torch-mlir/include/npcomp/Dialect/ATen/ATen.td

183 lines
5.4 KiB
TableGen

//===- ATen.td ---------------------------------------------*- tablegen -*-===//
//
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
include "mlir/IR/OpBase.td"
#ifndef ATEN_OPS
#define ATEN_OPS
include "mlir/Interfaces/SideEffectInterfaces.td"
include "npcomp/Dialect/ATen/ATenOpInterface.td"
//===----------------------------------------------------------------------===//
// Dialect definition
//===----------------------------------------------------------------------===//
/// The ATenDialect models 'A Tensor library' from Pytorch. The intention
/// is to provide an abstraction which is isomorphic with datastructures
/// returned from the pytorch jit, enabling integration with Pytorch models.
/// Most of the actual operation definitions in tablegen are themselves
/// generated from C APIs exported by Pytorch.
def ATen_Dialect : Dialect {
let name = "aten";
let cppNamespace = "aten";
}
//===----------------------------------------------------------------------===//
// Dialect types
//===----------------------------------------------------------------------===//
def ATen_ListType : DialectType<ATen_Dialect,
CPred<"$_self.isa<::mlir::NPCOMP::aten::ATenListType>()">, "ATen List">,
BuildableType<"$_builder.getType<::mlir::NPCOMP::aten::ATenListType()"> {
let typeDescription = [{
A variadic list of arguments in ATen.
}];
}
// TODO: convert to "let results =" style
// TODO: Rename prefix from "aten" to "ATen" for consistency.
class aten_Op<string mnemonic, list<OpTrait> traits = [StatisticsOpInterface]> :
Op<ATen_Dialect, mnemonic, traits>;
// Most ops are automatically generated from pytorch specs.
include "npcomp/Dialect/ATen/ATenOps.td"
def aten_BatchNormOp: aten_Op<"batch_norm", [NoSideEffect, StatisticsOpInterface]>,
Results<(outs AnyTensor:$output, AnyTensor:$save_mean, AnyTensor:$save_invstd)> {
let arguments = (
ins AnyType:$arg0,
AnyType:$arg1,
AnyType:$arg2,
AnyType:$arg3,
AnyType:$arg4,
AnyType:$arg5,
AnyType:$arg6,
AnyType:$arg7,
AnyType:$arg8
);
let summary = "BatchNorm operator";
let description = [{
BatchNorm operator
}];
let extraClassDeclaration = [{
std::map<std::string, uint64_t> getStatistics();
}];
}
// We have list constants, which come out of pytorch. Represent them using
// our own constant-like type, which gets lowered to std_ConstantOp later.
def aten_ConstantOp: aten_Op<"constant", [NoSideEffect]>,
Results<(outs AnyType)> {
let summary = "Constant operator";
let description = [{
Constant operator
}];
}
// Our jit library only supports 6 argument convolutions, rather than 9
// arguments supported by pytorch. This operation allows us to represent this
// limitation temporarily.
def aten_ConvolutionOp: aten_Op<"_convolution", [NoSideEffect, StatisticsOpInterface]>,
Results<(outs AnyTensor)> {
let arguments = (
ins AnyTensor:$input,
AnyTensor:$weight,
AnyTensor:$bias,
AnyType:$stride,
AnyType:$padding,
AnyType:$dilation
);
let summary = "Convolution operator";
let description = [{
Convolution operator
}];
let extraClassDeclaration = [{
std::map<std::string, uint64_t> getStatistics();
uint64_t getOperandTransferVolume(unsigned int idx, bool read);
uint64_t getResultTransferVolume(unsigned int idx, bool read);
}];
}
// Our jit library only supports 6 argument convolutions, rather than 9
// arguments supported by pytorch. This operation allows us to represent this
// limitation temporarily.
def aten_ConvolutionBackwardOp: aten_Op<"_convolution_backward", [NoSideEffect, StatisticsOpInterface]>,
Results<(outs AnyTensor:$dx, AnyTensor:$dw, AnyTensor:$db)> {
let arguments = (
ins AnyTensor:$grad_output,
AnyTensor:$input,
AnyTensor:$weight,
AnyType:$stride,
AnyType:$padding,
AnyType:$dilation
);
let summary = "ConvolutionBackward operator";
let description = [{
ConvolutionBackward operator
}];
let extraClassDeclaration = [{
std::map<std::string, uint64_t> getStatistics();
}];
}
def aten_FlattenOp: aten_Op<"flatten", [NoSideEffect, StatisticsOpInterface]>,
Results<(outs AnyTensor)> {
let arguments = (
ins AnyType:$arg0,
AnyType:$arg1,
AnyType:$arg2
);
let summary = "Flatten operator";
let description = [{
Flatten operator
}];
let extraClassDeclaration = [{
std::map<std::string, uint64_t> getStatistics();
}];
}
def aten_MaxPool2dOp: aten_Op<"max_pool2d", [NoSideEffect, StatisticsOpInterface]>,
Results<(outs AnyTensor)> {
let arguments = (
ins AnyType:$arg0,
AnyType:$arg1,
AnyType:$arg2,
AnyType:$arg3,
AnyType:$arg4,
AnyType:$arg5
);
let summary = "MaxPool2d operator";
let description = [{
MaxPool2d operator
}];
let extraClassDeclaration = [{
std::map<std::string, uint64_t> getStatistics();
}];
}
def aten_TypeCastOp : aten_Op<"type_cast", [NoSideEffect]>,
Results<(outs AnyType)> {
let summary = "TypeCast operator";
let arguments = (
ins AnyType:$x
);
}
#endif