mirror of https://github.com/llvm/torch-mlir
87 lines
3.2 KiB
C++
87 lines
3.2 KiB
C++
//===- VerifyInvariantsBeforeBackendLowering.cpp -----------------*- C++-*-===//
|
|
//
|
|
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
// Also available under a BSD-style license. See LICENSE.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PassDetail.h"
|
|
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/BuiltinOps.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
|
|
#include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionOps.h"
|
|
#include "torch-mlir/Dialect/TorchConversion/Transforms/Passes.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::torch;
|
|
using namespace mlir::torch::TorchConversion;
|
|
using namespace mlir::torch;
|
|
|
|
static LogicalResult checkValueInvariants(Operation *errorReportOp, Value v) {
|
|
// TODO: Make this an allowlist instead of a denylist.
|
|
// TODO: Make this stricter.
|
|
auto type = v.getType();
|
|
if (auto valueTensorType = type.dyn_cast<Torch::ValueTensorType>()) {
|
|
if (!valueTensorType.hasDtype() || !valueTensorType.hasSizes())
|
|
return errorReportOp->emitError()
|
|
.append("unsupported by backend lowering: tensor with unknown rank "
|
|
"or dtype")
|
|
.attachNote()
|
|
.append("this is likely due to a missing shape transfer function in "
|
|
"shape_lib_gen.py or missing case in RefineTypes");
|
|
}
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
|
|
class VerifyInvariantsBeforeBackendLoweringPass
|
|
: public VerifyInvariantsBeforeBackendLoweringBase<
|
|
VerifyInvariantsBeforeBackendLoweringPass> {
|
|
void runOnOperation() override {
|
|
if (getOperation()
|
|
.walk([](Torch::GlobalSlotModuleInitializerOp op) {
|
|
op.emitError()
|
|
<< "unsupported by backend lowering: module initializers";
|
|
return WalkResult::interrupt();
|
|
})
|
|
.wasInterrupted())
|
|
return signalPassFailure();
|
|
auto walkResult = getOperation().walk([&](Block *block) {
|
|
// Check invariants on all the Value's in the program.
|
|
// That is, check all BlockArgument's and OpResult's.
|
|
for (BlockArgument arg : block->getArguments())
|
|
if (failed(checkValueInvariants(block->getParentOp(), arg)))
|
|
return WalkResult::interrupt();
|
|
|
|
for (Operation &op : *block) {
|
|
if (isa<Torch::OperatorOp>(op)) {
|
|
op.emitError()
|
|
.append("unsupported by backend lowering: `torch.operator` op")
|
|
.attachNote()
|
|
.append("this is likely due to a missing op that needs to be "
|
|
"generated by torch_ods_gen.py");
|
|
return WalkResult::interrupt();
|
|
}
|
|
|
|
for (OpResult result : op.getResults())
|
|
if (failed(checkValueInvariants(&op, result)))
|
|
return WalkResult::interrupt();
|
|
}
|
|
return WalkResult::advance();
|
|
});
|
|
if (walkResult.wasInterrupted())
|
|
return signalPassFailure();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
std::unique_ptr<OperationPass<ModuleOp>> mlir::torch::TorchConversion::
|
|
createVerifyInvariantsBeforeBackendLoweringPass() {
|
|
return std::make_unique<VerifyInvariantsBeforeBackendLoweringPass>();
|
|
}
|