torch-mlir/e2e_testing/torchscript/quantized_models.py

59 lines
1.6 KiB
Python

# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
import torch
from torch import nn
from npcomp_torchscript.e2e_test.framework import TestUtils
from npcomp_torchscript.e2e_test.registry import register_test_case
from npcomp_torchscript.annotations import annotate_args, export
# ==============================================================================
class QuantizedMLP(nn.Module):
def __init__(self):
super().__init__()
torch.random.manual_seed(0)
self.layers = nn.Sequential(
nn.Linear(16, 8),
nn.Tanh(),
nn.Linear(8, 4),
)
self.quantize = torch.quantization.QuantStub()
self.dequantize = torch.quantization.DeQuantStub()
@export
@export
@annotate_args([
None,
([1, 16], torch.float32, True),
])
def forward(self, x):
x = self.quantize(x)
x = self.layers(x)
x = self.dequantize(x)
return x
def get_mlp_input():
return 2 * torch.rand((1, 16)) - 1
def get_quantized_mlp():
model = QuantizedMLP()
model.eval()
model.qconfig = torch.quantization.default_qconfig
torch.quantization.prepare(model, inplace=True)
torch.manual_seed(0)
for _ in range(32):
model(get_mlp_input())
torch.quantization.convert(model, inplace=True)
return model
@register_test_case(module_factory=get_quantized_mlp)
def QuantizedMLP_basic(module, tu: TestUtils):
module.forward(get_mlp_input())