mirror of https://github.com/llvm/torch-mlir
656 lines
24 KiB
C++
656 lines
24 KiB
C++
//===- GlobalizeObjectGraph.cpp ----------------------------------*- C++-*-===//
|
|
//
|
|
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PassDetail.h"
|
|
|
|
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
|
#include "mlir/IR/BlockAndValueMapping.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/BuiltinOps.h"
|
|
#include "npcomp/Dialect/Basicpy/IR/BasicpyDialect.h"
|
|
#include "npcomp/Dialect/Torch/IR/TorchDialect.h"
|
|
#include "npcomp/Dialect/Torch/IR/TorchOps.h"
|
|
#include "npcomp/Dialect/Torch/Transforms/Passes.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::NPCOMP;
|
|
using namespace mlir::NPCOMP::Torch;
|
|
|
|
static FailureOr<NnModuleOp> findRootNnModule(ModuleOp module) {
|
|
NnModuleOp rootNnModule;
|
|
for (NnModuleOp op : module.getOps<NnModuleOp>()) {
|
|
if (!op.use_empty())
|
|
continue;
|
|
if (rootNnModule) {
|
|
op.emitError()
|
|
.append("found more than one root module (module that is not a "
|
|
"child of any other module)")
|
|
.attachNote(rootNnModule.getLoc())
|
|
.append("see other root module here");
|
|
return failure();
|
|
}
|
|
rootNnModule = op;
|
|
}
|
|
if (!rootNnModule) {
|
|
module.emitError() << "module does not contain a root torch.nn_module";
|
|
return failure();
|
|
}
|
|
return rootNnModule;
|
|
}
|
|
|
|
static bool hasMeaningfulObjectIdentity(Type type) {
|
|
return !type.isa<IntegerType, FloatType, Basicpy::BoolType,
|
|
Basicpy::BytesType, Basicpy::NoneType, TensorType>();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Object graph recursive traversal.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
struct LinkageInfo {
|
|
std::string linkageName;
|
|
bool isPrivate;
|
|
};
|
|
} // namespace
|
|
namespace {
|
|
/// Calculates the linkage names of all the potentially exported objects in the
|
|
/// module and also creates GlobalSlotOp's for each SlotOp and tracks their
|
|
/// associations.
|
|
///
|
|
/// The mechanics of both of these tasks involve the same object graph
|
|
/// traversal, so it's useful to roll them together.
|
|
class ObjectGraphInfo {
|
|
public:
|
|
ObjectGraphInfo(ModuleOp module)
|
|
: globalSlotBuilder(module.getBodyRegion()), symbolTable(module) {}
|
|
|
|
LogicalResult initialize(NnModuleOp root) {
|
|
return recursivelyTraverse(root);
|
|
}
|
|
|
|
LinkageInfo getSlotLinkageInfo(SlotOp op) {
|
|
auto it = slotLinkageInfo.find(op);
|
|
assert(it != slotLinkageInfo.end());
|
|
return it->second;
|
|
}
|
|
Optional<LinkageInfo> getFuncLinkageInfo(NnModuleOp instance,
|
|
FuncOp methodFunc) {
|
|
auto it = funcLinkageInfo.find({instance, methodFunc});
|
|
if (it == funcLinkageInfo.end())
|
|
return None;
|
|
return it->second;
|
|
}
|
|
|
|
GlobalSlotOp getGlobalSlotFor(SlotOp slot) {
|
|
auto it = slotToGlobalSlot.find(slot);
|
|
assert(it != slotToGlobalSlot.end() && "didn't create global slot");
|
|
return it->second;
|
|
}
|
|
|
|
private:
|
|
LogicalResult recursivelyTraverse(NnModuleOp nnModule) {
|
|
std::string pathToClassFromRoot = llvm::join(nameStack, ".");
|
|
if (!seenNnModules.insert({nnModule, pathToClassFromRoot}).second) {
|
|
return nnModule.emitError()
|
|
<< "reachable by multiple paths from root object: '<root>."
|
|
<< seenNnModules[nnModule] << "' and '<root>."
|
|
<< pathToClassFromRoot << "'";
|
|
}
|
|
|
|
auto classType = symbolTable.lookup<ClassTypeOp>(
|
|
nnModule.getType().cast<NnModuleType>().getClassName());
|
|
for (auto t :
|
|
llvm::zip(nnModule.getOps<SlotOp>(), classType.getOps<AttrOp>())) {
|
|
auto slot = std::get<0>(t);
|
|
auto attr = std::get<1>(t);
|
|
nameStack.push_back(attr.name().str());
|
|
if (attr.type().isa<NnModuleType>()) {
|
|
if (failed(
|
|
recursivelyTraverse(slot.value().getDefiningOp<NnModuleOp>())))
|
|
return failure();
|
|
} else {
|
|
std::string linkageName = llvm::join(nameStack, ".");
|
|
auto globalSlot = globalSlotBuilder.create<GlobalSlotOp>(
|
|
slot.getLoc(), linkageName,
|
|
/*sym_visibility=*/nullptr, attr.type());
|
|
if (attr.isPrivate())
|
|
globalSlot.setVisibility(SymbolTable::Visibility::Private);
|
|
assert(slotToGlobalSlot.find(slot) == slotToGlobalSlot.end());
|
|
slotToGlobalSlot[slot] = globalSlot;
|
|
slotLinkageInfo[slot] = LinkageInfo{linkageName, attr.isPrivate()};
|
|
if (failed(populateGlobalSlotInitializer(globalSlot, slot.value())))
|
|
return failure();
|
|
}
|
|
nameStack.pop_back();
|
|
}
|
|
for (auto method : classType.getOps<MethodOp>()) {
|
|
nameStack.push_back(method.name().str());
|
|
funcLinkageInfo[{nnModule,
|
|
symbolTable.lookup<FuncOp>(method.function())}] =
|
|
LinkageInfo{llvm::join(nameStack, "."), method.isPrivate()};
|
|
nameStack.pop_back();
|
|
}
|
|
return success();
|
|
}
|
|
LogicalResult populateGlobalSlotInitializer(GlobalSlotOp globalSlot,
|
|
Value initialValue) {
|
|
OpBuilder builder(globalSlot.getContext());
|
|
builder.createBlock(&globalSlot.getRegion());
|
|
|
|
SmallPtrSet<Operation *, 6> needToClone;
|
|
SmallVector<Operation *> worklist = {initialValue.getDefiningOp()};
|
|
while (!worklist.empty()) {
|
|
Operation *op = worklist.pop_back_val();
|
|
if (!needToClone.insert(op).second)
|
|
continue;
|
|
for (Value operand : op->getOperands()) {
|
|
if (auto def = operand.getDefiningOp())
|
|
worklist.push_back(def);
|
|
}
|
|
}
|
|
worklist.assign(needToClone.begin(), needToClone.end());
|
|
llvm::sort(worklist, [](Operation *lhs, Operation *rhs) {
|
|
return lhs->isBeforeInBlock(rhs);
|
|
});
|
|
BlockAndValueMapping mapping;
|
|
for (Operation *op : worklist) {
|
|
builder.clone(*op, mapping);
|
|
for (Value result : op->getResults()) {
|
|
if (!hasMeaningfulObjectIdentity(result.getType()))
|
|
continue;
|
|
if (!objectsWithIdentityAlreadyCopiedIntoInitializers.insert(result)
|
|
.second) {
|
|
return op->emitError() << "potentially-aliased value used to "
|
|
"initialize multiple slots";
|
|
}
|
|
}
|
|
}
|
|
builder.create<GlobalSlotInitOp>(globalSlot->getLoc(),
|
|
mapping.lookup(initialValue));
|
|
return success();
|
|
}
|
|
// Builder for creating GlobalSlotOp's in the module.
|
|
OpBuilder globalSlotBuilder;
|
|
// Symbol table for the module.
|
|
SymbolTable symbolTable;
|
|
// The set of NnModuleOp's that have already been processed.
|
|
// Used for diagnostics.
|
|
// The map value is the original path from the root that we found it at.
|
|
DenseMap<NnModuleOp, std::string> seenNnModules;
|
|
|
|
// The stack of attribute names we have traversed during our recursive
|
|
// traversal of the class/object hierarchy.
|
|
//
|
|
// Linkage names are calculated based on the set of attribute names traversed
|
|
// from the root class/module in the program.
|
|
std::vector<std::string> nameStack;
|
|
// Linkage info for each SlotOp in the program.
|
|
DenseMap<SlotOp, LinkageInfo> slotLinkageInfo;
|
|
// Linkage info for each method in the program. Since we are going to be
|
|
// monomorphizing all the functions, we also need to key this off of the
|
|
// instance (NnModuleOp) that the func is monomorphized for.
|
|
DenseMap<std::pair<NnModuleOp, FuncOp>, LinkageInfo> funcLinkageInfo;
|
|
// The corresponding GlobalSlotOp for each SlotOp in the program.
|
|
DenseMap<SlotOp, GlobalSlotOp> slotToGlobalSlot;
|
|
// A set of values that we have copied into torch.global_slot initializers,
|
|
// which cannot be used in multiple initializers because their object
|
|
// identity is important.
|
|
DenseSet<Value> objectsWithIdentityAlreadyCopiedIntoInitializers;
|
|
};
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Monomorphization.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
// When used in an Monomorphization, indicates that the arg at `argIndex` will
|
|
// correspond to instance `instance.
|
|
struct ArgInstance {
|
|
int argIndex;
|
|
Value instance; // Result of an NnModuleOp.
|
|
};
|
|
static llvm::hash_code hash_value(const ArgInstance &argInstance) {
|
|
return llvm::hash_combine(argInstance.argIndex, argInstance.instance);
|
|
}
|
|
static bool operator==(const ArgInstance &lhs, const ArgInstance &rhs) {
|
|
return std::make_tuple(lhs.argIndex, lhs.instance) ==
|
|
std::make_tuple(rhs.argIndex, rhs.instance);
|
|
}
|
|
} // namespace
|
|
|
|
namespace {
|
|
// Record indicating that a particular function must be monomorphized for the
|
|
// given ArgInstance's, which involves deleting those arguments and specializing
|
|
// all their uses to operate on GlobalSlotOp's that we have created for the
|
|
// SlotOp's of the NnModuleOp instances.
|
|
//
|
|
// NOTE: Unlike the more traditional use of monomorphization to mean a single
|
|
// *type* is being specialized for, here we are specializing for a specific
|
|
// *instance*. This still fits the definition of monomorphization though, albeit
|
|
// with each instance being considered to have a maximally refined type which is
|
|
// a set with a single element (just this instance). This does not correspond to
|
|
// any notion of "type" that we have in the IR, but still fits the formal
|
|
// definition.
|
|
struct Monomorphization {
|
|
FuncOp func;
|
|
std::vector<ArgInstance> argInstances;
|
|
};
|
|
} // namespace
|
|
|
|
template <> struct llvm::DenseMapInfo<Monomorphization> {
|
|
static Monomorphization getEmptyKey() {
|
|
return Monomorphization{nullptr, {ArgInstance{-1, nullptr}}};
|
|
}
|
|
static Monomorphization getTombstoneKey() {
|
|
return Monomorphization{nullptr, {ArgInstance{-2, nullptr}}};
|
|
}
|
|
static unsigned getHashValue(Monomorphization val) {
|
|
return llvm::hash_combine(val.func.getAsOpaquePointer(),
|
|
llvm::hash_combine_range(val.argInstances.begin(),
|
|
val.argInstances.end()));
|
|
}
|
|
static bool isEqual(Monomorphization lhs, Monomorphization rhs) {
|
|
return lhs.func == rhs.func &&
|
|
std::equal(lhs.argInstances.begin(), lhs.argInstances.end(),
|
|
rhs.argInstances.begin(), rhs.argInstances.end());
|
|
}
|
|
};
|
|
|
|
// Populate `mapping` such that values of NnModuleType in the function are
|
|
// mapped to appropriate global objects of NnModuleType.
|
|
//
|
|
// This generalizes to a full abstract interpretation of the function, but
|
|
// currently only analyzes a subset of ops.
|
|
static LogicalResult analyzeInstances(FuncOp func,
|
|
ArrayRef<ArgInstance> argInstances,
|
|
BlockAndValueMapping &mapping) {
|
|
for (auto &argInstance : argInstances)
|
|
mapping.map(func.getArgument(argInstance.argIndex), argInstance.instance);
|
|
auto walkResult = func.walk([&](PrimGetAttrOp op) {
|
|
if (!op.getType().isa<NnModuleType>())
|
|
return WalkResult::advance();
|
|
auto instance = mapping.lookupOrNull(op.receiver());
|
|
assert(instance && "verifyFuncConformsToSubset should ensure this");
|
|
for (auto slot : instance.getDefiningOp<NnModuleOp>().getOps<SlotOp>()) {
|
|
if (slot.name() == op.name()) {
|
|
mapping.map(op, slot.value());
|
|
break;
|
|
}
|
|
}
|
|
return WalkResult::advance();
|
|
});
|
|
return success(!walkResult.wasInterrupted());
|
|
}
|
|
|
|
static FailureOr<Monomorphization>
|
|
createMonomorphizationForCall(CallOp op, BlockAndValueMapping &mapping,
|
|
SymbolTable &symbolTable) {
|
|
auto func = symbolTable.lookup<FuncOp>(op.callee());
|
|
Monomorphization monomorphization;
|
|
monomorphization.func = func;
|
|
for (auto operand : llvm::enumerate(op->getOperands())) {
|
|
if (!operand.value().getType().isa<NnModuleType>())
|
|
continue;
|
|
Value instance = mapping.lookupOrNull(operand.value());
|
|
assert(instance && "verifyFuncConformsToSubset should ensure this");
|
|
monomorphization.argInstances.push_back(
|
|
ArgInstance{static_cast<int>(operand.index()), instance});
|
|
}
|
|
return monomorphization;
|
|
}
|
|
|
|
namespace {
|
|
class MonomorphizationTracker {
|
|
public:
|
|
MonomorphizationTracker(ModuleOp module)
|
|
: module(module), symbolTable(module) {}
|
|
LogicalResult
|
|
initialize(DenseMap<ClassTypeOp, std::vector<NnModuleOp>> &instances) {
|
|
for (auto func : module.getOps<FuncOp>()) {
|
|
Monomorphization monomorphization;
|
|
monomorphization.func = func;
|
|
bool canTriviallyMonomorphize = true;
|
|
for (auto arg : llvm::enumerate(func.getArguments())) {
|
|
auto type = arg.value().getType().dyn_cast<NnModuleType>();
|
|
if (!type)
|
|
continue;
|
|
auto classType = symbolTable.lookup<ClassTypeOp>(type.getClassName());
|
|
auto &classTypeInstances = instances[classType];
|
|
if (classTypeInstances.size() != 1) {
|
|
canTriviallyMonomorphize = false;
|
|
break;
|
|
}
|
|
monomorphization.argInstances.push_back(
|
|
{static_cast<int>(arg.index()), classTypeInstances[0]});
|
|
}
|
|
|
|
if (canTriviallyMonomorphize) {
|
|
dirtyMonomorphizations.push_back(monomorphization);
|
|
monomorphizations.insert(monomorphization);
|
|
}
|
|
}
|
|
while (!dirtyMonomorphizations.empty()) {
|
|
Monomorphization dirty = dirtyMonomorphizations.pop_back_val();
|
|
if (failed(generateNewMonomorphizations(dirty)))
|
|
return failure();
|
|
}
|
|
return success();
|
|
}
|
|
|
|
llvm::SetVector<Monomorphization> &getMonomorphizations() {
|
|
return monomorphizations;
|
|
}
|
|
|
|
private:
|
|
LogicalResult generateNewMonomorphizations(const Monomorphization &m) {
|
|
auto func = m.func;
|
|
BlockAndValueMapping mapping;
|
|
if (failed(analyzeInstances(func, m.argInstances, mapping)))
|
|
return failure();
|
|
auto walkResult = func.walk([&](CallOp op) {
|
|
FailureOr<Monomorphization> maybeMonomorphization =
|
|
createMonomorphizationForCall(op, mapping, symbolTable);
|
|
if (failed(maybeMonomorphization))
|
|
return WalkResult::interrupt();
|
|
if (monomorphizations.insert(*maybeMonomorphization))
|
|
dirtyMonomorphizations.push_back(*maybeMonomorphization);
|
|
return WalkResult::advance();
|
|
});
|
|
return success(!walkResult.wasInterrupted());
|
|
}
|
|
|
|
ModuleOp module;
|
|
SymbolTable symbolTable;
|
|
SmallVector<Monomorphization> dirtyMonomorphizations;
|
|
llvm::SetVector<Monomorphization> monomorphizations;
|
|
};
|
|
} // namespace
|
|
|
|
// Verify that a value conforms to the subset of allowed uses for
|
|
// !torch.nn.Module<"..."> types.
|
|
static LogicalResult verifyNnModuleValueUses(Value value) {
|
|
// Trivially succeed for non-module types.
|
|
if (!value.getType().isa<NnModuleType>())
|
|
return success();
|
|
for (Operation *op : value.getUsers()) {
|
|
if (isa<CallOp, PrimGetAttrOp>(op))
|
|
continue;
|
|
// Only allow `value` as the receiver.
|
|
if (isa<PrimSetAttrOp>(op) && cast<PrimSetAttrOp>(op).value() != value)
|
|
continue;
|
|
// TODO: Improve this based on real user use cases.
|
|
// This is a diagnostic that users will hit if they do not conform to
|
|
// the supported subset of TorchScript.
|
|
return op->emitError() << "unsupported use of a torch.nn.Module. Expected "
|
|
"only method calls or attribute get/set";
|
|
}
|
|
return success();
|
|
}
|
|
|
|
// Verify that `func` conforms to the subset of allowable method bodies
|
|
// that we can convert.
|
|
static LogicalResult verifyFuncConformsToSubset(FuncOp func) {
|
|
// TODO: Investingate why WalkResult::interrupt() doesn't propagate properly.
|
|
LogicalResult ret = success();
|
|
func.walk([&](Block *block) {
|
|
for (Value arg : block->getArguments()) {
|
|
if (failed(verifyNnModuleValueUses(arg))) {
|
|
ret = failure();
|
|
return WalkResult::interrupt();
|
|
}
|
|
}
|
|
for (Operation &op : *block) {
|
|
for (Value result : op.getResults()) {
|
|
if (failed(verifyNnModuleValueUses(result))) {
|
|
ret = failure();
|
|
return WalkResult::interrupt();
|
|
}
|
|
}
|
|
}
|
|
return WalkResult::advance();
|
|
});
|
|
return ret;
|
|
}
|
|
|
|
static LogicalResult
|
|
verifyPublicMonomorphizations(ModuleOp module, SymbolTable &symbolTable,
|
|
MonomorphizationTracker &tracker) {
|
|
DenseMap<FuncOp, int> numMonomorphizations;
|
|
for (auto &monomorphization : tracker.getMonomorphizations()) {
|
|
numMonomorphizations[monomorphization.func] += 1;
|
|
}
|
|
bool sawError = false;
|
|
for (auto classType : module.getOps<ClassTypeOp>()) {
|
|
for (auto method : classType.getOps<MethodOp>()) {
|
|
if (!method.isPrivate()) {
|
|
if (numMonomorphizations[symbolTable.lookup<FuncOp>(
|
|
method.function())] > 1) {
|
|
method.emitError()
|
|
<< "public function with multiple monomorphizations";
|
|
sawError = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return success(!sawError);
|
|
}
|
|
|
|
// Rewrite `func`, given that all values of `NnModuleType` have been mapped in
|
|
// `mapping` to corresponding global instances.
|
|
static LogicalResult
|
|
rewriteMonomorphizedFuncClone(FuncOp func, BlockAndValueMapping mapping,
|
|
SymbolTable &symbolTable,
|
|
DenseMap<Monomorphization, FuncOp> &newFuncs,
|
|
ObjectGraphInfo &objectGraphInfo) {
|
|
|
|
SmallVector<Operation *> toErase;
|
|
auto handlePrimSetAttr = [&](PrimSetAttrOp op) {
|
|
auto instance = mapping.lookup(op.receiver()).getDefiningOp<NnModuleOp>();
|
|
SlotOp affectedSlot;
|
|
for (auto slot : instance.getOps<SlotOp>()) {
|
|
if (slot.name() == op.name())
|
|
affectedSlot = slot;
|
|
}
|
|
OpBuilder(op).create<GlobalSlotSetOp>(
|
|
op.getLoc(), objectGraphInfo.getGlobalSlotFor(affectedSlot).sym_name(),
|
|
op.value());
|
|
toErase.push_back(op);
|
|
return WalkResult::advance();
|
|
};
|
|
auto handlePrimGetAttr = [&](PrimGetAttrOp op) {
|
|
if (!op.getType().isa<NnModuleType>()) {
|
|
auto instance = mapping.lookup(op.receiver()).getDefiningOp<NnModuleOp>();
|
|
SlotOp affectedSlot;
|
|
for (auto slot : instance.getOps<SlotOp>()) {
|
|
if (slot.name() == op.name())
|
|
affectedSlot = slot;
|
|
}
|
|
auto newOp = OpBuilder(op).create<GlobalSlotGetOp>(
|
|
op.getLoc(), op.getType(),
|
|
objectGraphInfo.getGlobalSlotFor(affectedSlot).sym_name());
|
|
op.replaceAllUsesWith(&*newOp);
|
|
}
|
|
toErase.push_back(op);
|
|
return WalkResult::advance();
|
|
};
|
|
auto handleCall = [&](CallOp op) {
|
|
FailureOr<Monomorphization> maybeMonomorphization =
|
|
createMonomorphizationForCall(op, mapping, symbolTable);
|
|
if (failed(maybeMonomorphization))
|
|
return WalkResult::interrupt();
|
|
Monomorphization monomorphization = std::move(*maybeMonomorphization);
|
|
auto newArguments = llvm::to_vector<6>(
|
|
llvm::make_filter_range(op->getOperands(), [](Value v) {
|
|
return !v.getType().isa<NnModuleType>();
|
|
}));
|
|
assert(newFuncs.find(monomorphization) != newFuncs.end());
|
|
auto newOp = OpBuilder(op).create<CallOp>(
|
|
op.getLoc(), newFuncs[monomorphization], newArguments);
|
|
op.replaceAllUsesWith(newOp);
|
|
toErase.push_back(op);
|
|
return WalkResult::advance();
|
|
};
|
|
auto walkResult = func.walk([&](Operation *op) {
|
|
if (auto primSetAttr = dyn_cast<PrimSetAttrOp>(op))
|
|
return handlePrimSetAttr(primSetAttr);
|
|
if (auto primGetAttr = dyn_cast<PrimGetAttrOp>(op))
|
|
return handlePrimGetAttr(primGetAttr);
|
|
if (auto call = dyn_cast<CallOp>(op))
|
|
return handleCall(call);
|
|
return WalkResult::advance();
|
|
});
|
|
for (auto op : toErase) {
|
|
op->dropAllDefinedValueUses();
|
|
op->erase();
|
|
}
|
|
SmallVector<unsigned> argsToErase;
|
|
for (auto type : llvm::enumerate(func.getArgumentTypes())) {
|
|
if (type.value().isa<NnModuleType>()) {
|
|
argsToErase.push_back(type.index());
|
|
}
|
|
}
|
|
func.eraseArguments(argsToErase);
|
|
return success(!walkResult.wasInterrupted());
|
|
}
|
|
|
|
static LogicalResult globalizeObjectGraph(ModuleOp module) {
|
|
|
|
// Step 1: Traverse object graph and collect information.
|
|
|
|
FailureOr<NnModuleOp> maybeRootNnModule = findRootNnModule(module);
|
|
if (failed(maybeRootNnModule))
|
|
return failure();
|
|
NnModuleOp rootNnModule = *maybeRootNnModule;
|
|
ObjectGraphInfo objectGraphInfo(module);
|
|
if (failed(objectGraphInfo.initialize(rootNnModule)))
|
|
return failure();
|
|
|
|
DenseMap<ClassTypeOp, std::vector<NnModuleOp>> instances;
|
|
SymbolTable symbolTable(module);
|
|
for (auto nnModule : module.getOps<NnModuleOp>()) {
|
|
auto classType = nnModule.getClassType(symbolTable);
|
|
instances[classType].push_back(nnModule);
|
|
}
|
|
|
|
// Step 2: Verify all functions are suitable to be analyzed by our later code.
|
|
// This eliminates special handling / error code later.
|
|
//
|
|
// This is important, because in principle, we can perform arbitrarily complex
|
|
// static analysis to discover how to monomorphize th eprogram, including
|
|
// tracking instances through control flow, through get/set attr, etc. We
|
|
// implement a very simple subset of cases.
|
|
for (auto func : module.getOps<FuncOp>()) {
|
|
if (failed(verifyFuncConformsToSubset(func)))
|
|
return failure();
|
|
}
|
|
|
|
// Step 3: Calculate the set of monomorphized functions that need to be
|
|
// created. For each call that passes !torch.nn.Module to a function, we need
|
|
// to create a specialized version of that function just for that instance (or
|
|
// combination of instances in the case of multiple arguments).
|
|
//
|
|
// At this stage, we only analyze which monomorphizations are needed and
|
|
// whether it is possible to monomorphize the program. The actual
|
|
// cloning/rewriting mechanics happen later.
|
|
//
|
|
// This lets us know which GlobalSlotOp we need to reference when we replace
|
|
// PrimSetAttrOp/PrimGetAttrOp.
|
|
//
|
|
// Note that in general there can be mutually recursive functions that
|
|
// re-enter themselves with a different set of instances -- the process of
|
|
// calculating these monomorphizations is a fixed-point iteration that
|
|
// discovers all needed monomorphizations. In practice this yields a
|
|
// controllable number.
|
|
MonomorphizationTracker tracker(module);
|
|
if (failed(tracker.initialize(instances)))
|
|
return failure();
|
|
|
|
if (failed(verifyPublicMonomorphizations(module, symbolTable, tracker))) {
|
|
return failure();
|
|
}
|
|
|
|
// Step 4: Clone/rewrite functions to implement the necessary
|
|
// monomorphizations.
|
|
DenseMap<Monomorphization, FuncOp> newFuncs;
|
|
int uniquifier = 0;
|
|
for (auto &monomorphization : tracker.getMonomorphizations()) {
|
|
auto newFunc = cast<FuncOp>(monomorphization.func->clone());
|
|
newFuncs[monomorphization] = newFunc;
|
|
Optional<LinkageInfo> linkageInfo = None;
|
|
// If it is potentially a method, check its linkage info.
|
|
if (monomorphization.argInstances.size() != 0 &&
|
|
monomorphization.argInstances[0].argIndex == 0) {
|
|
linkageInfo = objectGraphInfo.getFuncLinkageInfo(
|
|
monomorphization.argInstances[0].instance.getDefiningOp<NnModuleOp>(),
|
|
monomorphization.func);
|
|
}
|
|
if (linkageInfo.hasValue()) {
|
|
// It's a method.
|
|
newFunc.setVisibility(linkageInfo->isPrivate
|
|
? SymbolTable::Visibility::Private
|
|
: SymbolTable::Visibility::Public);
|
|
newFunc.setName(linkageInfo->linkageName);
|
|
} else {
|
|
// It's a free function.
|
|
// TODO: Make the name nicer (no suffix in typical case).
|
|
newFunc.setName(
|
|
(Twine(newFunc.getName()) + "$" + Twine(uniquifier++)).str());
|
|
}
|
|
module.push_back(newFunc);
|
|
}
|
|
|
|
|
|
|
|
for (auto &kv : newFuncs) {
|
|
BlockAndValueMapping mapping;
|
|
if (failed(analyzeInstances(kv.second, kv.first.argInstances, mapping)))
|
|
return failure();
|
|
if (failed(rewriteMonomorphizedFuncClone(kv.second, mapping, symbolTable,
|
|
newFuncs, objectGraphInfo)))
|
|
return failure();
|
|
}
|
|
|
|
// Step 5: Clean up object graph.
|
|
DenseSet<FuncOp> liveFuncs;
|
|
for (auto &kv : newFuncs) {
|
|
liveFuncs.insert(kv.second);
|
|
}
|
|
for (auto &op : llvm::make_early_inc_range(module.getOps())) {
|
|
if (isa<GlobalSlotOp>(&op))
|
|
continue;
|
|
if (auto func = dyn_cast<FuncOp>(op)) {
|
|
if (liveFuncs.contains(func))
|
|
continue;
|
|
}
|
|
op.dropAllDefinedValueUses();
|
|
op.dropAllReferences();
|
|
op.erase();
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
class GlobalizeObjectGraphPass
|
|
: public GlobalizeObjectGraphBase<GlobalizeObjectGraphPass> {
|
|
void runOnOperation() override {
|
|
if (failed(globalizeObjectGraph(getOperation())))
|
|
return signalPassFailure();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
std::unique_ptr<OperationPass<ModuleOp>>
|
|
mlir::NPCOMP::Torch::createGlobalizeObjectGraphPass() {
|
|
return std::make_unique<GlobalizeObjectGraphPass>();
|
|
}
|