mirror of https://github.com/llvm/torch-mlir
142 lines
5.5 KiB
C++
142 lines
5.5 KiB
C++
//===- ReduceOpVariants.cpp --------------------------------------*- C++-*-===//
|
|
//
|
|
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PassDetail.h"
|
|
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "npcomp/Dialect/Torch/IR/TorchOps.h"
|
|
#include "npcomp/Dialect/Torch/Transforms/Passes.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::NPCOMP;
|
|
using namespace mlir::NPCOMP::Torch;
|
|
|
|
namespace {
|
|
// Convert value semantic ops operating on mutable arrays to instead operate on
|
|
// immutable tensors.
|
|
class ConvertToImmutableTensors : public RewritePattern {
|
|
public:
|
|
ConvertToImmutableTensors(MLIRContext *context)
|
|
: RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/1, context) {}
|
|
LogicalResult matchAndRewrite(Operation *op,
|
|
PatternRewriter &rewriter) const override {
|
|
if (!op->hasTrait<Torch::OpTrait::HasValueSemantics>())
|
|
return rewriter.notifyMatchFailure(op, "does not have value semantics");
|
|
|
|
rewriter.updateRootInPlace(op, [&]() {
|
|
// Convert all operands.
|
|
SmallVector<Value> newOperands;
|
|
for (OpOperand &opOperand : op->getOpOperands()) {
|
|
auto tensorType =
|
|
opOperand.get().getType().dyn_cast<NonValueTensorType>();
|
|
if (!tensorType)
|
|
continue;
|
|
opOperand.set(rewriter.create<CopyTensorOp>(
|
|
op->getLoc(), tensorType.getWithValueSemantics(), opOperand.get()));
|
|
}
|
|
// Convert all results.
|
|
rewriter.setInsertionPointAfter(op);
|
|
for (Value result : op->getResults()) {
|
|
auto tensorType = result.getType().dyn_cast<NonValueTensorType>();
|
|
if (!tensorType)
|
|
continue;
|
|
auto createArray = rewriter.create<CopyTensorOp>(
|
|
op->getLoc(), result.getType(), result);
|
|
result.replaceAllUsesExcept(createArray, createArray);
|
|
result.setType(tensorType.getWithValueSemantics());
|
|
}
|
|
});
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
// Reduce the "trailing underscore inplace variant" to the value semantic
|
|
// variant + an overwrite of the original "self" argument.
|
|
class ReduceTrailingUnderscoreInplaceVariant : public RewritePattern {
|
|
public:
|
|
ReduceTrailingUnderscoreInplaceVariant(MLIRContext *context)
|
|
: RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/1, context) {}
|
|
LogicalResult matchAndRewrite(Operation *op,
|
|
PatternRewriter &rewriter) const override {
|
|
if (!op->hasTrait<Torch::OpTrait::IsTrailingUnderscoreInplaceVariant>())
|
|
return rewriter.notifyMatchFailure(op, "is not trailing_ variant");
|
|
|
|
SmallVector<StringRef> fragments;
|
|
llvm::SplitString(op->getName().getStringRef(), fragments, ".");
|
|
assert(fragments.size() >= 3 && fragments[2].endswith("_") &&
|
|
"IsTrailingUnderscoreInplaceVariant incorrectly applied");
|
|
fragments[2] = fragments[2].drop_back();
|
|
std::string noUnderscoreName = llvm::join(fragments, ".");
|
|
|
|
OperationState state(op->getLoc(), noUnderscoreName);
|
|
state.addTypes(op->getResultTypes());
|
|
state.addOperands(op->getOperands());
|
|
state.addAttributes(op->getAttrDictionary().getValue());
|
|
// Note: No successors or regions. Torch JIT operators don't have any.
|
|
assert(op->getNumRegions() == 0 && op->getNumSuccessors() == 0 &&
|
|
"Torch JIT operators shouldn't have regions or successors");
|
|
|
|
Operation *newOp = rewriter.createOperation(state);
|
|
auto tensor = rewriter.create<CopyTensorOp>(op->getLoc(),
|
|
newOp->getResult(0)
|
|
.getType()
|
|
.cast<NonValueTensorType>()
|
|
.getWithValueSemantics(),
|
|
newOp->getResult(0));
|
|
rewriter.create<OverwriteTensorOp>(op->getLoc(), tensor, op->getOperand(0));
|
|
rewriter.replaceOp(op, op->getOperand(0));
|
|
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class ReduceOpVariantsPass : public ReduceOpVariantsBase<ReduceOpVariantsPass> {
|
|
void runOnOperation() override {
|
|
MLIRContext *context = &getContext();
|
|
RewritePatternSet patterns(context);
|
|
patterns.add<ConvertToImmutableTensors>(context);
|
|
patterns.add<ReduceTrailingUnderscoreInplaceVariant>(context);
|
|
|
|
ConversionTarget target(*context);
|
|
target.markUnknownOpDynamicallyLegal([](Operation *op) {
|
|
if (op->hasTrait<Torch::OpTrait::HasValueSemantics>()) {
|
|
auto hasValueSemantics = [](Type t) {
|
|
// TODO: Make this an allowlist based on a closed torch dialect
|
|
// type system.
|
|
if (auto tensorType = t.dyn_cast<NonValueTensorType>()) {
|
|
return false;
|
|
}
|
|
return true;
|
|
};
|
|
return llvm::all_of(op->getOperandTypes(), hasValueSemantics) &&
|
|
llvm::all_of(op->getResultTypes(), hasValueSemantics);
|
|
}
|
|
if (op->hasTrait<Torch::OpTrait::IsTrailingUnderscoreInplaceVariant>()) {
|
|
return false;
|
|
}
|
|
return true;
|
|
});
|
|
|
|
if (failed(applyPartialConversion(getOperation(), target,
|
|
std::move(patterns)))) {
|
|
return signalPassFailure();
|
|
}
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
std::unique_ptr<OperationPass<FuncOp>>
|
|
mlir::NPCOMP::Torch::createReduceOpVariantsPass() {
|
|
return std::make_unique<ReduceOpVariantsPass>();
|
|
}
|