torch-mlir/e2e_testing/torchscript/main.py

108 lines
3.9 KiB
Python

# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
import argparse
import os
import pickle
import re
import sys
from npcomp_torchscript.e2e_test.framework import run_tests
from npcomp_torchscript.e2e_test.reporting import report_results
from npcomp_torchscript.e2e_test.registry import GLOBAL_TEST_REGISTRY
# Available test configs.
from npcomp_torchscript_e2e_test_configs import (
NpcompBackendTestConfig, NativeTorchTestConfig, TorchScriptTestConfig
)
from npcomp.compiler.pytorch.backend.refbackend import RefBackendNpcompBackend
from .xfail_sets import XFAIL_SETS
# Import tests to register them in the global registry.
# Make sure to use `tools/torchscript_e2e_test.sh` wrapper for invoking
# this script.
from . import basic
from . import vision_models
from . import mlp
from . import conv
from . import batchnorm
from . import quantized_models
from . import elementwise
from . import reduction
def _get_argparse():
# TODO: Allow pulling in an out-of-tree backend, so downstream can easily
# plug into the e2e tests.
config_choices = ['native_torch', 'torchscript', 'refbackend']
parser = argparse.ArgumentParser(description='Run torchscript e2e tests.')
parser.add_argument('-c', '--config',
choices=config_choices,
default='refbackend',
help=f'''
Meaning of options:
"refbackend": run through npcomp's RefBackend.
"native_torch": run the torch.nn.Module as-is without compiling (useful for verifying model is deterministic; ALL tests should pass in this configuration).
"torchscript": compile the model to a torch.jit.ScriptModule, and then run that as-is (useful for verifying TorchScript is modeling the program correctly).
''')
parser.add_argument('-f', '--filter', default='.*', help='''
Regular expression specifying which tests to include in this run.
''')
parser.add_argument('-v', '--verbose',
default=False,
action='store_true',
help='report test results with additional detail')
parser.add_argument('--serialized-test-dir', default=None, type=str, help='''
The directory containing serialized pre-built tests.
Right now, these are additional tests which require heavy Python dependencies
to generate (or cannot even be generated with the version of PyTorch used by
npcomp).
See `build_tools/torchscript_e2e_heavydep_tests/generate_serialized_tests.sh`
for more information on building these artifacts.
''')
return parser
def main():
args = _get_argparse().parse_args()
# Find the selected config.
if args.config == 'refbackend':
config = NpcompBackendTestConfig(RefBackendNpcompBackend())
elif args.config == 'native_torch':
config = NativeTorchTestConfig()
elif args.config == 'torchscript':
config = TorchScriptTestConfig()
all_tests = list(GLOBAL_TEST_REGISTRY)
if args.serialized_test_dir:
for root, dirs, files in os.walk(args.serialized_test_dir):
for filename in files:
with open(os.path.join(root, filename), 'rb') as f:
all_tests.append(pickle.load(f).as_test())
# Find the selected tests, and emit a diagnostic if none are found.
tests = [
test for test in all_tests
if re.match(args.filter, test.unique_name)
]
if len(tests) == 0:
print(
f'ERROR: the provided filter {args.filter!r} does not match any tests'
)
print('The available tests are:')
for test in all_tests:
print(test.unique_name)
sys.exit(1)
# Run the tests.
results = run_tests(tests, config)
# Report the test results.
failed = report_results(results, XFAIL_SETS[args.config], args.verbose)
sys.exit(1 if failed else 0)
if __name__ == '__main__':
main()