter) {
|
|
auto type = op.getOperand().getType().dyn_cast<BaseTensorType>();
|
|
if (!type || !type.areAllSizesKnown())
|
|
return rewriter.notifyMatchFailure(op, "all sizes not known");
|
|
SmallVector<Value> listElements;
|
|
for (int64_t size : type.getSizes()) {
|
|
listElements.push_back(rewriter.create<::mlir::ConstantOp>(
|
|
op->getLoc(), rewriter.getI64IntegerAttr(size)));
|
|
}
|
|
rewriter.replaceOpWithNewOp<Torch::PrimListConstructOp>(
|
|
op, Torch::ListType::get(rewriter.getI64Type()), listElements);
|
|
return success();
|
|
});
|
|
// One-off pattern to erase if dead.
|
|
// TODO: Use the effects infra to express the semantics of this op and enable
|
|
// a centralized "erase if dead" canonicalization.
|
|
// Specifically, we need to mark the op as only MemoryEffects::Allocate
|
|
// so that `mlir::wouldOpBeTriviallyDead` does the right thing.
|
|
patterns.add(+[](AtenSizeOp op, PatternRewriter &rewriter) {
|
|
if (!op.use_empty())
|
|
return failure();
|
|
rewriter.eraseOp(op);
|
|
return failure();
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TensorOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult
|
|
TensorOp::inferReturnTypes(MLIRContext *context, Optional<Location> location,
|
|
ValueRange operands, DictionaryAttr attributes,
|
|
RegionRange regions,
|
|
SmallVectorImpl<Type> &inferredReturnTypes) {
|
|
auto attr = attributes.get("value").dyn_cast_or_null<ElementsAttr>();
|
|
if (!attr)
|
|
return failure();
|
|
auto tensorType = attr.getType().cast<RankedTensorType>();
|
|
inferredReturnTypes.push_back(NonValueTensorType::getFromShaped(tensorType));
|
|
return success();
|
|
}
|
|
|
|
static bool areSizesAndDtypesCompatible(BaseTensorType a, BaseTensorType b) {
|
|
if (a.hasSizes() && b.hasSizes()) {
|
|
if (failed(verifyCompatibleShape(a.getSizes(), b.getSizes())))
|
|
return false;
|
|
}
|
|
if (a.hasDtype() && b.hasDtype()) {
|
|
if (a.getDtype() != b.getDtype())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool TensorOp::isCompatibleReturnTypes(TypeRange inferred, TypeRange actual) {
|
|
if (!actual[0].isa<BaseTensorType>())
|
|
return false;
|
|
return areSizesAndDtypesCompatible(inferred[0].cast<BaseTensorType>(),
|
|
actual[0].cast<BaseTensorType>());
|
|
}
|
|
|
|
//----------------------------------------------------------------------------//
|
|
// TensorStaticInfoCast
|
|
//----------------------------------------------------------------------------//
|
|
|
|
bool TensorStaticInfoCastOp::areCastCompatible(mlir::TypeRange inputs,
|
|
mlir::TypeRange outputs) {
|
|
return areSizesAndDtypesCompatible(inputs[0].cast<BaseTensorType>(),
|
|
outputs[0].cast<BaseTensorType>());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CopyTensorOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static LogicalResult verify(CopyTensorOp op) {
|
|
auto resultType = op.getResult().getType().cast<BaseTensorType>();
|
|
auto operandType = op.getOperand().getType().cast<BaseTensorType>();
|
|
if (!resultType.hasSameSizesAndDtype(operandType)) {
|
|
return op.emitError()
|
|
<< "operand and result must have same sizes and dtype";
|
|
}
|
|
return success();
|
|
}
|
|
|
|
OpFoldResult CopyTensorOp::fold(ArrayRef<Attribute> operands) {
|
|
// A copy between value semantic tensors is a no-op.
|
|
if (getType().isa<ValueTensorType>() &&
|
|
getOperand().getType().isa<ValueTensorType>()) {
|
|
return getOperand();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void CopyTensorOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
|
|
MLIRContext *context) {
|
|
// y = torch.copy.tensor(hasOneUse@torch.copy.tensor(x)) -> x
|
|
// Only safe when `y` and `x` have value semantics.
|
|
patterns.add(+[](CopyTensorOp op, PatternRewriter &rewriter) {
|
|
auto otherCopy = op.getOperand().getDefiningOp<CopyTensorOp>();
|
|
if (!otherCopy)
|
|
return failure();
|
|
if (otherCopy.getOperand().getType().isa<ValueTensorType>() &&
|
|
op.getResult().getType().isa<ValueTensorType>() &&
|
|
op.getOperand().hasOneUse()) {
|
|
rewriter.replaceOp(op, {otherCopy.getOperand()});
|
|
// TODO: Implement MemoryEffectOpInterface to handle the value/non-value
|
|
// cases precisely. In this case, we specifically know that `otherCopy`
|
|
// is dead so eagerly clean it up.
|
|
rewriter.eraseOp(otherCopy);
|
|
return success();
|
|
}
|
|
return failure();
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ToBuiltinTensorOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult ToBuiltinTensorOp::inferReturnTypes(
|
|
MLIRContext *context, Optional<Location> location, ValueRange operands,
|
|
DictionaryAttr attributes, RegionRange regions,
|
|
SmallVectorImpl<Type> &inferredReturnTypes) {
|
|
auto resultType =
|
|
operands[0].getType().cast<ValueTensorType>().toBuiltinTensor();
|
|
if (!resultType)
|
|
return failure();
|
|
inferredReturnTypes.push_back(resultType);
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FromBuiltinTensorOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult FromBuiltinTensorOp::inferReturnTypes(
|
|
MLIRContext *context, Optional<Location> location, ValueRange operands,
|
|
DictionaryAttr attributes, RegionRange regions,
|
|
SmallVectorImpl<Type> &inferredReturnTypes) {
|
|
inferredReturnTypes.push_back(
|
|
ValueTensorType::getFromShaped(operands[0].getType().cast<TensorType>()));
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Aten__Getitem__TOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void Aten__Getitem__TOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
|
|
MLIRContext *context) {
|
|
patterns.add(+[](Aten__Getitem__TOp op, PatternRewriter &rewriter) {
|
|
auto torchList = op.getOperand(0);
|
|
if(!torchList.hasOneUse())
|
|
return failure();
|
|
|
|
auto listConstruct = torchList.getDefiningOp<Torch::PrimListConstructOp>();
|
|
if (!listConstruct)
|
|
return failure();
|
|
|
|
APInt indexAP;
|
|
if (!matchPattern(op.getOperand(1), m_ConstantInt(&indexAP)))
|
|
return failure();
|
|
|
|
auto index = indexAP.getSExtValue();
|
|
rewriter.replaceOp(op, {listConstruct.getOperand(index)});
|
|
return success();
|
|
});
|
|
}
|
|
|
|
#define GET_OP_CLASSES
|
|
#include "npcomp/Dialect/Torch/IR/TorchOps.cpp.inc"
|