torch-mlir/lib/Dialect/TCP/Transforms/Bufferize.cpp

271 lines
10 KiB
C++

//===- Bufferize.cpp - Bufferization for TCP dialect -------------*- C++-*-===//
//
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/SCF.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/Transforms/Bufferize.h"
#include "mlir/Transforms/DialectConversion.h"
#include "npcomp/Dialect/Refback/IR/RefbackDialect.h"
#include "npcomp/Dialect/Refback/IR/RefbackOps.h"
#include "npcomp/Dialect/TCP/IR/TCPDialect.h"
#include "npcomp/Dialect/TCP/IR/TCPOps.h"
#include "npcomp/Dialect/TCP/Transforms/Passes.h"
using namespace mlir;
using namespace mlir::NPCOMP;
// TODO: Don't just open-code all shape transfer functions here.
static SmallVector<Value, 6> bypassResultShapes(Operation &op) {
OpBuilder builder(&op);
if (auto broadcastTo = dyn_cast<tcp::BroadcastToOp>(op)) {
return {broadcastTo.shape()};
}
if (auto splatted = dyn_cast<tcp::SplattedOp>(op)) {
return {splatted.shape()};
}
if (auto pad = dyn_cast<tcp::PadOp>(op)) {
SmallVector<Value, 6> outDims;
auto inputType = pad.operand().getType().cast<RankedTensorType>();
for (int i = 0, e = inputType.getRank(); i < e; i++) {
auto dimIndex = builder.create<ConstantIndexOp>(op.getLoc(), i);
auto lowerExpansion =
builder.create<tensor::ExtractOp>(op.getLoc(), pad.lowerExpansion(),
ValueRange({dimIndex}));
auto upperExpansion =
builder.create<tensor::ExtractOp>(op.getLoc(), pad.upperExpansion(),
ValueRange({dimIndex}));
auto operandDim =
builder.create<tensor::DimOp>(op.getLoc(), pad.operand(), i);
auto totalExpansion =
builder.create<AddIOp>(op.getLoc(), lowerExpansion, upperExpansion);
auto outDim =
builder.create<AddIOp>(op.getLoc(), totalExpansion, operandDim);
outDims.push_back(outDim);
}
Value outDimTensor = builder.create<tensor::FromElementsOp>(op.getLoc(), ValueRange(outDims));
return {outDimTensor};
}
// No shape transfer function.
return {};
}
static FailureOr<SmallVector<Value, 6>>
allocateResults(Operation *op, ConversionPatternRewriter &rewriter,
Location loc,
SmallVectorImpl<Value> *resultShapesOut = nullptr) {
auto resultShapes = bypassResultShapes(*op);
SmallVector<Value, 6> results;
for (auto t : llvm::zip(op->getResults(), resultShapes)) {
auto result = std::get<0>(t);
auto resultShape = std::get<1>(t);
auto tensorType = result.getType().cast<RankedTensorType>();
auto memrefType =
MemRefType::get(tensorType.getShape(), tensorType.getElementType());
auto memref =
rewriter.create<refback::AllocMemRefOp>(loc, memrefType, resultShape);
results.push_back(memref);
}
if (resultShapesOut)
resultShapesOut->append(resultShapes.begin(), resultShapes.end());
return results;
}
namespace {
// TODO: Lower to a "buffer version" of tcp::BroadcastTo instead of directly to
// loops.
class LowerBroadcastToToLoopsPattern
: public OpConversionPattern<tcp::BroadcastToOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tcp::BroadcastToOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto resultType = op.getType().cast<RankedTensorType>();
auto inputType = op.operand().getType().cast<RankedTensorType>();
SmallVector<Value, 6> resultShapes;
auto resultsOrFailure =
allocateResults(op, rewriter, op.getLoc(), &resultShapes);
if (failed(resultsOrFailure))
return failure();
Value resultMemref = (*resultsOrFailure)[0];
auto resultShape = resultShapes[0];
Value inputMemref = operands[0];
SmallVector<Value, 6> outputExtents;
for (int i = 0, e = resultType.getRank(); i < e; i++) {
Value dimIndex = rewriter.create<ConstantIndexOp>(op.getLoc(), i);
Value outputExtent = rewriter.create<tensor::ExtractOp>(
op.getLoc(), resultShape, ValueRange({dimIndex}));
outputExtents.push_back(outputExtent);
}
int rankDiff = resultType.getRank() - inputType.getRank();
SmallVector<Value, 6> inputDimRequiresBroadcasting;
for (int i = 0, e = inputType.getRank(); i < e; i++) {
// Calculate the relevant extents.
Value inputExtent =
rewriter.create<tensor::DimOp>(op.getLoc(), op.operand(), i);
inputDimRequiresBroadcasting.push_back(
rewriter.create<CmpIOp>(op.getLoc(), CmpIPredicate::ne, inputExtent,
outputExtents[rankDiff + i]));
}
{
OpBuilder::InsertionGuard guard(rewriter);
Value c0 = rewriter.create<ConstantIndexOp>(op.getLoc(), 0);
Value c1 = rewriter.create<ConstantIndexOp>(op.getLoc(), 1);
SmallVector<Value, 6> inductionVariables;
// Create the (perfectly nested) loops.
// Loop invariant: At the start of iteration `i`, the rewriter insertion
// point is inside `i` nested loops.
for (int i = 0, e = resultType.getRank(); i < e; i++) {
auto loop = rewriter.create<scf::ForOp>(
op.getLoc(), c0, outputExtents[i], c1, ValueRange({}));
Block *body = loop.getBody();
inductionVariables.push_back(body->getArgument(0));
// Leave the insertion point at the beginning of the body.
rewriter.setInsertionPointToStart(body);
}
// Create the inner loop body.
// When reading from the input, clamp any indices for dimensions that are
// being broadcast.
SmallVector<Value, 6> inputIndices;
for (int i = 0, e = inputType.getRank(); i < e; i++) {
auto c0 = rewriter.create<ConstantIndexOp>(op.getLoc(), 0);
auto select = rewriter.create<SelectOp>(
op.getLoc(), inputDimRequiresBroadcasting[i], c0,
inductionVariables[rankDiff + i]);
inputIndices.push_back(select);
}
Value load = rewriter.create<memref::LoadOp>(op.getLoc(), inputMemref,
inputIndices);
rewriter.create<memref::StoreOp>(op.getLoc(), load, resultMemref,
inductionVariables);
}
rewriter.replaceOp(op, resultMemref);
return success();
}
};
} // namespace
namespace {
class BufferizeSplattedOp : public OpConversionPattern<tcp::SplattedOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tcp::SplattedOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto resultsOrFailure = allocateResults(op, rewriter, op.getLoc());
if (failed(resultsOrFailure))
return failure();
auto results = *resultsOrFailure;
rewriter.create<linalg::FillOp>(op.getLoc(), op.splatVal(), results[0]);
rewriter.replaceOp(op, results);
return success();
}
};
} // namespace
namespace {
class BufferizePadOp : public OpConversionPattern<tcp::PadOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tcp::PadOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto resultsOrFailure = allocateResults(op, rewriter, op.getLoc());
if (failed(resultsOrFailure))
return failure();
auto results = *resultsOrFailure;
auto c1 =
rewriter.create<ConstantOp>(op.getLoc(), rewriter.getIntegerAttr(
rewriter.getIndexType(), 1));
SmallVector<Value, 6> offsets, sizes, strides;
auto resultType = op.getType().cast<RankedTensorType>();
for (int i = 0, e = resultType.getRank(); i < e; i++) {
auto dimIndex = rewriter.create<ConstantIndexOp>(op.getLoc(), i);
auto offset =
rewriter.create<tensor::ExtractOp>(op.getLoc(), op.lowerExpansion(),
ValueRange({dimIndex}));
auto size = rewriter.create<tensor::DimOp>(op.getLoc(), op.operand(), i);
auto stride = c1;
offsets.push_back(offset);
sizes.push_back(size);
strides.push_back(stride);
}
rewriter.create<linalg::FillOp>(op.getLoc(), op.fillVal(), results[0]);
auto unpadded = rewriter.create<memref::SubViewOp>(
op.getLoc(), results[0], ValueRange(offsets), ValueRange(sizes),
ValueRange(strides));
auto inputMemref = operands[0];
rewriter.create<linalg::CopyOp>(op.getLoc(), inputMemref, unpadded);
rewriter.replaceOp(op, results);
return success();
}
};
} // namespace
namespace {
class TCPBufferizePass : public TCPBufferizeBase<TCPBufferizePass> {
void getDependentDialects(::mlir::DialectRegistry &registry) const override {
registry.insert<refback::RefbackDialect>();
registry.insert<memref::MemRefDialect>();
registry.insert<linalg::LinalgDialect>();
registry.insert<scf::SCFDialect>();
}
void runOnOperation() override {
auto func = getOperation();
auto *context = &getContext();
BufferizeTypeConverter typeConverter;
RewritePatternSet patterns(context);
ConversionTarget target(*context);
// All lowering to buffers involves refback.alloc_memref ops.
// TODO: This makes the tests cleaner, but otherwise isn't too essential as
// we can just open-code the extents for the alloc.
target.addLegalOp<refback::AllocMemRefOp>();
patterns.add<LowerBroadcastToToLoopsPattern>(typeConverter, context);
target.addIllegalOp<tcp::BroadcastToOp>();
patterns.add<BufferizeSplattedOp>(typeConverter, context);
target.addIllegalOp<tcp::SplattedOp>();
patterns.add<BufferizePadOp>(typeConverter, context);
target.addIllegalOp<tcp::PadOp>();
target.addLegalDialect<linalg::LinalgDialect>();
target.addLegalDialect<StandardOpsDialect>();
target.addLegalDialect<scf::SCFDialect>();
target.addLegalDialect<tensor::TensorDialect>();
target.addLegalDialect<memref::MemRefDialect>();
if (failed(applyPartialConversion(func, target, std::move(patterns))))
return signalPassFailure();
}
};
} // namespace
std::unique_ptr<OperationPass<FuncOp>> mlir::NPCOMP::createTCPBufferizePass() {
return std::make_unique<TCPBufferizePass>();
}