torch-mlir/lib/Conversion/TorchToTMTensor/TorchToTMTensor.cpp

2401 lines
101 KiB
C++

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#include "torch-mlir/Conversion/TorchToTMTensor/TorchToTMTensor.h"
#include "../PassDetail.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/Matchers.h"
#include "torch-mlir-dialects/Dialect/TMTensor/IR/TMTensorDialect.h"
#include "torch-mlir-dialects/Dialect/TMTensor/IR/TMTensorOps.h"
#include "torch-mlir/Conversion/Utils/Utils.h"
#include "torch-mlir/Dialect/Torch/IR/TorchDialect.h"
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
#include "torch-mlir/Dialect/Torch/IR/TorchTypes.h"
#include "torch-mlir/Dialect/Torch/Utils/TorchUpstream.h"
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
#include "torch-mlir/Dialect/TorchConversion/Transforms/BackendTypeConversion.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/Support/ErrorHandling.h"
using namespace mlir;
using namespace mlir::torch;
using namespace mlir::torch::Torch;
using namespace mlir::torch::TorchConversion;
using namespace mlir::torch::TMTensor;
// -----------------------------------------------------------------------------
// Patterns (as this grows, it should be organized into multiple files)
// -----------------------------------------------------------------------------
// This is going to eventually be O(#aten ops), which is in the 100s.
//
// Most of these patterns consist of:
// 1. Checking that the operand/result types and other static properties are
// good-enough to create a valid linalg op (such as operands being of
// ranks/dtypes acceptable to the linalg op).
// 2. Creating dynamic error guards, usually checking a predicate on the
// compatibility of operand shapes.
// 3. Creating init tensors for the computation op. Usually this involves
// reifying IR for a shape transfer function based on the operand shapes.
// 4. Creating a named linalg op to replace the original op.
//
// TODO: Use linalg OpDSL to autogenerate at least 1)/2)/3) such
// that these patterns become mostly mechanical associations of
// "aten.foo -> linalg.foo".
static TypedAttr getNumericLimit(PatternRewriter &rewriter, Type elementType,
bool getMin = true) {
auto bitWidth = elementType.getIntOrFloatBitWidth();
if (llvm::isa<mlir::IntegerType>(elementType)) {
if (getMin) {
return rewriter.getIntegerAttr(elementType,
APInt::getSignedMinValue(bitWidth));
} else {
return rewriter.getIntegerAttr(elementType,
APInt::getSignedMaxValue(bitWidth));
}
} else if (mlir::FloatType floatType =
llvm::dyn_cast<mlir::FloatType>(elementType)) {
return rewriter.getFloatAttr(
elementType,
APFloat::getLargest(floatType.getFloatSemantics(), getMin));
} else {
llvm_unreachable("Only float/integer types are supported!");
}
}
// This function will reformat the `index` and `src` from torch operations
// like `torch.scatter` or `torch.scatter_reduce` to match the expected
// input for the TMScatterOp. It will return the reformated `index` and `src`
// as a pair of mlir::Value that can be used as inputs for the TMScatterOp.
static std::pair<Value, Value>
convertTorchScatterIndexAndSrcToTMScatterIndexAndSrc(PatternRewriter &rewriter,
Value indices, Value src,
int64_t dim) {
// Get information on types for inputs
RankedTensorType indexType = cast<RankedTensorType>(indices.getType());
RankedTensorType srcSelf = cast<RankedTensorType>(src.getType());
// Store location for insertions
Location loc = src.getLoc();
Value indexSize = getTensorSize(rewriter, loc, indices);
indexSize = castIntToIndex(rewriter, loc, indexSize);
SmallVector<Value> indexShape = getTensorSizes(rewriter, loc, indices);
Value cstOne = rewriter.create<arith::ConstantIndexOp>(loc, 1);
// We flatten the `src` values from (i, j, k, ...) -> (i * j * k * ...)
SmallVector<Value> indSliceShape({indexSize, cstOne});
Value indSlice =
createZeroInitTensor(rewriter, loc, indSliceShape, rewriter.getI32Type());
// New output shape will be equal to the product of the dimensions of the
// updates
SmallVector<Value> outputs(indexType.getRank(), indSlice);
outputs.push_back(createZeroInitTensor(rewriter, loc, {indexSize},
srcSelf.getElementType()));
SmallVector<Type> outputsType(indexType.getRank(), indSlice.getType());
outputsType.push_back(outputs[indexType.getRank()].getType());
// Create mapping over flattened iteration space
SmallVector<AffineExpr> indSliceExpr = {rewriter.getAffineDimExpr(0),
rewriter.getAffineConstantExpr(0)};
SmallVector<AffineMap> mapping(
indexType.getRank(), AffineMap::get(/*dimCount=*/1, /*symbolCount=*/0,
indSliceExpr, src.getContext()));
// Mapping for updates
mapping.push_back(rewriter.getDimIdentityMap());
SmallVector<utils::IteratorType> iteratorTypes(
{utils::IteratorType::parallel});
// This function goes over the flattened iteration space of the `indices`
// and `src`. It will reconstruct the original induction variables based
// on the current flattened index. The flattened iteration space is required
// because TMTensorScatterOp expects a list of single element updates.
auto flattenedUpdates =
rewriter
.create<linalg::GenericOp>(
loc, outputsType, ValueRange(), outputs, mapping, iteratorTypes,
[&](OpBuilder &b, Location loc, ValueRange args) {
SmallVector<Value> indexValues(indexType.getRank());
Value ind = b.create<linalg::IndexOp>(loc, 0);
for (int i = indexType.getRank() - 1; i >= 0; i--) {
indexValues[i] =
b.create<arith::RemSIOp>(loc, ind, indexShape[i]);
ind = b.create<arith::DivSIOp>(loc, ind, indexShape[i]);
}
// Extract the scatter index and update value
Value extractIndexValue =
b.create<tensor::ExtractOp>(loc, indices, indexValues);
Value extractSrcValue =
b.create<tensor::ExtractOp>(loc, src, indexValues);
SmallVector<Value> yieldVals;
for (Value v : indexValues) {
Value scalar = castIndexToInt64(b, loc, v);
yieldVals.push_back(b.create<arith::TruncIOp>(
loc, rewriter.getI32Type(), scalar));
}
// Replace the original index with the index specified
// by the scatter.
yieldVals[dim] = b.create<arith::TruncIOp>(
loc, rewriter.getI32Type(), extractIndexValue);
yieldVals.push_back(extractSrcValue);
b.create<linalg::YieldOp>(loc, yieldVals);
})
.getResultTensors();
auto toOpFoldResult = [](Value v) -> OpFoldResult {
auto op = v.getDefiningOp<arith::ConstantIndexOp>();
if (!op)
return v;
return op.getValue();
};
// The result of the linalg::Generic operation gives us (rank(`src`) + 1)
// 1D-tensors where each contains a number of elements equal to the total
// number of elements in the `src` tensor. The indices must now be
// constructed by concatanating the first rank(`src`) tensors together. The
// new `src` tensor is the last tensor returned from the linalg::Generic
// operation.
SmallVector<Value> offsets = {
rewriter.create<arith::ConstantIndexOp>(loc, 0),
rewriter.create<arith::ConstantIndexOp>(loc, 0)};
SmallVector<Value> strides = {
rewriter.create<arith::ConstantIndexOp>(loc, 1),
rewriter.create<arith::ConstantIndexOp>(loc, 1)};
Value indicesRank =
rewriter.create<arith::ConstantIndexOp>(loc, indexType.getRank());
Value flattenedIndices = createZeroInitTensor(
rewriter, loc, SmallVector<Value>({indexSize, indicesRank}),
rewriter.getI32Type());
SmallVector<Value> scatterInputsVector(flattenedUpdates);
for (auto const slice : ArrayRef(scatterInputsVector).drop_back()) {
SmallVector<Value> sizes = getTensorSizes(rewriter, loc, slice);
flattenedIndices = rewriter.createOrFold<tensor::InsertSliceOp>(
loc, slice, flattenedIndices,
llvm::to_vector(llvm::map_range(offsets, toOpFoldResult)),
llvm::to_vector(llvm::map_range(sizes, toOpFoldResult)),
llvm::to_vector(llvm::map_range(strides, toOpFoldResult)));
// Increment offset to insert into next column
offsets[1] = rewriter.createOrFold<arith::AddIOp>(loc, offsets[1], cstOne);
}
return std::make_pair(flattenedIndices,
scatterInputsVector[indexType.getRank()]);
}
static llvm::SmallVector<int64_t> createDefaultDimMap(Value indices) {
llvm::SmallVector<int64_t> dmap;
if (auto iTy = dyn_cast<BaseTensorType>(indices.getType()))
dmap.resize(iTy.getSizes()[1]);
if (auto iTy = dyn_cast<RankedTensorType>(indices.getType()))
dmap.resize(iTy.getDimSize(1));
for (int i = 0, s = dmap.size(); i < s; ++i)
dmap[i] = i;
return dmap;
}
static Value createTMTensorScatterOp(
OpBuilder &b, Location loc, Value updates, Value indices, Value original,
llvm::ArrayRef<int64_t> dimensionsMap, bool uniqueIndices,
function_ref<void(OpBuilder &, Location, Value, Value)> bodyBuild) {
auto dimensionsMapAttr = b.getDenseI64ArrayAttr(dimensionsMap);
auto originalTensorType = cast<RankedTensorType>(original.getType());
Type originalElementType = originalTensorType.getElementType();
auto scatterOp = b.create<TMTensor::ScatterOp>(
loc, originalTensorType, ValueRange{updates, indices},
ValueRange{original}, dimensionsMapAttr, uniqueIndices);
Region &scatterOpRegion = scatterOp.getRegion();
auto &scatterOpBlock = scatterOpRegion.emplaceBlock();
scatterOpBlock.addArguments({originalElementType, originalElementType},
{loc, loc});
OpBuilder regionBuilder(scatterOpRegion);
auto blockArgs = scatterOpBlock.getArguments();
Value updatesElement = blockArgs[0];
Value originalElement = blockArgs[1];
bodyBuild(regionBuilder, loc, updatesElement, originalElement);
return scatterOp->getResult(0);
}
static Value createTMTensorScanOp(
OpBuilder &b, Location loc, Value input, Value output, Value accumulator,
int64_t dim, bool inclusive,
function_ref<void(OpBuilder &, Location, Value, Value)> bodyBuild) {
auto inputType = cast<RankedTensorType>(input.getType());
auto accType = cast<RankedTensorType>(accumulator.getType());
Type elementType = inputType.getElementType();
auto scanOp = b.create<TMTensor::ScanOp>(
loc, TypeRange{inputType, accType}, input,
ValueRange{output, accumulator}, b.getI64IntegerAttr(dim),
b.getBoolAttr(inclusive));
Region &scanOpRegion = scanOp.getRegion();
auto &scanOpBlock = scanOpRegion.emplaceBlock();
scanOpBlock.addArguments({elementType, elementType}, {loc, loc});
OpBuilder regionBuilder(scanOpRegion);
auto blockArgs = scanOpBlock.getArguments();
Value inputElement = blockArgs[0];
Value accElement = blockArgs[1];
bodyBuild(regionBuilder, loc, inputElement, accElement);
return scanOp->getResult(0);
}
static FailureOr<Value> createIntOrFloatCompareOp(PatternRewriter &rewriter,
Location loc,
Type elementType, Value lhs,
Value rhs, bool isDescending,
bool isEqual) {
Value compareOp;
if (auto intType = dyn_cast<mlir::IntegerType>(elementType)) {
// Case for using arith::CmpIOp.
arith::CmpIPredicate g =
isEqual ? arith::CmpIPredicate::sge : arith::CmpIPredicate::sgt;
arith::CmpIPredicate l =
isEqual ? arith::CmpIPredicate::sle : arith::CmpIPredicate::slt;
if (intType.isUnsignedInteger()) {
g = isEqual ? arith::CmpIPredicate::uge : arith::CmpIPredicate::ugt;
l = isEqual ? arith::CmpIPredicate::ule : arith::CmpIPredicate::ult;
}
arith::CmpIPredicate predicate = isDescending ? g : l;
compareOp = rewriter.create<arith::CmpIOp>(loc, predicate, lhs, rhs);
return compareOp;
}
if (isa<mlir::FloatType>(elementType)) {
// Case for using arith::CmpFOp.
arith::CmpFPredicate g =
isEqual ? arith::CmpFPredicate::OGE : arith::CmpFPredicate::OGT;
arith::CmpFPredicate l =
isEqual ? arith::CmpFPredicate::OLE : arith::CmpFPredicate::OLT;
arith::CmpFPredicate predicate = isDescending ? g : l;
compareOp = rewriter.create<arith::CmpFOp>(loc, predicate, lhs, rhs);
return compareOp;
}
return rewriter.notifyMatchFailure(
loc, "Only Integer and Floating element type expected.");
}
// Utility function to create a TMTensor::SortOp.
static FailureOr<SmallVector<Value>>
createTMTensorSortOp(PatternRewriter &rewriter, Location sortOpLoc,
llvm::ArrayRef<Value> operands,
llvm::ArrayRef<Type> elementTypes, int64_t dimension,
bool isStable, bool isDescending) {
// Step 1. Create TMTensor::SortOp structure.
SmallVector<Type> sortResultTypes;
for (Value val : operands) {
sortResultTypes.push_back(val.getType());
}
ValueRange inputs;
auto sortOp = rewriter.create<TMTensor::SortOp>(
sortOpLoc, sortResultTypes, inputs, operands,
rewriter.getI64IntegerAttr(dimension));
// Step 2. Add two arguments for each element type in the SortOp's block.
Region *body = &sortOp.getRegion();
Block *block = rewriter.createBlock(body);
Location loc = body->getLoc();
for (Type elementType : elementTypes) {
block->addArguments({elementType, elementType},
SmallVector<Location, 2>(2, loc));
}
// Step 3. Create comparison op which will be used as the sorting predicate.
auto compareOpRetVal = createIntOrFloatCompareOp(
rewriter, loc, elementTypes[0], block->getArgument(0),
block->getArgument(1), isDescending, true);
if (failed(compareOpRetVal))
return rewriter.notifyMatchFailure(
loc, "Only Integer and Floating element type expected.");
// Step 4. Create yield op for yielding the sorting predicate.
rewriter.create<TMTensor::YieldOp>(loc, compareOpRetVal.value());
return SmallVector<Value>(sortOp.getResults());
}
static FailureOr<SmallVector<Value>> createTMTensorTopkOp(
PatternRewriter &rewriter, Location topkOpLoc, llvm::ArrayRef<Value> inputs,
llvm::ArrayRef<Value> outputs, llvm::ArrayRef<Type> elementTypes,
int64_t dimension, bool isMinK) {
// Generate output types.
SmallVector<Type> topkResultTypes;
for (Value val : outputs) {
topkResultTypes.push_back(val.getType());
}
// Create empty TopkOp, add body later.
auto topkOp = rewriter.create<TMTensor::TopkOp>(
topkOpLoc, topkResultTypes, inputs, outputs,
rewriter.getI64IntegerAttr(dimension));
Region *body = &topkOp.getRegion();
Block *block = rewriter.createBlock(body);
Location loc = body->getLoc();
// Add arguments for each passed body region element type.
for (Type elementType : elementTypes) {
block->addArgument({elementType}, {loc});
}
// Generate compare operator. If minK is chosen, isDescending should be false.
// Is equal should be false, because we do not want equality to cause element
// swap.
auto compareOpRetVal = createIntOrFloatCompareOp(
rewriter, loc, elementTypes[0], block->getArgument(0),
block->getArgument(1), /*isDescending=*/!isMinK, /*isEqual=*/false);
// Check if correct element types are passed.
if (failed(compareOpRetVal))
return rewriter.notifyMatchFailure(
loc, "Only Integer and Floating element type expected.");
// Yield the comparison result.
rewriter.create<TMTensor::YieldOp>(loc, compareOpRetVal.value());
return SmallVector<Value>(topkOp.getResults());
}
namespace {
template <typename AtenOpT>
class ConvertAtenScatterOp : public OpConversionPattern<AtenOpT> {
public:
using OpConversionPattern<AtenOpT>::OpConversionPattern;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
Location loc = op.getLoc();
const TypeConverter *typeConverter =
OpConversionPattern<AtenOpT>::getTypeConverter();
Value self = adaptor.getSelf();
Value index = adaptor.getIndex();
Value src = adaptor.getSrc();
RankedTensorType selfType = cast<RankedTensorType>(self.getType());
RankedTensorType indexType = cast<RankedTensorType>(index.getType());
RankedTensorType srcType = cast<RankedTensorType>(src.getType());
if (selfType.getRank() != indexType.getRank() ||
indexType.getRank() != srcType.getRank())
return rewriter.notifyMatchFailure(op,
"'self', 'index' and 'src' should all"
"have the same number of dimensions.");
int64_t dim;
if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim)))
return rewriter.notifyMatchFailure(op,
"unimplemented: dim is not constant");
// Get the inputs reformatted for the TMScatterOp
auto [indices, updates] =
convertTorchScatterIndexAndSrcToTMScatterIndexAndSrc(rewriter, index,
src, dim);
Value scatterOp = createTMTensorScatterOp(
rewriter, loc, updates, indices, self,
/*dimensionsMap=*/createDefaultDimMap(indices), /*uniqueIndices=*/false,
[&](OpBuilder &b, Location loc, Value updatesElement,
Value inputElement) {
if (isa<AtenScatterSrcOp>(op)) {
b.create<TMTensor::YieldOp>(loc, updatesElement);
} else if (isa<AtenScatterAddOp>(op)) {
if (isa<mlir::IntegerType>(selfType.getElementType())) {
Value add =
b.create<arith::AddIOp>(loc, inputElement, updatesElement);
b.create<TMTensor::YieldOp>(loc, add);
} else if (isa<mlir::FloatType>(selfType.getElementType())) {
Value add =
b.create<arith::AddFOp>(loc, inputElement, updatesElement);
b.create<TMTensor::YieldOp>(loc, add);
}
}
});
auto resultType = cast<RankedTensorType>(
typeConverter->convertType(op->getResult(0).getType()));
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, scatterOp);
return success();
}
};
} // namespace
namespace {
// aten::bincount op counts the frequency of each value in a 1-d input tensor of
// non-negative ints.
class ConvertAtenBincountOp : public OpConversionPattern<AtenBincountOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenBincountOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
Location loc = op.getLoc();
MLIRContext *context = op->getContext();
const TypeConverter *typeConverter = getTypeConverter();
Value input = adaptor.getSelf();
Value torchTypeInput = op.getSelf();
Value minlength = adaptor.getMinlength();
Value weights = adaptor.getWeights();
// TODO: Add a check to verify that the input tensor elements are all
// non-negative.
// Check whether the input is a 1-d tensor of integer type or not.
RankedTensorType inputType = cast<RankedTensorType>(input.getType());
if (inputType.getRank() != 1 ||
!isa<mlir::IntegerType>(inputType.getElementType()))
return rewriter.notifyMatchFailure(
op,
"Input tensor has to be a one-dimensional tensor of integer type.");
// Check whether the input tensor element type is i64 or not.
IntegerType inputIntegerType =
cast<IntegerType>(inputType.getElementType());
if (inputIntegerType.getWidth() != 64)
return rewriter.notifyMatchFailure(
op,
"Unimplemented: Integer width not equal to 64 are not supported.");
// TODO: Incorporate the weight argument.
if (!isa<mlir::torch::Torch::NoneType>(weights.getType()))
return rewriter.notifyMatchFailure(
op, "Unimplemented: the weights operand is not incorporated.");
// Finding the maximum value in the input tensor.
SmallVector<int64_t> maxTensorSizes;
ValueTensorType maxTensorType = ValueTensorType::get(
context, llvm::ArrayRef(maxTensorSizes),
cast<ValueTensorType>(torchTypeInput.getType()).getDtype());
Value maxTensor =
rewriter.create<AtenMaxOp>(loc, maxTensorType, torchTypeInput);
maxTensor = typeConverter->materializeTargetConversion(
rewriter, loc, typeConverter->convertType(maxTensor.getType()),
maxTensor);
// `maxTensor` is a 0-d tensor, extracting its only element and
// storing it in `maxInput`.
Value maxInput = rewriter.create<tensor::ExtractOp>(loc, maxTensor);
// Creating a tm_tensor.scatter op with the following mapping:
// 1.) `input` tensor maps to the indices in scatter op. `input` is
// expanded from 1-d to 2-d, and its element type is set to i32 as required
// for the scatter op.
// 2.) `updates` is a 1-d dummy tensor with the size equivalent to the
// `input`.
// 3.) `bincount` a 1-d tensor maps to the original in scatter op
// with size equal to the max(max(input) + 1, minlength).
SmallVector<int64_t> expandedInputSizes{
makeShapeTorchCompatible(inputType.getShape())[0], 1};
ValueTensorType expandInputType = ValueTensorType::get(
context, llvm::ArrayRef(expandedInputSizes),
cast<ValueTensorType>(torchTypeInput.getType()).getDtype());
Value torchCstOne = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(1));
Value expandedInputTensor = rewriter.create<AtenUnsqueezeOp>(
loc, expandInputType, torchTypeInput, torchCstOne);
// Converting the input element type to i32.
Value indices = convertTensorToDtype(
rewriter, loc, expandedInputTensor,
mlir::IntegerType::get(context, 32, mlir::IntegerType::Signed));
indices = typeConverter->materializeTargetConversion(
rewriter, loc, typeConverter->convertType(indices.getType()), indices);
auto resultType = cast<RankedTensorType>(
typeConverter->convertType(op->getResult(0).getType()));
Type resultElemType = resultType.getElementType();
SmallVector<Value, 1> inputSizeDynamic =
getTensorSizesUntilDim(rewriter, loc, input, 0);
Value updatesTensor = rewriter.create<tensor::EmptyOp>(
loc, getAsOpFoldResult(inputSizeDynamic), resultElemType);
Value constantZero = rewriter.create<arith::ConstantOp>(
loc, rewriter.getZeroAttr(resultElemType));
Value constantOne = rewriter.create<arith::ConstantIntOp>(
loc, 1, resultElemType.getIntOrFloatBitWidth());
// Bincount size = max(max(input) + 1, minlength)
Value maxInputPlusOne =
rewriter.create<arith::AddIOp>(loc, maxInput, constantOne);
Value bincountSize =
rewriter.create<arith::MaxSIOp>(loc, maxInputPlusOne, minlength);
bincountSize = castIntToIndex(rewriter, loc, bincountSize);
Value bincountTensor = createInitTensor(rewriter, loc, {bincountSize},
resultElemType, constantZero);
Value scatterOp = createTMTensorScatterOp(
rewriter, loc, updatesTensor, indices, bincountTensor,
/*dimensionsMap=*/createDefaultDimMap(indices), /*uniqueIndices=*/false,
[&](OpBuilder &b, Location loc, Value _, Value bincountElem) {
Value add = b.create<arith::AddIOp>(loc, bincountElem, constantOne);
b.create<TMTensor::YieldOp>(loc, add);
});
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, scatterOp);
return success();
}
};
} // namespace
namespace {
// Determine the common broadcast shape of all the index tensors.
std::pair<llvm::SmallVector<Value>, llvm::SmallVector<int64_t>>
getBroadcastShape(Location loc, llvm::ArrayRef<Value> indices, OpBuilder b) {
int64_t indicesRank = 0;
for (auto index : indices) {
auto indexTy = cast<Torch::ValueTensorType>(index.getType());
int64_t rank = indexTy.getSizes().size();
indicesRank = std::max(rank, indicesRank);
}
auto maxDim = [](int64_t dim0, int64_t dim1) {
if (dim0 == Torch::kUnknownSize || dim1 == Torch::kUnknownSize)
return Torch::kUnknownSize;
return std::max(dim0, dim1);
};
Value torchCstOne =
b.create<Torch::ConstantIntOp>(loc, b.getI64IntegerAttr(1));
llvm::SmallVector<Value> broadcastSizes(indicesRank, torchCstOne);
llvm::SmallVector<int64_t> broadcastShape(indicesRank, 0);
for (auto index : indices) {
auto indexTy = cast<Torch::ValueTensorType>(index.getType());
auto shape = indexTy.getSizes();
int32_t rank = shape.size();
for (int32_t j = 0; j < rank; ++j) {
Value dim = b.create<Torch::ConstantIntOp>(loc, b.getI64IntegerAttr(j));
auto sizeOp = b.create<Torch::AtenSizeIntOp>(loc, index, dim);
auto size = shape[j];
int32_t idx = broadcastShape.size() - rank + j;
broadcastSizes[idx] =
b.create<Torch::PrimMaxIntOp>(loc, sizeOp, broadcastSizes[idx]);
broadcastShape[idx] = maxDim(size, broadcastShape[idx]);
}
}
return std::make_pair(broadcastSizes, broadcastShape);
}
Value combinePutIndices(Location loc, llvm::ArrayRef<Value> indicesRef,
OpBuilder b) {
llvm::SmallVector<Value> indices(indicesRef);
// Declare commonly used constants up front:
Value torchCstZero =
b.create<Torch::ConstantIntOp>(loc, b.getI64IntegerAttr(0));
Value torchCstOne =
b.create<Torch::ConstantIntOp>(loc, b.getI64IntegerAttr(1));
Value torchCstNegOne =
b.create<Torch::ConstantIntOp>(loc, b.getI64IntegerAttr(-1));
auto [broadcastSizes, broadcastShape] = getBroadcastShape(loc, indicesRef, b);
auto mulDim = [](int64_t dim0, int64_t dim1) {
if (dim0 == Torch::kUnknownSize || dim1 == Torch::kUnknownSize)
return Torch::kUnknownSize;
return dim0 * dim1;
};
int64_t scatterBatchCount = 1;
for (auto dim : broadcastShape) {
scatterBatchCount = mulDim(scatterBatchCount, dim);
}
// Broadcast together and flatten to batch values:
Value broadcastSizeList = b.create<PrimListConstructOp>(
loc, Torch::ListType::get(b.getType<Torch::IntType>()), broadcastSizes);
for (Value &index : indices) {
auto indexTy = cast<Torch::ValueTensorType>(index.getType());
auto expandTy = b.getType<Torch::ValueTensorType>(
broadcastShape, indexTy.getOptionalDtype());
index = b.create<Torch::AtenBroadcastToOp>(loc, expandTy, index,
broadcastSizeList);
auto flattenTy = b.getType<Torch::ValueTensorType>(
scatterBatchCount, indexTy.getOptionalDtype());
index = b.create<Torch::AtenFlattenUsingIntsOp>(
loc, flattenTy, index, torchCstZero, torchCstNegOne);
}
// Unsqueeze so we have a 1 dim to concat along:
for (Value &tensor : indices) {
auto btt = cast<Torch::BaseTensorType>(tensor.getType());
if (!btt.hasSizes())
return nullptr;
llvm::SmallVector<int64_t> shape(btt.getSizes());
shape.push_back(1);
auto unsqueezeTy = b.getType<Torch::ValueTensorType>(shape, btt.getDtype());
Value unsqueezed =
b.create<AtenUnsqueezeOp>(loc, unsqueezeTy, tensor, torchCstOne);
tensor = unsqueezed;
}
BaseTensorType unsqueezedTensorType =
cast<BaseTensorType>(indices[0].getType());
Value indicesTorchList = b.create<PrimListConstructOp>(
loc, Torch::ListType::get(unsqueezedTensorType), indices);
llvm::SmallVector<int64_t, 2> concatShape{
unsqueezedTensorType.getSizes()[0], static_cast<int64_t>(indices.size())};
ValueTensorType concatIndicesType = b.getType<ValueTensorType>(
llvm::ArrayRef(concatShape), unsqueezedTensorType.getDtype());
return b.create<AtenCatOp>(loc, concatIndicesType, indicesTorchList,
torchCstOne);
}
// Helper that collapses the batch dimensions together and moves it to the front
// of the array.
static Value collapseAndMoveBatchDims(Location loc, Value values, int64_t batch,
int64_t count, OpBuilder b) {
if (batch == 0 && count == 1)
return values;
auto valuesTy = cast<Torch::ValueTensorType>(values.getType());
auto inShape = valuesTy.getSizes();
llvm::SmallVector<int64_t> outShape;
llvm::SmallVector<Value> outDims;
// We need a length-1 dim at the start to transpose the batch to:
if (batch != 0) {
outDims.push_back(b.create<Torch::ConstantIntOp>(loc, 1));
outShape.push_back(1);
}
// Dimensions before the batch stay the same:
for (int i = 0; i <= batch; i++) {
auto k = b.create<Torch::ConstantIntOp>(loc, b.getI64IntegerAttr(i));
auto dim = b.create<Torch::AtenSizeIntOp>(loc, values, k);
outDims.push_back(dim);
outShape.push_back(inShape[i]);
}
auto mulI = [](int64_t dim0, int64_t dim1) {
if (dim0 == Torch::kUnknownSize || dim1 == Torch::kUnknownSize)
return Torch::kUnknownSize;
return dim0 * dim1;
};
// Determine the collapse size of the batch dimension:
for (int i = 1; i < count; i++) {
outShape.back() = mulI(outShape.back(), inShape[batch + i]);
auto k =
b.create<Torch::ConstantIntOp>(loc, b.getI64IntegerAttr(batch + i));
auto dim = b.create<Torch::AtenSizeIntOp>(loc, values, k);
outDims.back() = b.create<Torch::AtenMulIntOp>(loc, dim, outDims.back());
}
// Add the dimensions after the batch dims:
for (int i = batch + count, s = inShape.size(); i < s; ++i) {
auto k = b.create<Torch::ConstantIntOp>(loc, b.getI64IntegerAttr(i));
auto dim = b.create<Torch::AtenSizeIntOp>(loc, values, k);
outDims.push_back(dim);
outShape.push_back(inShape[i]);
}
Value outDimsList = b.create<PrimListConstructOp>(
loc, Torch::ListType::get(b.getType<Torch::IntType>()), outDims);
valuesTy =
b.getType<Torch::ValueTensorType>(outShape, valuesTy.getOptionalDtype());
values = b.create<AtenViewOp>(loc, valuesTy, values, outDimsList);
if (batch == 0)
return values;
// Batch is already at the front, no need to transpose:
std::swap(outDims[0], outDims[batch + 1]);
std::swap(outShape[0], outShape[batch + 1]);
Value dim0 = b.create<Torch::ConstantIntOp>(loc, b.getI64IntegerAttr(0));
Value dimB =
b.create<Torch::ConstantIntOp>(loc, b.getI64IntegerAttr(batch + 1));
valuesTy =
b.getType<Torch::ValueTensorType>(outShape, valuesTy.getOptionalDtype());
values =
b.create<Torch::AtenTransposeIntOp>(loc, valuesTy, values, dim0, dimB);
outDims.clear();
outShape.clear();
auto transposeShape = valuesTy.getSizes();
int64_t transposeRank = transposeShape.size();
for (int i = 0; i < transposeRank; ++i) {
if (i == batch + 1)
continue;
Value k = b.create<Torch::ConstantIntOp>(loc, b.getI64IntegerAttr(i));
outDims.push_back(b.create<AtenSizeIntOp>(loc, values, k));
outShape.push_back(transposeShape[i]);
}
valuesTy =
b.getType<Torch::ValueTensorType>(outShape, valuesTy.getOptionalDtype());
outDimsList = b.create<PrimListConstructOp>(
loc, Torch::ListType::get(b.getType<Torch::IntType>()), outDims);
return b.create<AtenViewOp>(loc, valuesTy, values, outDimsList);
}
// Broadcast the `values` tensor to the slice size created by the list of index
// tensors.
static Value broadcastValuesToSliceSize(Location loc, Value input, Value values,
llvm::ArrayRef<Value> indices,
OpBuilder b) {
auto inputType = cast<ValueTensorType>(input.getType());
ArrayRef<int64_t> inputStaticShape = inputType.getSizes();
auto valuesType = cast<ValueTensorType>(values.getType());
// In the case where the input rank is greater than the number of index
// tensors, the remaining dimensions of the input are indexed in their
// entirety. Thus, we need to append the remaining dimensions to get the shape
// of the indexed slice.
auto [resultShape, resultStaticShape] = getBroadcastShape(loc, indices, b);
for (size_t i = indices.size(); i < inputStaticShape.size(); i++) {
Value dim = b.create<Torch::ConstantIntOp>(loc, b.getI64IntegerAttr(i));
resultShape.push_back(b.create<AtenSizeIntOp>(loc, input, dim));
resultStaticShape.push_back(inputStaticShape[i]);
}
auto resultType = b.getType<Torch::ValueTensorType>(
resultStaticShape, valuesType.getOptionalDtype());
Value broadcastShapeList = b.create<PrimListConstructOp>(
loc, Torch::ListType::get(b.getType<Torch::IntType>()), resultShape);
return b.create<AtenBroadcastToOp>(loc, resultType, values,
broadcastShapeList);
}
class ConvertAtenIndexPutHackedTwinOp
: public OpConversionPattern<AtenIndexPutHackedTwinOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenIndexPutHackedTwinOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
Location loc = op.getLoc();
MLIRContext *context = op->getContext();
Value input = op.getSelf();
Value values = op.getValues();
auto inputType = cast<ValueTensorType>(input.getType());
auto valuesType = cast<ValueTensorType>(values.getType());
int64_t inputRank = inputType.getSizes().size();
auto valuesTensorType = cast<BaseTensorType>(op.getValues().getType());
auto resultType = cast<RankedTensorType>(
typeConverter->convertType(op->getResult(0).getType()));
if (!valuesTensorType.hasSizes())
return rewriter.notifyMatchFailure(
op, "unimplemented: the values tensor type must have sizes.");
// The accumulate should be a torch constant of boolean type.
bool accumulate;
if (!matchPattern(op.getAccumulate(), m_TorchConstantBool(&accumulate)))
return rewriter.notifyMatchFailure(
op, "Expected accumulate to be constant bool.");
// The element type of the `input` and `values` should be same.
if (inputType.getDtype() != valuesType.getDtype())
return rewriter.notifyMatchFailure(
op, "Input element type should be same as the values element type.");
SmallVector<Value> optionalIndicesList;
getListConstructElements(op.getIndices(), optionalIndicesList);
int64_t optionalIndicesCount = optionalIndicesList.size();
// The size of the list of the index tensors should not be greater than the
// input rank.
if (optionalIndicesCount > inputRank)
return rewriter.notifyMatchFailure(
op, "Indices list size should not be greater than the input rank.");
if (optionalIndicesCount == 0)
return rewriter.notifyMatchFailure(op, "Indices list must not be empty.");
values = broadcastValuesToSliceSize(loc, input, values, optionalIndicesList,
rewriter);
// Filter to available indices and get the indicesMap:
SmallVector<Value> indicesList;
SmallVector<int64_t> indicesMap;
int64_t numBatchDims = 0;
for (int i = 0, s = optionalIndicesList.size(); i < s; ++i) {
if (isa<Torch::NoneType>(optionalIndicesList[i].getType()))
continue;
indicesList.push_back(optionalIndicesList[i]);
indicesMap.push_back(i);
auto indexTy = cast<ValueTensorType>(indicesList.back().getType());
numBatchDims = std::max(static_cast<int64_t>(indexTy.getSizes().size()),
numBatchDims);
}
// Value broadcasting semantics require batch dimensions to be up front if
// the indices are not sequential, otherwise they are sequentially at their
// location:
int64_t batchDim = 0;
for (int s = optionalIndicesList.size(); batchDim < s; ++batchDim)
if (!isa<Torch::NoneType>(optionalIndicesList[batchDim].getType()))
break;
int64_t nextNone = batchDim;
for (int s = optionalIndicesList.size(); nextNone < s; ++nextNone)
if (isa<Torch::NoneType>(optionalIndicesList[nextNone].getType()))
break;
for (int s = optionalIndicesList.size(); nextNone < s; ++nextNone)
if (!isa<Torch::NoneType>(optionalIndicesList[nextNone].getType()))
batchDim = 0;
// Indices are extended, catted, and collapsed into a [batch, depth] tensor:
Value indices = combinePutIndices(loc, indicesList, rewriter);
// Bove batch dimensions to the front and collapse into a single dim:
values =
collapseAndMoveBatchDims(loc, values, batchDim, numBatchDims, rewriter);
valuesType = cast<Torch::ValueTensorType>(values.getType());
// Materialize out the length-1 dimensions:
Value zero = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(0));
Value one = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(1));
llvm::SmallVector<int64_t> valuesShape;
llvm::SmallVector<Value> valuesDims;
int vDim = 0;
if (optionalIndicesCount + valuesType.getSizes().size() >
inputType.getSizes().size()) {
valuesShape.push_back(valuesType.getSizes().front());
valuesDims.push_back(
rewriter.create<Torch::AtenSizeIntOp>(loc, values, zero));
vDim++;
}
for (int i = 0, s = inputType.getSizes().size(); i < s; ++i) {
if (i < optionalIndicesCount &&
!isa<Torch::NoneType>(optionalIndicesList[i].getType())) {
valuesDims.push_back(one);
valuesShape.push_back(1);
continue;
}
Value k = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(vDim));
valuesDims.push_back(
rewriter.create<Torch::AtenSizeIntOp>(loc, values, k));
valuesShape.push_back(inputType.getSizes()[i]);
vDim++;
}
Value valuesDimsList = rewriter.create<PrimListConstructOp>(
loc, Torch::ListType::get(rewriter.getType<Torch::IntType>()),
valuesDims);
valuesType = rewriter.getType<Torch::ValueTensorType>(
valuesShape, valuesType.getOptionalDtype());
values =
rewriter.create<AtenViewOp>(loc, valuesType, values, valuesDimsList);
// `TMTensor::ScatterOp` expects indices of element type i32.
indices = convertTensorToDtype(
rewriter, loc, indices,
mlir::IntegerType::get(context, 32, mlir::IntegerType::Signed));
input = typeConverter->materializeTargetConversion(
rewriter, loc, typeConverter->convertType(input.getType()), input);
values = typeConverter->materializeTargetConversion(
rewriter, loc, typeConverter->convertType(values.getType()), values);
indices = typeConverter->materializeTargetConversion(
rewriter, loc, typeConverter->convertType(indices.getType()), indices);
// Creating a tm_tensor.scatter op with the following mapping:
// 1.) Index tensor from the `indicesList` maps to the indices in scatter
// op.
// 2.) `values` is mapped to `updates` in scatter op.
// 3.) `input` is mapped to `original` in scatter op.
bool invalidInputTypeFound = false;
// If accumulate == false, the behavior is undefined if the indicies aren't
// unique.
bool uniqueIndices = !accumulate;
Value scatterOp = createTMTensorScatterOp(
rewriter, loc, values, indices, input, indicesMap,
/*uniqueIndices=*/uniqueIndices,
[&](OpBuilder &b, Location loc, Value valuesElement,
Value inputElement) {
Value yieldValue = valuesElement;
if (accumulate) {
if (isa<mlir::IntegerType>(inputElement.getType())) {
yieldValue =
b.create<arith::AddIOp>(loc, inputElement, valuesElement);
} else if (isa<mlir::FloatType>(inputElement.getType())) {
yieldValue =
b.create<arith::AddFOp>(loc, inputElement, valuesElement);
} else {
invalidInputTypeFound = true;
return;
}
}
b.create<TMTensor::YieldOp>(loc, yieldValue);
});
if (invalidInputTypeFound) {
return rewriter.notifyMatchFailure(
op,
"unimplemented: input tensor must be of integer type or float type");
}
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, scatterOp);
return success();
}
};
} // namespace
namespace {
// The original implementation of the op is as follows:
//
// Indices and GradOutput Layout: [N, C, H, W] or [C, H, W]
// Input Layout: [N, C, Hin, Win] or [C, Hin, Win]
//
// for i in range(N):
// for j in range(C):
// for k in range(H):
// for l in range(W):
// index = indices[i, j, k, l]
// result[i, j, index/Win, index%Win] += gradOutput[i, j, k, l]
//
// OR
//
// for i in range(C):
// for j in range(H):
// for k in range(W):
// index = indices[i, j, k]
// result[i, index/Win, index%Win] += gradOutput[i, j, k]
//
class ConvertAtenMaxPool2dWithIndicesBackwardOp
: public OpConversionPattern<AtenMaxPool2dWithIndicesBackwardOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenMaxPool2dWithIndicesBackwardOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
Location loc = op.getLoc();
MLIRContext *context = op->getContext();
Value gradOutput = adaptor.getGradOutput();
Value input = adaptor.getSelf();
RankedTensorType gradOutputType =
cast<RankedTensorType>(gradOutput.getType());
Type gradOutputElemType = gradOutputType.getElementType();
RankedTensorType inputType = cast<RankedTensorType>(input.getType());
Type inputElemType = inputType.getElementType();
int64_t tensorOperandRank = inputType.getRank();
// `TMTensor::ScatterOp` expects indices of element type i32.
Value indices = convertTensorToDtype(
rewriter, loc, op.getIndices(),
mlir::IntegerType::get(context, 32, mlir::IntegerType::Signed));
indices = typeConverter->materializeTargetConversion(
rewriter, loc, typeConverter->convertType(indices.getType()), indices);
RankedTensorType indicesType = cast<RankedTensorType>(indices.getType());
Type indicesElemType = indicesType.getElementType();
// The element type of the `input` and `grad_output` should be same.
if (inputElemType != gradOutputElemType)
return rewriter.notifyMatchFailure(
op,
"Input element type should be same as the grad_output element type.");
// Since the scatter op requires indices to be a 2-d tensor, we create a new
// 5-d/4-d tensor (depending on the original indices layout) comprising the
// index values. We will collapse this tensor into a 2-d tensor. The
// algorithm for the creation of updated indices tensor is as follows:
//
// for i in range(N):
// for j in range(C):
// for k in range(H):
// for l in range(W):
// for m in range(4):
// if m == 0:
// updatedIndices[N][C][H][W][0] = i
// if m == 1:
// updatedIndices[N][C][H][W][1] = j
// if m == 2:
// updatedIndices[N][C][H][W][2] =
// originalIndices[i, j, k, l] / Win
// if m == 3:
// updatedIndices[N][C][H][W][3] =
// originalIndices[i, j, k, l] % Win
//
// OR
//
// for j in range(C):
// for k in range(H):
// for l in range(W):
// for m in range(3):
// if m == 0:
// updatedIndices[C][H][W][0] = i
// if m == 1:
// updatedIndices[C][H][W][1] = originalIndices[i, j, k, l] / Win
// if m == 2:
// updatedIndices[C][H][W][2] = originalIndices[i, j, k, l] % Win
SmallVector<Value> inputShape = getTensorSizes(rewriter, loc, input);
SmallVector<AffineExpr> originalIndicesDimExprs, updatedIndicesDimExprs;
for (int64_t i = 0; i < tensorOperandRank; i++) {
originalIndicesDimExprs.push_back(rewriter.getAffineDimExpr(i));
updatedIndicesDimExprs.push_back(rewriter.getAffineDimExpr(i));
}
updatedIndicesDimExprs.push_back(
rewriter.getAffineDimExpr(tensorOperandRank));
SmallVector<AffineMap> indexingMaps = AffineMap::inferFromExprList(
{originalIndicesDimExprs, updatedIndicesDimExprs},
rewriter.getContext());
SmallVector<utils::IteratorType> iteratorTypes(
tensorOperandRank + 1, utils::IteratorType::parallel);
SmallVector<OpFoldResult> updatedIndicesShape =
getAsOpFoldResult(getTensorSizes(rewriter, loc, indices));
updatedIndicesShape.push_back(rewriter.getIndexAttr(tensorOperandRank));
Value initTensor = rewriter.create<tensor::EmptyOp>(
loc, updatedIndicesShape, indicesElemType);
Value wIn = inputShape[tensorOperandRank - 1];
SmallVector<Value> cstValues;
for (int64_t i = 0; i < tensorOperandRank; i++)
cstValues.push_back(rewriter.create<arith::ConstantIndexOp>(loc, i));
Value updatedIndices =
rewriter
.create<linalg::GenericOp>(
loc, initTensor.getType(), indices, initTensor, indexingMaps,
iteratorTypes,
[tensorOperandRank, wIn, cstValues,
indicesElemType](OpBuilder &b, Location loc, ValueRange args) {
Value index = castIntToIndex(b, loc, args[0]);
Value updatedIndex = cstValues[0];
Value lastDim =
b.create<linalg::IndexOp>(loc, tensorOperandRank);
for (int64_t i = tensorOperandRank - 1; i >= 0; i--) {
Value result;
if (i == tensorOperandRank - 1)
result = b.create<arith::RemSIOp>(loc, index, wIn);
if (i == tensorOperandRank - 2)
result = b.create<arith::FloorDivSIOp>(loc, index, wIn);
if (i == tensorOperandRank - 3 ||
i == tensorOperandRank - 4)
result = b.create<linalg::IndexOp>(loc, i);
Value pred = b.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, lastDim, cstValues[i]);
Value addAmount = b.create<arith::SelectOp>(
loc, pred, result, cstValues[0]);
updatedIndex =
b.create<arith::AddIOp>(loc, updatedIndex, addAmount);
}
updatedIndex = b.create<arith::IndexCastOp>(
loc, indicesElemType, updatedIndex);
b.create<linalg::YieldOp>(loc, updatedIndex);
})
.getResult(0);
// Creating a new tensor initialized with zeros and size same as the input
// tensor.
Value outputTensor =
createZeroInitTensor(rewriter, loc, inputShape, inputElemType);
// Collapsing `gradOutput` into a 1-d tensor.
SmallVector<ReassociationIndices> reassociationCollapse(1);
for (auto i = 0; i < gradOutputType.getRank(); i++)
reassociationCollapse[0].push_back(i);
RankedTensorType gradOutputFlattenedType;
int64_t numelGradOutput = getNumberOfElements(gradOutputType);
gradOutputFlattenedType = RankedTensorType::get(
makeShapeLLVMCompatible({numelGradOutput}), gradOutputElemType);
Value gradOutputFlattened = rewriter.create<tensor::CollapseShapeOp>(
loc, gradOutputFlattenedType, gradOutput, reassociationCollapse);
// Collapsing updated indices into a 2-d tensor.
SmallVector<ReassociationIndices> reassociationCollapseIndices(2);
for (auto i = 0; i < tensorOperandRank; i++)
reassociationCollapseIndices[0].push_back(i);
reassociationCollapseIndices[1].push_back(tensorOperandRank);
int64_t numelIndices = getNumberOfElements(indicesType);
Value indicesCollapsed = rewriter.create<tensor::CollapseShapeOp>(
loc,
RankedTensorType::get(
makeShapeLLVMCompatible({numelIndices, tensorOperandRank}),
indicesElemType),
updatedIndices, reassociationCollapseIndices);
bool invalidInputTypeFound = false;
Value scatterOp = createTMTensorScatterOp(
rewriter, loc, /*updates=*/gradOutputFlattened,
/*indices=*/indicesCollapsed, /*original=*/outputTensor,
/*dimensionsMap=*/createDefaultDimMap(indicesCollapsed),
/*uniqueIndices=*/false,
[&](OpBuilder &b, Location loc, Value valuesElement,
Value inputElement) {
Value yieldValue = valuesElement;
if (isa<mlir::IntegerType>(inputElement.getType())) {
yieldValue =
b.create<arith::AddIOp>(loc, inputElement, valuesElement);
} else if (isa<mlir::FloatType>(inputElement.getType())) {
yieldValue =
b.create<arith::AddFOp>(loc, inputElement, valuesElement);
} else {
invalidInputTypeFound = true;
return;
}
b.create<TMTensor::YieldOp>(loc, yieldValue);
});
if (invalidInputTypeFound) {
return rewriter.notifyMatchFailure(
op,
"unimplemented: input tensor must be of integer type or float type");
}
Type newResultType = getTypeConverter()->convertType(op.getType());
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, newResultType, scatterOp);
return success();
}
};
} // namespace
namespace {
class ConvertAtenScatterReduceTwoOp
: public OpConversionPattern<AtenScatterReduceTwoOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenScatterReduceTwoOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
Location loc = op.getLoc();
RankedTensorType selfType =
cast<RankedTensorType>(adaptor.getSelf().getType());
RankedTensorType indexType =
cast<RankedTensorType>(adaptor.getIndex().getType());
RankedTensorType srcType =
cast<RankedTensorType>(adaptor.getSrc().getType());
Value self = adaptor.getSelf();
if (selfType.getRank() != indexType.getRank() ||
indexType.getRank() != srcType.getRank())
return rewriter.notifyMatchFailure(op,
"'self', 'index' and 'src' should all "
"have the same number of dimensions.");
std::string reduceType;
if (!matchPattern(op.getReduce(), m_TorchConstantStr(reduceType)))
return rewriter.notifyMatchFailure(op,
"'reduce' must be a costant string");
int64_t dim;
if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim)))
return rewriter.notifyMatchFailure(op, "'dim' is not constant");
bool includeSelf;
if (!matchPattern(op.getIncludeSelf(), m_TorchConstantBool(&includeSelf)))
return rewriter.notifyMatchFailure(op, "'include_self' is not constant");
// Get reduce string as the equivalent enum
auto reduceEnum = torch_upstream::get_reduction_enum(reduceType);
// Get the inputs reformatted for the TMScatterOp
auto [indices, updates] =
convertTorchScatterIndexAndSrcToTMScatterIndexAndSrc(
rewriter, adaptor.getIndex(), adaptor.getSrc(), dim);
// Value 'counts' will be used to tally the number of reductions into
// each unique index. The tally is used to calculate the average of the
// values scattered per index.
Value counts = nullptr;
if (reduceEnum == torch_upstream::ReductionType::MEAN) {
SmallVector<Value> selfShape =
getTensorSizes(rewriter, loc, adaptor.getSelf());
TypedAttr initAttr;
if (llvm::isa<mlir::FloatType>(srcType.getElementType())) {
initAttr = rewriter.getFloatAttr(srcType.getElementType(), 1);
} else if (llvm::isa<mlir::IntegerType>(srcType.getElementType())) {
initAttr = rewriter.getIntegerAttr(srcType.getElementType(), 1);
} else {
llvm_unreachable("Only integer/float types supported!");
}
Value initElement = rewriter.create<arith::ConstantOp>(loc, initAttr);
counts = createInitTensor(rewriter, loc, selfShape,
selfType.getElementType(), initElement);
}
// If the original values shouldn't be included, normalize the
// input tensor where the scatters take place.
if (!includeSelf) {
Value normalizationValue;
if (reduceEnum == torch_upstream::ReductionType::SUM ||
reduceEnum == torch_upstream::ReductionType::MEAN) {
// Set the values in the input tensor to '0' so they are not included
normalizationValue = rewriter.create<arith::ConstantOp>(
loc, rewriter.getZeroAttr(srcType.getElementType()));
} else if (reduceEnum == torch_upstream::ReductionType::PROD) {
// Set the values in the input tensor to '1' (multiplication identity)
if (llvm::isa<mlir::FloatType>(srcType.getElementType())) {
normalizationValue = rewriter.create<arith::ConstantOp>(
loc, rewriter.getFloatAttr(srcType.getElementType(), 1.0));
} else if (llvm::isa<mlir::IntegerType>(srcType.getElementType())) {
normalizationValue = rewriter.create<arith::ConstantOp>(
loc, rewriter.getIntegerAttr(srcType.getElementType(), 1));
} else {
llvm_unreachable("Only integer/float types supported!");
}
} else if (reduceEnum == torch_upstream::ReductionType::MAX) {
// Set the values in the input tensor to the smallest element of that
// type
TypedAttr minAttr = getNumericLimit(rewriter, srcType.getElementType(),
/*getMin=*/true);
normalizationValue = rewriter.create<arith::ConstantOp>(loc, minAttr);
} else if (reduceEnum == torch_upstream::ReductionType::MIN) {
// Set the values in the input tensor to the largest element of that
// type
TypedAttr maxAttr = getNumericLimit(rewriter, srcType.getElementType(),
/*getMin=*/false);
normalizationValue = rewriter.create<arith::ConstantOp>(loc, maxAttr);
}
// Scatter the normalizations into the input tensor
Value indexSize = getTensorSize(rewriter, loc, adaptor.getIndex());
indexSize = castIntToIndex(rewriter, loc, indexSize);
Value normalizations = createInitTensor(
rewriter, loc, SmallVector<Value>({indexSize}),
srcType.getElementType(), /*init_element=*/normalizationValue);
self = createTMTensorScatterOp(
rewriter, loc, normalizations, indices, self,
/*dimensionsMap=*/createDefaultDimMap(indices),
/*uniqueIndices=*/false,
[&](OpBuilder &b, Location loc, Value update, Value current) {
b.create<TMTensor::YieldOp>(loc, update);
});
if (reduceEnum == torch_upstream::ReductionType::MEAN) {
counts = createTMTensorScatterOp(
rewriter, loc, normalizations, indices, counts,
/*dimensionsMap=*/createDefaultDimMap(indices),
/*uniqueIndices=*/false,
[&](OpBuilder &b, Location loc, Value update, Value current) {
b.create<TMTensor::YieldOp>(loc, update);
});
}
}
// Create final operation
Value scatterOp = createTMTensorScatterOp(
rewriter, loc, updates, indices, self,
/*dimensionsMap=*/createDefaultDimMap(indices), /*uniqueIndices=*/false,
[&](OpBuilder &b, Location loc, Value update, Value current) {
Value result;
if (reduceEnum == torch_upstream::ReductionType::SUM ||
reduceEnum == torch_upstream::ReductionType::MEAN) {
if (isa<mlir::IntegerType>(update.getType())) {
result = b.create<arith::AddIOp>(loc, update, current);
} else if (isa<mlir::FloatType>(update.getType())) {
result = b.create<arith::AddFOp>(loc, update, current);
} else {
llvm_unreachable("Only integer/float types supported!");
}
} else if (reduceEnum == torch_upstream::ReductionType::PROD) {
if (isa<mlir::IntegerType>(update.getType())) {
result = b.create<arith::MulIOp>(loc, update, current);
} else if (isa<mlir::FloatType>(update.getType())) {
result = b.create<arith::MulFOp>(loc, update, current);
} else {
llvm_unreachable("Only integer/float types supported!");
}
} else if (reduceEnum == torch_upstream::ReductionType::MAX) {
if (isa<mlir::IntegerType>(update.getType())) {
result = b.create<arith::MaxSIOp>(loc, update, current);
} else if (isa<mlir::FloatType>(update.getType())) {
result = b.create<arith::MaximumFOp>(loc, update, current);
} else {
llvm_unreachable("Only integer/float types supported!");
}
} else if (reduceEnum == torch_upstream::ReductionType::MIN) {
if (isa<mlir::IntegerType>(update.getType())) {
result = b.create<arith::MinSIOp>(loc, update, current);
} else if (isa<mlir::FloatType>(update.getType())) {
result = b.create<arith::MinimumFOp>(loc, update, current);
} else {
llvm_unreachable("Only integer/float types supported!");
}
}
b.create<TMTensor::YieldOp>(loc, result);
});
// Special case for the mean
if (reduceEnum == torch_upstream::ReductionType::MEAN) {
counts = createTMTensorScatterOp(
rewriter, loc, updates, indices, counts,
/*dimensionsMap=*/createDefaultDimMap(indices),
/*uniqueIndices=*/false,
[&](OpBuilder &b, Location loc, Value update, Value current) {
Value result;
if (mlir::IntegerType intType =
llvm::dyn_cast<mlir::IntegerType>(current.getType())) {
Value constantUpdate = b.create<arith::ConstantOp>(
loc, b.getIntegerAttr(intType, 1));
result = b.create<arith::AddIOp>(loc, constantUpdate, current);
} else if (mlir::FloatType floatType =
llvm::dyn_cast<mlir::FloatType>(current.getType())) {
Value constantUpdate = b.create<arith::ConstantOp>(
loc, b.getFloatAttr(floatType, 1.0));
result = b.create<arith::AddFOp>(loc, constantUpdate, current);
} else {
llvm_unreachable("Only integer/float types supported!");
}
b.create<TMTensor::YieldOp>(loc, result);
});
Value output = rewriter.create<tensor::EmptyOp>(
loc, tensor::getMixedSizes(rewriter, loc, self),
selfType.getElementType());
// Finally divide the result
scatterOp =
rewriter
.create<linalg::MapOp>(
loc, ValueRange{scatterOp, counts}, output,
[&](OpBuilder &b, Location loc, ValueRange args) {
Value result;
if (llvm::isa<mlir::IntegerType>(args[0].getType())) {
result = b.create<arith::DivSIOp>(loc, args[0], args[1]);
} else if (llvm::isa<mlir::FloatType>(args[0].getType())) {
result = b.create<arith::DivFOp>(loc, args[0], args[1]);
} else {
llvm_unreachable("Only integer/float types supported!");
}
b.create<linalg::YieldOp>(loc, result);
})
.getResult()[0];
}
auto resultType = cast<RankedTensorType>(
getTypeConverter()->convertType(op->getResult(0).getType()));
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, scatterOp);
return success();
}
};
} // namespace
namespace {
class ConvertAtenSortOp : public OpConversionPattern<AtenSortOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenSortOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
// Step 1. Fetch Input to sort.
Value inputTensor = adaptor.getSelf();
auto inputType = cast<RankedTensorType>(inputTensor.getType());
unsigned inputRank = inputType.getRank();
// Step 2. Fetch dimension to perform sort in.
int64_t dim;
if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim)))
return rewriter.notifyMatchFailure(
op, "unimplemented: only constant dim value is supported");
dim = toPositiveDim(dim, inputRank);
if (!isValidDim(dim, inputRank)) {
return rewriter.notifyMatchFailure(op, "dim is statically invalid");
}
// Step 3. Fetch the order of sorting.
bool descending;
if (!matchPattern(op.getDescending(), m_TorchConstantBool(&descending)))
return rewriter.notifyMatchFailure(
op, "unimplemented: only constant descending value is supported");
// Step 4. Form a RankedTensorType with same shape as that of the input's
// but with elemental type i64.
RankedTensorType indicesType =
RankedTensorType::get(inputType.getShape(), rewriter.getI64Type());
// Step 5. Generate indices tensor.
SmallVector<Value> dynDims;
for (unsigned i = 0; i < inputType.getRank(); i++) {
if (inputType.isDynamicDim(i)) {
dynDims.push_back(rewriter.create<tensor::DimOp>(loc, inputTensor, i));
}
}
Value initEmptyTensor = rewriter.create<tensor::EmptyOp>(
loc, inputType.getShape(), rewriter.getI64Type(), dynDims);
SmallVector<AffineMap> indexingMaps = {
AffineMap::getMultiDimIdentityMap(inputRank, op.getContext())};
SmallVector<utils::IteratorType> iteratorTypes(
inputRank, utils::IteratorType::parallel);
Value indicesTensor =
rewriter
.create<linalg::GenericOp>(
loc, initEmptyTensor.getType(), ValueRange{}, initEmptyTensor,
indexingMaps, iteratorTypes,
[&](OpBuilder &b, Location loc, ValueRange args) {
Value index = b.create<linalg::IndexOp>(loc, dim);
index = castIndexToInt64(b, loc, index);
b.create<linalg::YieldOp>(loc, index);
})
.getResult(0);
// Step 6. Create TMTensor::SortOp.
SmallVector<Value> operands;
operands.push_back(inputTensor);
operands.push_back(indicesTensor);
SmallVector<Type> elementTypes;
elementTypes.push_back(inputType.getElementType());
elementTypes.push_back(indicesType.getElementType());
// The default value for aten.sort op's `stable` parameter is `false`.
// Refer: https://pytorch.org/docs/stable/generated/torch.sort.html
FailureOr<SmallVector<Value>> sortOpValues =
createTMTensorSortOp(rewriter, loc, operands, elementTypes,
/*dimension=*/dim, /*isStable=*/false,
/*isDescending=*/descending);
if (failed(sortOpValues))
return rewriter.notifyMatchFailure(
loc, "Only Integer and Floating element type expected.");
auto sortOpVal = *sortOpValues;
rewriter.replaceOp(op, sortOpVal);
return success();
}
};
} // namespace
namespace {
class ConvertAtenCumprodOp : public OpConversionPattern<AtenCumprodOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenCumprodOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value input = adaptor.getSelf();
auto resultType = cast<RankedTensorType>(
getTypeConverter()->convertType(op->getResult(0).getType()));
Type elementType = resultType.getElementType();
Type inputElementType =
cast<RankedTensorType>(input.getType()).getElementType();
// Converting the input element type to the result's element type.
// The only possible mismatch would be when the input element type is an
// integer but not `si64`. Therefore, we directly convert the input to
// `si64`. Rest all cases are handled in the dtype definition for this op.
if (elementType != inputElementType) {
Value torchInput = convertTensorToDtype(
rewriter, loc, op.getSelf(),
rewriter.getIntegerType(64, IntegerType::Signed));
input = typeConverter->materializeTargetConversion(
rewriter, loc, typeConverter->convertType(torchInput.getType()),
torchInput);
}
int64_t inputRank = resultType.getRank();
Value dtype = op.getDtype();
if (!isa<Torch::NoneType>(dtype.getType()))
return rewriter.notifyMatchFailure(
op, "unsupported: dtype argument not supported");
int64_t dim;
if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim)))
return rewriter.notifyMatchFailure(
op, "unimplemented: only constant dim value is supported");
dim = toPositiveDim(dim, inputRank);
if (!isValidDim(dim, inputRank))
return rewriter.notifyMatchFailure(op, "invalid dim");
SmallVector<Value> sizes = getTensorSizes(rewriter, loc, input);
Value output = createOneInitTensor(rewriter, loc, sizes, elementType);
output = rewriter.create<tensor::CastOp>(loc, resultType, output);
SmallVector<Value> accSizes(sizes);
accSizes.erase(accSizes.begin() + dim);
SmallVector<int64_t> accStatic(
makeShapeTorchCompatible(resultType.getShape()));
accStatic.erase(accStatic.begin() + dim);
Value acc = createOneInitTensor(rewriter, loc, accSizes, elementType);
Type accType =
RankedTensorType::get(makeShapeLLVMCompatible(accStatic), elementType);
acc = rewriter.create<tensor::CastOp>(loc, accType, acc);
Value result = createTMTensorScanOp(
rewriter, loc, input, output, acc, dim, /*inclusive=*/true,
[](OpBuilder &b, Location loc, Value input, Value acc) {
Value prod =
(isa<mlir::FloatType>(input.getType())
? b.create<arith::MulFOp>(loc, input, acc)->getResult(0)
: b.create<arith::MulIOp>(loc, input, acc)->getResult(0));
b.create<TMTensor::YieldOp>(loc, prod);
});
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, result);
return success();
}
};
} // namespace
namespace {
class ConvertAtenCumsumOp : public OpConversionPattern<AtenCumsumOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenCumsumOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value input = adaptor.getSelf();
auto resultType = cast<RankedTensorType>(
getTypeConverter()->convertType(op->getResult(0).getType()));
Type elementType = resultType.getElementType();
Type inputElementType =
cast<RankedTensorType>(input.getType()).getElementType();
// Converting the input element type to the result's element type.
// The only possible mismatch would be when the input element type is an
// integer but not `si64`. Therefore, we directly convert the input to
// `si64`. Rest all cases are handled in the dtype definition for this op.
if (elementType != inputElementType) {
Value torchInput = convertTensorToDtype(
rewriter, loc, op.getSelf(),
rewriter.getIntegerType(64, IntegerType::Signed));
input = typeConverter->materializeTargetConversion(
rewriter, loc, typeConverter->convertType(torchInput.getType()),
torchInput);
}
int64_t inputRank = resultType.getRank();
Value dtype = op.getDtype();
if (!isa<Torch::NoneType>(dtype.getType()))
return rewriter.notifyMatchFailure(
op, "unsupported: dtype argument not supported");
int64_t dim;
if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim)))
return rewriter.notifyMatchFailure(
op, "unimplemented: only constant dim value is supported");
dim = toPositiveDim(dim, inputRank);
if (!isValidDim(dim, inputRank))
return rewriter.notifyMatchFailure(op, "invalid dim");
SmallVector<Value> sizes = getTensorSizes(rewriter, loc, input);
Value output = createZeroInitTensor(rewriter, loc, sizes, elementType);
output = rewriter.create<tensor::CastOp>(loc, resultType, output);
SmallVector<Value> accSizes(sizes);
accSizes.erase(accSizes.begin() + dim);
SmallVector<int64_t> accStatic(
makeShapeTorchCompatible(resultType.getShape()));
accStatic.erase(accStatic.begin() + dim);
Value acc = createZeroInitTensor(rewriter, loc, accSizes, elementType);
Type accType =
RankedTensorType::get(makeShapeLLVMCompatible(accStatic), elementType);
acc = rewriter.create<tensor::CastOp>(loc, accType, acc);
Value result = createTMTensorScanOp(
rewriter, loc, input, output, acc, dim, /*inclusive=*/true,
[](OpBuilder &b, Location loc, Value input, Value acc) {
Value sum =
(isa<mlir::FloatType>(input.getType())
? b.create<arith::AddFOp>(loc, input, acc)->getResult(0)
: b.create<arith::AddIOp>(loc, input, acc)->getResult(0));
b.create<TMTensor::YieldOp>(loc, sum);
});
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, result);
return success();
}
};
} // namespace
namespace {
class ConvertAtenScaledDotProductAttentionOp
: public OpConversionPattern<AtenScaledDotProductAttentionOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenScaledDotProductAttentionOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto opTy = cast<ValueTensorType>(op.getType()).toBuiltinTensor();
auto query = adaptor.getQuery();
auto value = adaptor.getValue();
auto key = adaptor.getKey();
auto mask = adaptor.getAttnMask();
auto queryTy = cast<ShapedType>(query.getType());
auto valueTy = cast<ShapedType>(value.getType());
auto keyTy = cast<ShapedType>(key.getType());
auto loc = op.getLoc();
Value dropoutP = op.getDropoutP();
Value isCausal = op.getIsCausal();
Value scale = op.getScale();
Value enableGQA = op.getEnableGqa();
Type elementType =
cast<ShapedType>(adaptor.getQuery().getType()).getElementType();
double dropout;
if (!matchPattern(dropoutP, m_TorchConstantFloat(&dropout)) ||
dropout > 0.0)
return rewriter.notifyMatchFailure(loc, "dropout not supported");
bool causal;
if (!matchPattern(isCausal, m_TorchConstantBool(&causal)) || causal) {
if (!isa<Torch::NoneType>(mask.getType())) {
return rewriter.notifyMatchFailure(
loc, "expected no attention mask when isCausal is true");
}
SmallVector<int64_t> maskStatic;
SmallVector<Value> maskDyn;
for (int i = 0, s = queryTy.getRank() - 1; i < s; ++i) {
maskStatic.push_back(queryTy.getDimSize(i));
if (maskStatic.back() == ShapedType::kDynamic)
maskDyn.push_back(rewriter.create<tensor::DimOp>(loc, query, i));
}
maskStatic.push_back(keyTy.getDimSize(keyTy.getRank() - 2));
if (maskStatic.back() == ShapedType::kDynamic)
maskDyn.push_back(
rewriter.create<tensor::DimOp>(loc, key, keyTy.getRank() - 2));
Type maskType = getElementTypeOrSelf(queryTy);
Value emptyMask =
rewriter.create<tensor::EmptyOp>(loc, maskStatic, maskType, maskDyn);
Value zero = rewriter.create<arith::ConstantOp>(
loc, rewriter.getFloatAttr(getElementTypeOrSelf(maskType), 0.0));
Value negInf = rewriter.create<arith::ConstantOp>(
loc,
rewriter.getFloatAttr(getElementTypeOrSelf(maskType), -INFINITY));
mask = rewriter.create<linalg::FillOp>(loc, zero, emptyMask).getResult(0);
int64_t rank = cast<ShapedType>(queryTy).getRank();
AffineMap maskMap = rewriter.getMultiDimIdentityMap(rank);
SmallVector<utils::IteratorType> iteratorTypes(
rank, utils::IteratorType::parallel);
auto genericOp = rewriter.create<linalg::GenericOp>(
loc, mask.getType(), ValueRange{}, mask,
SmallVector<AffineMap>{maskMap}, iteratorTypes,
[&](OpBuilder &b, Location loc, ValueRange args) {
Value i = b.create<linalg::IndexOp>(loc, queryTy.getRank() - 2);
Value j = b.create<linalg::IndexOp>(loc, queryTy.getRank() - 1);
Value cond =
b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sge, i, j);
Value select = b.create<arith::SelectOp>(loc, cond, zero, negInf);
b.create<linalg::YieldOp>(loc, select);
});
mask = genericOp.getResult(0);
}
// Broadcast the batch dimensions of the mask:
if (!isa<Torch::NoneType>(mask.getType())) {
auto maskTy = cast<RankedTensorType>(mask.getType());
int64_t rank = maskTy.getRank();
bool needsBroadcast = false;
for (int i = 0, s = rank - 2; i < s; ++i) {
needsBroadcast |= maskTy.getDimSize(i) != keyTy.getDimSize(i);
}
if (needsBroadcast) {
SmallVector<int64_t> maskShape;
SmallVector<Value> maskDynDims;
SmallVector<AffineExpr> maskExprs;
for (int i = 0, s = rank - 2; i < s; ++i) {
maskShape.push_back(keyTy.getDimSize(i));
if (maskTy.getDimSize(i) != keyTy.getDimSize(i)) {
maskExprs.push_back(rewriter.getAffineConstantExpr(0));
} else {
maskExprs.push_back(rewriter.getAffineDimExpr(i));
}
if (keyTy.isDynamicDim(i)) {
maskDynDims.push_back(rewriter.create<tensor::DimOp>(loc, key, i));
}
}
maskExprs.push_back(rewriter.getAffineDimExpr(rank - 2));
maskExprs.push_back(rewriter.getAffineDimExpr(rank - 1));
maskShape.push_back(maskTy.getDimSize(rank - 2));
maskShape.push_back(maskTy.getDimSize(rank - 1));
if (maskTy.isDynamicDim(rank - 2))
maskDynDims.push_back(
rewriter.create<tensor::DimOp>(loc, mask, rank - 2));
if (maskTy.isDynamicDim(rank - 1))
maskDynDims.push_back(
rewriter.create<tensor::DimOp>(loc, mask, rank - 1));
SmallVector<AffineMap> affineMaps = {
AffineMap::get(/*dimCount=*/rank, /*symbolCount=*/0, maskExprs,
op.getContext()),
rewriter.getMultiDimIdentityMap(rank)};
SmallVector<utils::IteratorType> findMaxIteratorTypes(
rank, utils::IteratorType::parallel);
Value emptyMask = rewriter.create<tensor::EmptyOp>(
loc, maskShape, maskTy.getElementType(), maskDynDims);
Value newMask =
rewriter
.create<linalg::GenericOp>(
loc, emptyMask.getType(), mask, ValueRange({emptyMask}),
affineMaps, findMaxIteratorTypes,
[&](OpBuilder &b, Location loc, ValueRange args) {
b.create<linalg::YieldOp>(loc, args[0]);
})
.getResult(0);
mask = newMask;
}
}
if (!isa<Torch::NoneType>(scale.getType())) {
double scaleFloat;
if (!matchPattern(scale, m_TorchConstantFloat(&scaleFloat)) ||
scaleFloat != 1.0)
return rewriter.notifyMatchFailure(loc, "only default scale supported");
}
bool isGQAEnabled;
if (!matchPattern(enableGQA, m_TorchConstantBool(&isGQAEnabled)) ||
isGQAEnabled)
return rewriter.notifyMatchFailure(
loc, "grouped query attention not supported");
if (queryTy.getRank() != valueTy.getRank() ||
queryTy.getRank() != keyTy.getRank())
return rewriter.notifyMatchFailure(op, "operand ranks do not match");
if (queryTy.getRank() < 3)
return rewriter.notifyMatchFailure(op, "missing batch dimension");
llvm::SmallVector<ReassociationIndices, 3> reassociation(3);
for (int i = 0, s = valueTy.getRank() - 2; i < s; ++i)
reassociation.front().push_back(i);
reassociation[1].push_back(valueTy.getRank() - 2);
reassociation[2].push_back(valueTy.getRank() - 1);
auto collapseBatch = [&rewriter, &reassociation,
loc](Value value) -> Value {
auto valueTy = cast<ShapedType>(value.getType());
if (valueTy.getRank() == 3)
return value;
llvm::SmallVector<int64_t, 3> newShape(3, 1);
newShape[1] = valueTy.getDimSize(valueTy.getRank() - 2);
newShape[2] = valueTy.getDimSize(valueTy.getRank() - 1);
for (int i = 0, s = valueTy.getRank() - 2; i < s; ++i) {
if (valueTy.isDynamicDim(i)) {
newShape[0] = ShapedType::kDynamic;
break;
}
newShape[0] = newShape[0] * valueTy.getDimSize(i);
}
auto collapseTy = valueTy.clone(newShape);
return rewriter.create<tensor::CollapseShapeOp>(loc, collapseTy, value,
reassociation);
};
query = collapseBatch(query);
key = collapseBatch(key);
value = collapseBatch(value);
if (!isa<mlir::torch::Torch::NoneType>(mask.getType())) {
mask = collapseBatch(mask);
}
SmallVector<int64_t> outSizes(cast<ShapedType>(query.getType()).getShape());
SmallVector<int64_t> valueSizes(
cast<ShapedType>(value.getType()).getShape());
outSizes[outSizes.size() - 1] = valueSizes[valueSizes.size() - 1];
SmallVector<Value> outSizesDynamic(getTensorSizes(rewriter, loc, query));
outSizesDynamic[outSizesDynamic.size() - 1] =
getTensorSizes(rewriter, loc, value)[valueSizes.size() - 1];
Type outType = RankedTensorType::get(outSizes, elementType);
Value output =
createZeroInitTensor(rewriter, loc, outSizesDynamic, elementType);
SmallVector<Value> inputs = SmallVector<Value>{query, key, value};
if (!isa<mlir::torch::Torch::NoneType>(mask.getType())) {
inputs.push_back(mask);
}
// Overwrite with tm_tensor::attention
Value attention = rewriter
.create<AttentionOp>(loc, outType, inputs,
SmallVector<Value>{output})
.getResult()[0];
if (opTy != outType) {
attention = rewriter.create<tensor::ExpandShapeOp>(loc, opTy, attention,
reassociation);
}
rewriter.replaceOp(op, attention);
return success();
}
};
} // namespace
namespace {
class ConvertAtenKthvalueOp : public OpConversionPattern<AtenKthvalueOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenKthvalueOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
const llvm::StringRef opName = op->getName().getStringRef();
Location loc = op.getLoc();
auto typec = this->getTypeConverter();
Value input = adaptor.getSelf();
auto inputType = cast<RankedTensorType>(input.getType());
unsigned inputRank = inputType.getRank();
Type inputElementType = inputType.getElementType();
auto valResultType =
cast<RankedTensorType>(typec->convertType(op.getResult(0).getType()));
auto valResultElementType =
getElementTypeOrSelf(typec->convertType(valResultType));
auto idxResultType =
cast<RankedTensorType>(typec->convertType(op.getResult(1).getType()));
auto idxResultElementType =
getElementTypeOrSelf(typec->convertType(idxResultType));
// get keepdim and check it is bool
bool keepDim = false;
if (!matchPattern(op.getKeepdim(), m_TorchConstantBool(&keepDim)))
return rewriter.notifyMatchFailure(
op, opName + " requires boolean value for keepdim");
// get dim, check it is constant int
int64_t dim;
if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim)))
return rewriter.notifyMatchFailure(
op, "unimplemented: only constant dim value is supported");
// turn dim into positive if negative, and check it is in the valid range
dim = toPositiveDim(dim, inputRank);
if (!isValidDim(dim, inputRank)) {
return rewriter.notifyMatchFailure(op, "dim is statically invalid");
}
// get k, check it is a constant int
int64_t k;
if (!matchPattern(op.getK(), m_TorchConstantInt(&k)))
return rewriter.notifyMatchFailure(
op, "unimplemented: only constant k value is supported");
// check if element type is float, int, or unsigned
bool isUnsigned = false;
if (!isa<mlir::FloatType>(inputElementType)) {
if (!isa<mlir::IntegerType>(inputElementType)) {
return rewriter.notifyMatchFailure(
op, opName + " to linalg.* requires Float or Integer "
"input element type");
}
auto integerTy = dyn_cast<mlir::IntegerType>(
cast<BaseTensorType>(op.getSelf().getType()).getDtype());
isUnsigned = integerTy.isUnsigned();
}
// Create the values to fill initial output tensors for
// topk op and linalg generic op for finding max value.
Value fillValLinalgFindMax;
Value fillValTopK;
if (isa<mlir::FloatType>(inputElementType)) {
// max float for topk tensor
fillValTopK = rewriter.create<arith::ConstantOp>(
loc,
rewriter.getFloatAttr(
inputElementType,
APFloat::getInf(
cast<mlir::FloatType>(inputElementType).getFloatSemantics(),
/*Negative=*/false)));
// min float for linalg generic op tensor
fillValLinalgFindMax = rewriter.create<arith::ConstantOp>(
loc,
rewriter.getFloatAttr(
inputElementType,
APFloat::getInf(
cast<mlir::FloatType>(inputElementType).getFloatSemantics(),
/*Negative=*/true)));
} else if (!isUnsigned) {
auto width = cast<mlir::IntegerType>(inputElementType).getWidth();
// max signed int for topk op tensor
auto init = APSInt::getSignedMaxValue(width);
fillValTopK = rewriter.create<arith::ConstantOp>(
loc, rewriter.getIntegerAttr(inputElementType, init));
// min signed int for linalg generic op tensor
init = APSInt::getSignedMinValue(width);
fillValLinalgFindMax = rewriter.create<arith::ConstantOp>(
loc, rewriter.getIntegerAttr(inputElementType, init));
} else if (isUnsigned) {
auto width = cast<mlir::IntegerType>(inputElementType).getWidth();
// max unsigned int for topk op tensor
auto init = APInt::getMaxValue(width);
fillValTopK = rewriter.create<arith::ConstantOp>(
loc, rewriter.getIntegerAttr(inputElementType, init));
// min unsigned int for linalg generic op tensor
init = APInt::getMinValue(width);
fillValLinalgFindMax = rewriter.create<arith::ConstantOp>(
loc, rewriter.getIntegerAttr(inputElementType, init));
}
auto i32Type = rewriter.getI32Type();
// ======== BEGIN: Topk op section ========
// Based on iree docs:
// https://iree.dev/reference/mlir-dialects/LinalgExt/#iree_linalg_extsort-linalgextsortop
// Create the output shape of topk op.
// For every dimension, topkShape[dimension] = inputShape[dimension],
// except topkShape[dim] = k.
SmallVector<Value> topkShape;
for (unsigned i = 0; i < inputRank; i++) {
auto currentDimSize = rewriter.create<tensor::DimOp>(loc, input, i);
topkShape.push_back(currentDimSize);
}
auto dimSize = rewriter.create<arith::ConstantOp>(
loc, rewriter.getIntegerAttr(rewriter.getI64Type(), k));
topkShape[dim] = dimSize;
// Fill the initial topk op output tensor.
Value topkOutputVal = createInitTensor(rewriter, loc, topkShape,
valResultElementType, fillValTopK);
// Create the initial value to fill the topk output indices tensor.
// It is equal to the max 32-bit signless integer.
auto signlessType = mlir::IntegerType::get(op.getContext(), 32,
mlir::IntegerType::Signless);
auto initIdx = getNumericLimit(rewriter, signlessType, /*getMin=*/false);
auto fillValTopkIdx = rewriter.create<arith::ConstantOp>(loc, initIdx);
// Fill the initial topk op output indices tensor.
Value topkOutputIdx =
createInitTensor(rewriter, loc, topkShape, i32Type, fillValTopkIdx);
// Input arguments for topk op contain only the input tensor.
// Input indices will be inferred based on input shape.
// (See docs link above).
SmallVector<Value> topkInputs;
topkInputs.push_back(input);
// Outputs contain both the values and the indices tensors.
SmallVector<Value> topkOutputs;
topkOutputs.push_back(topkOutputVal);
topkOutputs.push_back(topkOutputIdx);
// Element types of the arguments passed to the topk op region.
// The region accepts the next value N, and the current output
// candidate K (see docs link above).
// Both N and K are values from the input tensors, thus the
// element types are the same and are taken from inputType.
SmallVector<Type> topkElementTypes;
topkElementTypes.push_back(inputType.getElementType());
topkElementTypes.push_back(inputType.getElementType());
// Create the TMTensor TopkOp.
FailureOr<SmallVector<Value>> topkOp;
{
OpBuilder::InsertionGuard guard(rewriter);
topkOp = createTMTensorTopkOp(rewriter, loc, topkInputs, topkOutputs,
topkElementTypes, dim, /*isMinK=*/true);
}
// Topk op creation fails with invalid element types.
if (failed(topkOp))
return rewriter.notifyMatchFailure(
loc, "Only Integer and Floating element type expected.");
auto topkOpVal = topkOp.value();
// ======== END: Topk op section ========
// ======== BEGIN: Linalg generic to find max in topk result ========
// Create result shape as both a vector of Value and of int64_t types.
// We assume that keepdim is false, and fix the result later if true.
// Result shape is equal to inputShape, with dim dimension removed.
SmallVector<Value> resultShape;
SmallVector<int64_t> resultShapeInt;
for (int64_t i = 0; i < inputType.getRank(); i++) {
if (dim != i) {
auto currentDimSize = rewriter.create<tensor::DimOp>(loc, input, i);
resultShape.push_back(currentDimSize);
resultShapeInt.push_back(inputType.getShape()[i]);
}
}
// Fill the initial output tensor for linalg op for finding max value.
Value findMaxOutputVal = createInitTensor(
rewriter, loc, resultShape, inputElementType, fillValLinalgFindMax);
// Fill the initial output indices tensor for linalg op for finding max
// value with zeros.
Value findMaxOutputIdx =
createZeroInitTensor(rewriter, loc, resultShape, idxResultElementType);
// Reduce along dim.
SmallVector<utils::IteratorType> findMaxIteratorTypes(
inputType.getRank(), utils::IteratorType::parallel);
findMaxIteratorTypes[dim] = utils::IteratorType::reduction;
SmallVector<AffineExpr> findMaxMapExprs;
SmallVector<AffineExpr> findMaxMapResultExprs;
for (auto size :
llvm::enumerate(makeShapeTorchCompatible(inputType.getShape()))) {
findMaxMapExprs.push_back(rewriter.getAffineDimExpr(size.index()));
if (unsigned(dim) != size.index())
findMaxMapResultExprs.push_back(
rewriter.getAffineDimExpr(size.index()));
}
auto findMaxMaps = AffineMap::inferFromExprList(
{findMaxMapExprs, findMaxMapResultExprs, findMaxMapResultExprs},
rewriter.getContext());
// Create linalg op for finding the max value in the extracted topk values.
auto findMaxLinalg = rewriter.create<linalg::GenericOp>(
loc,
ArrayRef<Type>(
{findMaxOutputVal.getType(), findMaxOutputIdx.getType()}),
topkOpVal.front(), ValueRange({findMaxOutputVal, findMaxOutputIdx}),
findMaxMaps, findMaxIteratorTypes,
[&](OpBuilder &nestedBuilder, Location nestedLoc,
ValueRange blockArgs) {
// Linalg generic body is the same as the decomposition for
// AtenMinDim: lib/Conversion/TorchToLinalg/Reduction.cpp
Value newValue = blockArgs[0];
Value oldValue = blockArgs[1];
Value oldIndex = blockArgs[2];
Value newIndex = rewriter.create<arith::IndexCastOp>(
nestedLoc, oldIndex.getType(),
rewriter.create<linalg::IndexOp>(nestedLoc, dim));
Value resultVal, predicate;
if (isa<mlir::FloatType>(inputElementType)) {
resultVal = rewriter.create<arith::MaximumFOp>(nestedLoc, newValue,
oldValue);
predicate = rewriter.create<arith::CmpFOp>(
nestedLoc, arith::CmpFPredicate::OGT, newValue, oldValue);
} else {
arith::CmpIPredicate predType;
predType = isUnsigned ? arith::CmpIPredicate::ugt
: arith::CmpIPredicate::sgt;
if (isUnsigned) {
resultVal = rewriter.create<arith::MaxUIOp>(nestedLoc, newValue,
oldValue);
} else {
resultVal = rewriter.create<arith::MaxSIOp>(nestedLoc, newValue,
oldValue);
}
predicate = rewriter.create<arith::CmpIOp>(nestedLoc, predType,
newValue, oldValue);
}
auto resultIndex = rewriter.create<arith::SelectOp>(
nestedLoc, predicate, newIndex, oldIndex);
nestedBuilder.create<linalg::YieldOp>(
nestedLoc, ValueRange{resultVal, resultIndex});
});
auto findMaxVal = findMaxLinalg.getResult(0);
auto findMaxIdx = findMaxLinalg.getResult(1);
auto findMaxIdxType = cast<RankedTensorType>(findMaxIdx.getType());
// ======== END: Linalg generic to find max in topk result ========
// ======== BEGIN: Linalg generic for index extraction ========
// The linalg op for finding max returned idx of max elements in the
// tensor returned by the topk op. We need the idx of those elements
// in the original input. The topk op returned the idx of the top k
// extracted elements in the original input. Using the linalg idx
// results to index the topk idx results returns the idx of kth
// max value in the original input. Example:
// input = [1, 7, 3, 6, 2, 8, 9, 5], k = 4
// topk_val = [1, 3, 2, 5], topk_idx = [0, 2, 4, 7]
// linalg_max_val = [5], linalg_max_idx = [3] (5 is at idx 3 in topk_val)
// index the topk_idx using linalg_max_idx -> topk_idx[3] = 7
// kth_val = [5], kth_idx = [7]
// Create a tensor for the resulting idx.
Value filledTensorExtractedIdx = createZeroInitTensor(
rewriter, loc, getTensorSizes(rewriter, loc, findMaxIdx), i32Type);
// We iterate through the idx tensor returned by the linalg generic op for
// finding max.
SmallVector<utils::IteratorType> extractedIdxIteratorTypes(
findMaxIdxType.getRank(), utils::IteratorType::parallel);
SmallVector<AffineExpr> extractedIdxMapExprs;
for (auto size :
llvm::enumerate(makeShapeTorchCompatible(findMaxIdxType.getShape()))) {
extractedIdxMapExprs.push_back(rewriter.getAffineDimExpr(size.index()));
}
auto extractedIdxMaps = AffineMap::inferFromExprList(
{extractedIdxMapExprs, extractedIdxMapExprs}, rewriter.getContext());
// Linalg generic op for indexing the topk output idx tensor using
// the idx tensor returned by the linalg generic op for finding max.
// Only the idx tensor from the linalg generic op is sent as input.
auto extractedIdxLinalg = rewriter.create<linalg::GenericOp>(
loc, ArrayRef<Type>({filledTensorExtractedIdx.getType()}), findMaxIdx,
filledTensorExtractedIdx, extractedIdxMaps, extractedIdxIteratorTypes,
[&](OpBuilder &nestedBuilder, Location nestedLoc,
ValueRange blockArgs) {
// Get the current input idx.
Value index = rewriter.create<arith::IndexCastOp>(
loc, rewriter.getIndexType(), blockArgs[0]);
// Create idx to index the topk idx tensor.
// Index the dim dimension using the current input idx.
SmallVector<Value> indexTarget;
for (unsigned i = 0; i < dim; i++)
indexTarget.push_back(rewriter.create<linalg::IndexOp>(loc, i));
indexTarget.push_back(index);
for (unsigned i = dim; i < findMaxIdxType.getRank(); i++)
indexTarget.push_back(rewriter.create<linalg::IndexOp>(loc, i));
// Extract the element from the topk idx tensor.
Value extractedElement = rewriter.create<tensor::ExtractOp>(
loc, topkOpVal.back(), indexTarget);
rewriter.create<linalg::YieldOp>(loc, extractedElement);
});
auto extractedIdx = extractedIdxLinalg.getResult(0);
auto extractedIdxType = cast<RankedTensorType>(extractedIdx.getType());
// ======== END: Linalg generic for index extraction ========
// ======== BEGIN: Linalg generic for topk idx cast ========
// Casts from i32 to idx result type of the Kthvalue op.
// Create the initial tensor for the cast result.
Value filledTensorCastedIdx = createZeroInitTensor(
rewriter, loc, getTensorSizes(rewriter, loc, extractedIdx),
idxResultElementType);
SmallVector<utils::IteratorType> castedIdxIteratorTypes(
extractedIdxType.getRank(), utils::IteratorType::parallel);
SmallVector<AffineExpr> castedIdxMapExprs;
for (auto size : llvm::enumerate(
makeShapeTorchCompatible(extractedIdxType.getShape()))) {
castedIdxMapExprs.push_back(rewriter.getAffineDimExpr(size.index()));
}
auto castedIdxMaps = AffineMap::inferFromExprList(
{castedIdxMapExprs, castedIdxMapExprs}, rewriter.getContext());
// Linalg generic op for casting topk idx output tensor elements from i32 to
// result idx tensor element type.
auto castedIdxLinalg = rewriter.create<linalg::GenericOp>(
loc, ArrayRef<Type>({filledTensorCastedIdx.getType()}), extractedIdx,
filledTensorCastedIdx, castedIdxMaps, castedIdxIteratorTypes,
[&](OpBuilder &nestedBuilder, Location nestedLoc,
ValueRange blockArgs) {
Value oldIdx = blockArgs[0];
// Cast from i32 to index.
Value oldIdxToIndexType = rewriter.create<arith::IndexCastOp>(
nestedLoc, rewriter.getIndexType(), oldIdx);
// Cast from index to result idx element type.
Value resultIdx = rewriter.create<arith::IndexCastOp>(
nestedLoc, idxResultElementType, oldIdxToIndexType);
nestedBuilder.create<linalg::YieldOp>(nestedLoc, resultIdx);
});
auto castedIdx = castedIdxLinalg.getResult(0);
// ======== END: Linalg generic for topk idx cast ========
// Create output value type ("squeezed" since we assume keepdim=False).
auto topkValResultType =
cast<RankedTensorType>(topkOpVal.front().getType());
auto squeezedValType = topkValResultType.cloneWith(
resultShapeInt,
cast<RankedTensorType>(findMaxVal.getType()).getElementType());
// Create output idx type ("squeezed" since we assume keepdim=False).
auto castedIdxType = cast<RankedTensorType>(castedIdx.getType());
auto squeezedIdxType = castedIdxType.cloneWith(
resultShapeInt, findMaxIdxType.getElementType());
if (!keepDim) {
// If keepdim=false, cast the the outputs to appropriate type and return.
Value retVal =
rewriter.create<tensor::CastOp>(loc, squeezedValType, findMaxVal);
Value retIdx =
rewriter.create<tensor::CastOp>(loc, squeezedIdxType, castedIdx);
llvm::SmallVector<Value> res{retVal, retIdx};
rewriter.replaceOp(op, res);
return success();
}
// If keepdim is false, unsqueeze.
// Unsqueezing implementation taken from AteMinMaxDimOp lowering:
// lib/Conversion/TorchToLinalg/Reduction.cpp
llvm::SmallVector<int64_t> valShape(valResultType.getShape());
llvm::SmallVector<int64_t> idxShape(idxResultType.getShape());
for (int i = dim, s = valShape.size() - 1; i < s; ++i) {
valShape[i] = valShape[i + 1];
idxShape[i] = idxShape[i + 1];
}
valShape.resize(valShape.size() - 1);
idxShape.resize(idxShape.size() - 1);
Value retVal = rewriter.create<tensor::CastOp>(
loc, squeezedValType.clone(valShape), findMaxLinalg.getResult(0));
Value retIdx = rewriter.create<tensor::CastOp>(
loc, squeezedIdxType.clone(idxShape), castedIdx);
SmallVector<ReassociationIndices> reassociation(valShape.size());
if (reassociation.size() > 0) {
for (int i = 0; i < dim; ++i)
reassociation[i].push_back(i);
reassociation[std::max<int64_t>(0, dim - 1)].push_back(dim);
for (int i = dim, s = reassociation.size(); i < s; ++i)
reassociation[i].push_back(i + 1);
}
valShape.push_back(0);
idxShape.push_back(0);
for (int i = dim, s = valShape.size() - 1; i < s; ++i) {
valShape[i + 1] = valShape[i];
idxShape[i + 1] = idxShape[i];
}
valShape[dim] = 1;
idxShape[dim] = 1;
Value unsqueezeVal = rewriter.create<tensor::ExpandShapeOp>(
loc, valResultType, retVal, reassociation);
Value unsqueezeIdx = rewriter.create<tensor::ExpandShapeOp>(
loc, idxResultType, retIdx, reassociation);
// Return unsqueezed.
llvm::SmallVector<Value> unsqueezes = {unsqueezeVal, unsqueezeIdx};
rewriter.replaceOp(op, unsqueezes);
return success();
}
};
} // namespace
// -----------------------------------------------------------------------------
// The pass
// -----------------------------------------------------------------------------
namespace {
class ConvertTorchToTMTensor
: public ConvertTorchToTMTensorBase<ConvertTorchToTMTensor> {
public:
void getDependentDialects(DialectRegistry &registry) const override {
registry.insert<linalg::LinalgDialect>();
registry.insert<func::FuncDialect>();
registry.insert<tensor::TensorDialect>();
registry.insert<arith::ArithDialect>();
registry.insert<TMTensorDialect>();
TorchConversion::getBackendTypeConversionDependentDialects(registry);
}
void runOnOperation() override {
MLIRContext *context = &getContext();
ConversionTarget target(*context);
target.addLegalDialect<linalg::LinalgDialect, func::FuncDialect,
tensor::TensorDialect, arith::ArithDialect,
math::MathDialect, Torch::TorchDialect,
TMTensorDialect>();
TypeConverter typeConverter;
typeConverter.addConversion([](Type type) { return type; });
TorchConversion::setupBackendTypeConversion(target, typeConverter);
RewritePatternSet patterns(context);
target.addIllegalOp<AtenBincountOp>();
patterns.add<ConvertAtenBincountOp>(typeConverter, context);
target.addIllegalOp<AtenIndexPutHackedTwinOp>();
patterns.add<ConvertAtenIndexPutHackedTwinOp>(typeConverter, context);
target.addIllegalOp<AtenMaxPool2dWithIndicesBackwardOp>();
patterns.add<ConvertAtenMaxPool2dWithIndicesBackwardOp>(typeConverter,
context);
target.addIllegalOp<AtenScatterReduceTwoOp>();
patterns.add<ConvertAtenScatterReduceTwoOp>(typeConverter, context);
target.addIllegalOp<AtenSortOp>();
patterns.add<ConvertAtenSortOp>(typeConverter, context);
target.addIllegalOp<AtenCumsumOp>();
patterns.add<ConvertAtenCumsumOp>(typeConverter, context);
target.addIllegalOp<AtenCumprodOp>();
patterns.add<ConvertAtenCumprodOp>(typeConverter, context);
target.addIllegalOp<AtenScaledDotProductAttentionOp>();
patterns.add<ConvertAtenScaledDotProductAttentionOp>(typeConverter,
context);
target.addIllegalOp<AtenScatterSrcOp>();
patterns.add<ConvertAtenScatterOp<AtenScatterSrcOp>>(typeConverter,
context);
target.addIllegalOp<AtenScatterAddOp>();
patterns.add<ConvertAtenScatterOp<AtenScatterAddOp>>(typeConverter,
context);
target.addIllegalOp<AtenKthvalueOp>();
patterns.add<ConvertAtenKthvalueOp>(typeConverter, context);
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
return signalPassFailure();
}
};
} // namespace
std::unique_ptr<OperationPass<func::FuncOp>>
mlir::torch::createConvertTorchToTMTensorPass() {
return std::make_unique<ConvertTorchToTMTensor>();
}