torch-mlir/lib/Conversion/TorchToTosa/TosaLegalizeUtils.cpp

388 lines
15 KiB
C++

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#include "torch-mlir/Conversion/TorchToTosa/TosaLegalizeUtils.h"
#include "mlir/Dialect/Tosa/IR/TosaOps.h" // from @llvm-project
#include "mlir/Dialect/Tosa/Utils/QuantUtils.h" // from @llvm-project
#include "torch-mlir/Conversion/TorchToTosa/TosaLegalizeCommon.h"
namespace mlir {
namespace tosa {
// Create a TOSA rescale op from input framework tensor, zero points and
// rounding mode
Value buildRescale(PatternRewriter &rewriter, Operation *op,
ShapedType output_type, Value input_val, double scale,
int64_t input_zp, int64_t output_zp, bool double_round,
bool scale32) {
int32_t multiplier;
int32_t shift;
int32_t scale_width = scale32 ? 32 : 16;
computeMultiplierAndShift(scale, multiplier, shift, scale_width);
auto rescale_op = CreateOpAndInfer<tosa::RescaleOp>(
rewriter, op->getLoc(), output_type, input_val,
rewriter.getI32IntegerAttr(static_cast<int32_t>(input_zp)),
rewriter.getI32IntegerAttr(static_cast<int32_t>(output_zp)),
rewriter.getDenseI32ArrayAttr({multiplier}),
rewriter.getDenseI8ArrayAttr({static_cast<int8_t>(shift)}),
rewriter.getBoolAttr(scale32), rewriter.getBoolAttr(double_round),
rewriter.getBoolAttr(false));
return rescale_op.getResult();
}
// Creates TOSA rescale op with int32 output
Value buildRescaleToInt32(PatternRewriter &rewriter, Operation *op,
Value input_val, double input_scale,
int64_t input_zp) {
// Output is always int32 type
auto input_type = input_val.getType().dyn_cast<mlir::ShapedType>();
assert(input_type);
auto output_type = input_type.clone(rewriter.getI32Type());
return buildRescale(rewriter, op, output_type, input_val, input_scale,
input_zp, 0, false, true);
}
// Creates a TOSA rescale op based on conv2d parameters.
Value buildRescaleOpConvOutput(PatternRewriter &rewriter, Operation *op,
Value conv_val, ShapedType input_type,
ShapedType weight_type, ShapedType output_type) {
auto input_qtype =
input_type.getElementType().dyn_cast<mlir::quant::UniformQuantizedType>();
auto output_qtype = output_type.getElementType()
.dyn_cast<mlir::quant::UniformQuantizedType>();
double input_scale = input_qtype.getScale();
int64_t output_zp = output_qtype.getZeroPoint();
double output_scale = output_qtype.getScale();
bool scale32 = isScale32(output_qtype);
int32_t scale_width = scale32 ? 32 : 16;
if (auto weight_per_tensor_qtype =
weight_type.getElementType()
.dyn_cast<mlir::quant::UniformQuantizedType>()) {
// Per-tensor quantization
double weight_scale = weight_per_tensor_qtype.getScale();
int32_t multiplier;
int32_t shift;
double op_tensor_scale = (input_scale * weight_scale) / output_scale;
computeMultiplierAndShift(op_tensor_scale, multiplier, shift, scale_width);
auto rescale_op = CreateOpAndInfer<tosa::RescaleOp>(
rewriter, op->getLoc(), output_type, conv_val,
rewriter.getI32IntegerAttr(0), rewriter.getI32IntegerAttr(output_zp),
rewriter.getDenseI32ArrayAttr({multiplier}),
rewriter.getDenseI8ArrayAttr({static_cast<int8_t>(shift)}),
rewriter.getBoolAttr(scale32), rewriter.getBoolAttr(true),
rewriter.getBoolAttr(false));
return rescale_op.getResult();
} else if (auto weight_per_channel_qtype =
weight_type.getElementType()
.dyn_cast<mlir::quant::UniformQuantizedPerAxisType>()) {
// Per-channel quantization
SmallVector<int32_t> multiplier_arr;
SmallVector<int8_t> shift_arr;
SmallVector<double> weight_scale_arr(
weight_per_channel_qtype.getScales().begin(),
weight_per_channel_qtype.getScales().end());
int64_t output_zp = output_qtype.getZeroPoint();
double output_scale = output_qtype.getScale();
for (double weight_scale : weight_scale_arr) {
int32_t multiplier;
int32_t shift;
double op_channel_scale = (input_scale * weight_scale) / output_scale;
computeMultiplierAndShift(op_channel_scale, multiplier, shift,
scale_width);
multiplier_arr.push_back(multiplier);
shift_arr.push_back(static_cast<int8_t>(shift));
}
auto rescale_op = CreateOpAndInfer<tosa::RescaleOp>(
rewriter, op->getLoc(), output_type, conv_val,
rewriter.getI32IntegerAttr(0), rewriter.getI32IntegerAttr(output_zp),
rewriter.getDenseI32ArrayAttr(multiplier_arr),
rewriter.getDenseI8ArrayAttr(shift_arr), rewriter.getBoolAttr(scale32),
rewriter.getBoolAttr(true), rewriter.getBoolAttr(true));
return rescale_op.getResult();
} else {
op->emitOpError("buildConvRescaleOp: unknown weight quantized type");
return nullptr;
}
}
// Check if scale32 mode is used for given output_element_type
bool isScale32(mlir::quant::UniformQuantizedType output_element_type) {
return (output_element_type.getStorageTypeIntegralWidth() == 8);
}
// Create a 32-bit float constant operator from a float
Value getTosaConstTensorSingleF32(PatternRewriter &rewriter, Operation *op,
float val) {
auto const_type = RankedTensorType::get({}, rewriter.getF32Type());
auto const_attr = DenseElementsAttr::get(const_type, val);
auto const_op =
rewriter.create<tosa::ConstOp>(op->getLoc(), const_type, const_attr);
return const_op.getResult();
}
// Create a zero constant tensor of the desired type and shape.
std::optional<Value> getZerosLikeTensor(PatternRewriter &rewriter,
Operation *op, Type type) {
RankedTensorType resultType = type.dyn_cast<RankedTensorType>();
if (!resultType) {
(void)rewriter.notifyMatchFailure(op, "not ranked tensor type");
return std::nullopt;
}
auto resultShape = resultType.getShape();
ShapedType zeroType =
RankedTensorType::get(resultShape, resultType.getElementType());
Attribute zeroAttr = rewriter.getZeroAttr(zeroType);
return CreateOpAndInfer<tosa::ConstOp>(rewriter, op->getLoc(), zeroType,
zeroAttr.cast<ElementsAttr>())
.getResult();
}
// Templated function to create a constant op for given type and shape.
// T: storage C type.
// Default template creates a constant tensor in T.
template <typename T>
std::optional<Value> getConstTensor(PatternRewriter &rewriter, Operation *op,
ArrayRef<T> vec, ArrayRef<int64_t> shape,
std::optional<Type> dtype) {
uint64_t num_total_elements = 1;
for (int64_t a : shape) {
num_total_elements *= a;
}
if (vec.size() != num_total_elements) {
op->emitOpError("getConstTensor(): number of elements mismatch.");
return std::nullopt;
}
auto width = sizeof(T) * 8;
if constexpr (std::is_same_v<T, bool>)
width = 1;
auto const_type =
RankedTensorType::get(shape, rewriter.getIntegerType(width));
auto const_attr = DenseElementsAttr::get(const_type, vec);
auto const_op =
rewriter.create<tosa::ConstOp>(op->getLoc(), const_type, const_attr);
if (dtype) {
return rewriter.createOrFold<tosa::CastOp>(
op->getLoc(), RankedTensorType::get(shape, *dtype), const_op);
}
return const_op.getResult();
}
// Template specialization for APInt
template <>
std::optional<Value> getConstTensor<APInt>(PatternRewriter &rewriter,
Operation *op, ArrayRef<APInt> vec,
ArrayRef<int64_t> shape,
std::optional<Type> dtype) {
uint64_t num_total_elements = 1;
for (int64_t a : shape) {
num_total_elements *= a;
}
if (vec.size() != num_total_elements) {
op->emitOpError("getConstTensor(): number of elements mismatch.");
return std::nullopt;
}
auto const_type = RankedTensorType::get(
shape, rewriter.getIntegerType(vec[0].getBitWidth()));
auto const_attr = DenseElementsAttr::get(const_type, vec);
auto const_op =
rewriter.create<tosa::ConstOp>(op->getLoc(), const_type, const_attr);
if (dtype) {
return rewriter.createOrFold<tosa::CastOp>(
op->getLoc(), RankedTensorType::get(shape, *dtype), const_op);
}
return const_op.getResult();
}
// Template specialization for float
template <>
std::optional<Value> getConstTensor<float>(PatternRewriter &rewriter,
Operation *op, ArrayRef<float> vec,
ArrayRef<int64_t> shape,
std::optional<Type> dtype) {
uint64_t num_total_elements = 1;
for (int64_t a : shape) {
num_total_elements *= a;
}
if (vec.size() != num_total_elements) {
op->emitOpError("getConstTensor(): number of elements mismatch.");
return std::nullopt;
}
auto const_type = RankedTensorType::get(shape, rewriter.getF32Type());
auto const_attr = DenseElementsAttr::get(const_type, vec);
auto const_op =
rewriter.create<tosa::ConstOp>(op->getLoc(), const_type, const_attr);
if (dtype) {
return rewriter.createOrFold<tosa::CastOp>(
op->getLoc(), RankedTensorType::get(shape, *dtype), const_op);
}
return const_op.getResult();
}
static LogicalResult checkValidityOfCast(Type src, Type dest) {
if ((src == dest) || (src.isInteger(64) && dest.isInteger(32)) ||
(src.isInteger(64) && dest.isInteger(8)) ||
(src.isInteger(64) && dest.isInteger(1)) ||
(src.isInteger(64) && dest.isF32()) ||
(src.isInteger(32) && dest.isInteger(64)) ||
(src.isInteger(32) && dest.isInteger(1)) ||
(src.isInteger(32) && dest.isF32()) ||
(src.isInteger(32) && dest.isBF16()) ||
(src.isInteger(16) && dest.isBF16()) ||
(src.isInteger(8) && dest.isInteger(1)) ||
(src.isInteger(8) && dest.isBF16()) ||
(src.isInteger(1) && dest.isInteger(64)) ||
(src.isInteger(1) && dest.isF32()) || (src.isF32() && dest.isF64()) ||
(src.isF32() && dest.isBF16()) || (src.isF64() && dest.isF32()) ||
(src.isF64() && dest.isBF16()) || (src.isF32() && dest.isInteger(8)) ||
(src.isF32() && dest.isInteger(64)) ||
(src.isF32() && dest.isInteger(1)) ||
(src.isBF16() && dest.isInteger(8)) ||
(src.isBF16() && dest.isInteger(16)) ||
(src.isBF16() && dest.isInteger(32)) || (src.isBF16() && dest.isF32())) {
return success();
}
return failure();
}
// Template specialization for float
LogicalResult tosaCastTensorToType(PatternRewriter &rewriter, Operation *op,
Value src, Type destType, Value &result) {
Type srcElemTy = src.getType().dyn_cast<TensorType>().getElementType();
Type destElemTy = destType.dyn_cast<TensorType>().getElementType();
if (failed(checkValidityOfCast(srcElemTy, destElemTy)))
return rewriter.notifyMatchFailure(
op, "casting to result dtype is invalid or unsupported");
if (destElemTy.isInteger(1)) {
auto srcType = src.getType().dyn_cast<TensorType>();
SmallVector<int64_t> srcShape(srcType.getShape());
uint64_t num_total_elements = 1;
for (int64_t a : srcShape)
num_total_elements *= a;
std::optional<Value> constOp;
if (srcElemTy.isInteger(64)) {
SmallVector<int64_t> values(num_total_elements, 0);
constOp =
tosa::getConstTensor<int64_t>(rewriter, op, values, srcShape).value();
} else if (srcElemTy.isInteger(32)) {
SmallVector<int32_t> values(num_total_elements, 0);
constOp =
tosa::getConstTensor<int32_t>(rewriter, op, values, srcShape).value();
} else if (srcElemTy.isF32()) {
SmallVector<float> values(num_total_elements, 0.0);
constOp =
tosa::getConstTensor<float>(rewriter, op, values, srcShape).value();
} else if (srcElemTy.isInteger(8)) {
SmallVector<int8_t> values(num_total_elements, 0);
constOp =
tosa::getConstTensor<int8_t>(rewriter, op, values, srcShape).value();
}
Value equalToZero = rewriter.create<tosa::EqualOp>(op->getLoc(), destType,
src, constOp.value());
result = rewriter.create<tosa::LogicalNotOp>(op->getLoc(), destType,
equalToZero);
} else {
result = rewriter.create<tosa::CastOp>(op->getLoc(), destType, src);
}
return success();
}
Value promoteType(PatternRewriter &rewriter, Value input, TensorType outType) {
Operation *op = input.getDefiningOp();
TensorType inType = input.getType().cast<TensorType>();
if (inType.getElementType() != outType.getElementType()) {
TensorType promotedType =
inType.cloneWith(inType.getShape(), outType.getElementType());
return rewriter.create<tosa::CastOp>(op->getLoc(), promotedType, input);
}
return input;
}
// Template instantiation
template std::optional<Value>
getConstTensor<bool>(PatternRewriter &, Operation *, ArrayRef<bool> vec,
ArrayRef<int64_t> shape, std::optional<Type> dtype);
template std::optional<Value>
getConstTensor<int32_t>(PatternRewriter &, Operation *, ArrayRef<int32_t> vec,
ArrayRef<int64_t> shape, std::optional<Type> dtype);
template std::optional<Value>
getConstTensor<int64_t>(PatternRewriter &, Operation *, ArrayRef<int64_t> vec,
ArrayRef<int64_t> shape, std::optional<Type> dtype);
LogicalResult getAvgPool2dAccType(PatternRewriter &rewriter, Value input,
TypeAttr &accType) {
auto inputTy = llvm::dyn_cast<ShapedType>(input.getType());
if (!inputTy)
return failure();
auto inputETy = inputTy.getElementType();
if (auto quantType =
llvm::dyn_cast<mlir::quant::UniformQuantizedType>(inputETy))
inputETy = quantType.getStorageType();
// Tosa supports FP16 and FP32 accumulator type for FP16 input. When the time
// FP16 is supported, the accumulator type can be selected based on trade-off
// between performance and accuracy. Set to FP32 by default.
accType = inputETy.isa<FloatType>()
? mlir::TypeAttr::get(rewriter.getF32Type())
: mlir::TypeAttr::get(rewriter.getIntegerType(32));
return success();
}
} // namespace tosa
} // namespace mlir