torch-mlir/lib/Dialect/TorchConversion/Transforms/Passes.cpp

154 lines
6.9 KiB
C++

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#include "torch-mlir/Dialect/TorchConversion/Transforms/Passes.h"
#include "mlir/Conversion/Passes.h"
#include "mlir/Dialect/Func/Transforms/Passes.h"
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/MemRef/Transforms/Passes.h"
#include "mlir/Dialect/Tosa/Transforms/Passes.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Transforms/Passes.h"
#include "torch-mlir/Conversion/TorchConversionToMLProgram/TorchConversionToMLProgram.h"
#include "torch-mlir/Conversion/TorchToArith/TorchToArith.h"
#include "torch-mlir/Conversion/TorchToLinalg/TorchToLinalg.h"
#include "torch-mlir/Conversion/TorchToSCF/TorchToSCF.h"
#include "torch-mlir/Conversion/TorchToTMTensor/TorchToTMTensor.h"
#include "torch-mlir/Conversion/TorchToTosa/TorchToTosa.h"
#include "torch-mlir/Dialect/Torch/Transforms/Passes.h"
#ifdef TORCH_MLIR_ENABLE_STABLEHLO
#include "torch-mlir/Conversion/TorchToStablehlo/TorchToStablehlo.h"
#endif
#include "torch-mlir/Dialect/Torch/Transforms/Passes.h"
using namespace mlir;
using namespace mlir::torch;
using namespace mlir::tosa;
//===----------------------------------------------------------------------===//
// Pass registration
//===----------------------------------------------------------------------===//
namespace reg {
#define GEN_PASS_REGISTRATION
#include "torch-mlir/Dialect/TorchConversion/Transforms/Passes.h.inc"
} // end namespace reg
void mlir::torch::registerTorchConversionPasses() {
reg::registerPasses();
mlir::PassPipelineRegistration<>(
"torch-backend-to-linalg-on-tensors-backend-pipeline",
"Pipeline lowering torch backend contract to linalg-on-tensors backend "
"contract.",
TorchConversion::createTorchBackendToLinalgOnTensorsBackendPipeline);
mlir::PassPipelineRegistration<>(
"torch-backend-to-tosa-backend-pipeline",
"Pipeline lowering torch backend contract to TOSA backend "
"contract.",
TorchConversion::createTorchBackendToTosaBackendPipeline);
#ifdef TORCH_MLIR_ENABLE_STABLEHLO
mlir::PassPipelineRegistration<
TorchConversion::StablehloBackendPipelineOptions>(
"torch-backend-to-stablehlo-backend-pipeline",
"Pipeline lowering torch backend contract to StableHLO backend "
"contract.",
TorchConversion::createTorchBackendToStablehloBackendPipeline);
#endif
}
void TorchConversion::createTorchBackendToLinalgOnTensorsBackendPipeline(
OpPassManager &pm) {
// We want to fuse quantized operations together before lowering to linalg.
pm.addNestedPass<func::FuncOp>(Torch::createFuseQuantizedOpsPass());
// Lower to linalg + guards which is the input to codegen backends.
// We do this first as it tends to involve pattern-matching against constants,
// (e.g. dimensions which must be constant in a ranked programming model)
// and those constants get somewhat obscured by TorchToArith.
pm.addNestedPass<func::FuncOp>(createConvertTorchToTMTensorPass());
pm.addNestedPass<func::FuncOp>(createConvertTorchToLinalgPass());
pm.addNestedPass<func::FuncOp>(createConvertTorchToSCFPass());
pm.addNestedPass<func::FuncOp>(createConvertTorchToArithPass());
pm.addPass(createConvertTorchConversionToMLProgramPass());
pm.addNestedPass<func::FuncOp>(memref::createExpandOpsPass());
// Clean up any non-canonical code introduced above..
pm.addNestedPass<func::FuncOp>(createCanonicalizerPass());
// Resolve `dim` ops on tensors (which currently live in the `memref`
// dialect for some reason -- we don't have memrefs at this level).
pm.addNestedPass<func::FuncOp>(
memref::createResolveShapedTypeResultDimsPass());
// The resolution of `dim` ops tends to create identical ops. CSE them.
pm.addNestedPass<func::FuncOp>(createCSEPass());
// Finish the type conversion from `torch` types to the types of the
// linalg-on-tensors backend contract.
pm.addPass(TorchConversion::createFuncBackendTypeConversionPass());
pm.addNestedPass<func::FuncOp>(createCanonicalizerPass());
pm.addNestedPass<func::FuncOp>(
TorchConversion::createFinalizingBackendTypeConversionPass());
// Verify that we have lowered to the form that linalg on tensors backends
// expect. This fails compilation (signalPassFailure) if the IR is not in the
// correct form.
pm.addPass(TorchConversion::createVerifyLinalgOnTensorsBackendContractPass());
}
void TorchConversion::createTorchBackendToTosaBackendPipeline(
OpPassManager &pm) {
pm.addNestedPass<func::FuncOp>(createConvertTorchToTosaPass());
// Perform rank broadcasting so TosaToLinalg pass works
pm.addNestedPass<func::FuncOp>(createTosaMakeBroadcastablePass());
// Clean up any non-canonical code introduced above..
pm.addNestedPass<func::FuncOp>(createCanonicalizerPass());
// The resolution of `dim` ops tends to create identical ops. CSE them.
pm.addNestedPass<func::FuncOp>(createCSEPass());
// Finish the type conversion from `torch` types to the types of the
// TOSA backend contract.
pm.addPass(TorchConversion::createFuncBackendTypeConversionPass());
pm.addNestedPass<func::FuncOp>(createCanonicalizerPass());
pm.addNestedPass<func::FuncOp>(
TorchConversion::createFinalizingBackendTypeConversionPass());
// Verify that we have lowered to the form that TOSA backends
// expect. This fails compilation (signalPassFailure) if the IR is not in the
// correct form.
pm.addPass(TorchConversion::createVerifyTosaBackendContractPass());
}
#ifdef TORCH_MLIR_ENABLE_STABLEHLO
void TorchConversion::createTorchBackendToStablehloBackendPipeline(
OpPassManager &pm,
const TorchConversion::StablehloBackendPipelineOptions &options) {
// Generate Stablehlo ops.
pm.addNestedPass<func::FuncOp>(createConvertTorchToStablehloPass(
options.enableStaticShape, options.enableI32Index));
// Lowering remained ops to Arith
pm.addNestedPass<func::FuncOp>(createConvertTorchToArithPass());
// Clean up any non-canonical code introduced above..
pm.addNestedPass<func::FuncOp>(createCanonicalizerPass());
// The resolution of `dim` ops tends to create identical ops. CSE them.
pm.addNestedPass<func::FuncOp>(createCSEPass());
// Finish the type conversion from `torch` types to the types of the
// StableHLO backend contract.
pm.addPass(TorchConversion::createFuncBackendTypeConversionPass());
pm.addNestedPass<func::FuncOp>(createCanonicalizerPass());
pm.addNestedPass<func::FuncOp>(
TorchConversion::createFinalizingBackendTypeConversionPass());
// Verify that we have lowered to Stablehlo and Chlo ops.
pm.addPass(TorchConversion::createVerifyStablehloBackendContractPass());
}
#endif