mirror of https://github.com/llvm/torch-mlir
271 lines
10 KiB
C++
271 lines
10 KiB
C++
//===- Bufferize.cpp - Bufferization for TCP dialect -------------*- C++-*-===//
|
|
//
|
|
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PassDetail.h"
|
|
|
|
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/SCF/SCF.h"
|
|
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/BuiltinOps.h"
|
|
#include "mlir/Transforms/Bufferize.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "npcomp/Dialect/Refback/IR/RefbackDialect.h"
|
|
#include "npcomp/Dialect/Refback/IR/RefbackOps.h"
|
|
#include "npcomp/Dialect/TCP/IR/TCPDialect.h"
|
|
#include "npcomp/Dialect/TCP/IR/TCPOps.h"
|
|
#include "npcomp/Dialect/TCP/Transforms/Passes.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::NPCOMP;
|
|
|
|
// TODO: Don't just open-code all shape transfer functions here.
|
|
static SmallVector<Value, 6> bypassResultShapes(Operation &op) {
|
|
OpBuilder builder(&op);
|
|
|
|
if (auto broadcastTo = dyn_cast<tcp::BroadcastToOp>(op)) {
|
|
return {broadcastTo.shape()};
|
|
}
|
|
|
|
if (auto splatted = dyn_cast<tcp::SplattedOp>(op)) {
|
|
return {splatted.shape()};
|
|
}
|
|
|
|
if (auto pad = dyn_cast<tcp::PadOp>(op)) {
|
|
SmallVector<Value, 6> outDims;
|
|
auto inputType = pad.operand().getType().cast<RankedTensorType>();
|
|
for (int i = 0, e = inputType.getRank(); i < e; i++) {
|
|
auto dimIndex = builder.create<ConstantIndexOp>(op.getLoc(), i);
|
|
auto lowerExpansion =
|
|
builder.create<tensor::ExtractOp>(op.getLoc(), pad.lowerExpansion(),
|
|
ValueRange({dimIndex}));
|
|
auto upperExpansion =
|
|
builder.create<tensor::ExtractOp>(op.getLoc(), pad.upperExpansion(),
|
|
ValueRange({dimIndex}));
|
|
auto operandDim =
|
|
builder.create<tensor::DimOp>(op.getLoc(), pad.operand(), i);
|
|
auto totalExpansion =
|
|
builder.create<AddIOp>(op.getLoc(), lowerExpansion, upperExpansion);
|
|
auto outDim =
|
|
builder.create<AddIOp>(op.getLoc(), totalExpansion, operandDim);
|
|
outDims.push_back(outDim);
|
|
}
|
|
Value outDimTensor = builder.create<tensor::FromElementsOp>(op.getLoc(), ValueRange(outDims));
|
|
return {outDimTensor};
|
|
}
|
|
|
|
// No shape transfer function.
|
|
return {};
|
|
}
|
|
|
|
static FailureOr<SmallVector<Value, 6>>
|
|
allocateResults(Operation *op, ConversionPatternRewriter &rewriter,
|
|
Location loc,
|
|
SmallVectorImpl<Value> *resultShapesOut = nullptr) {
|
|
auto resultShapes = bypassResultShapes(*op);
|
|
SmallVector<Value, 6> results;
|
|
for (auto t : llvm::zip(op->getResults(), resultShapes)) {
|
|
auto result = std::get<0>(t);
|
|
auto resultShape = std::get<1>(t);
|
|
auto tensorType = result.getType().cast<RankedTensorType>();
|
|
auto memrefType =
|
|
MemRefType::get(tensorType.getShape(), tensorType.getElementType());
|
|
auto memref =
|
|
rewriter.create<refback::AllocMemRefOp>(loc, memrefType, resultShape);
|
|
results.push_back(memref);
|
|
}
|
|
if (resultShapesOut)
|
|
resultShapesOut->append(resultShapes.begin(), resultShapes.end());
|
|
return results;
|
|
}
|
|
|
|
namespace {
|
|
// TODO: Lower to a "buffer version" of tcp::BroadcastTo instead of directly to
|
|
// loops.
|
|
class LowerBroadcastToToLoopsPattern
|
|
: public OpConversionPattern<tcp::BroadcastToOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(tcp::BroadcastToOp op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto resultType = op.getType().cast<RankedTensorType>();
|
|
auto inputType = op.operand().getType().cast<RankedTensorType>();
|
|
SmallVector<Value, 6> resultShapes;
|
|
auto resultsOrFailure =
|
|
allocateResults(op, rewriter, op.getLoc(), &resultShapes);
|
|
if (failed(resultsOrFailure))
|
|
return failure();
|
|
Value resultMemref = (*resultsOrFailure)[0];
|
|
auto resultShape = resultShapes[0];
|
|
Value inputMemref = operands[0];
|
|
|
|
SmallVector<Value, 6> outputExtents;
|
|
for (int i = 0, e = resultType.getRank(); i < e; i++) {
|
|
Value dimIndex = rewriter.create<ConstantIndexOp>(op.getLoc(), i);
|
|
Value outputExtent = rewriter.create<tensor::ExtractOp>(
|
|
op.getLoc(), resultShape, ValueRange({dimIndex}));
|
|
outputExtents.push_back(outputExtent);
|
|
}
|
|
int rankDiff = resultType.getRank() - inputType.getRank();
|
|
SmallVector<Value, 6> inputDimRequiresBroadcasting;
|
|
for (int i = 0, e = inputType.getRank(); i < e; i++) {
|
|
// Calculate the relevant extents.
|
|
Value inputExtent =
|
|
rewriter.create<tensor::DimOp>(op.getLoc(), op.operand(), i);
|
|
inputDimRequiresBroadcasting.push_back(
|
|
rewriter.create<CmpIOp>(op.getLoc(), CmpIPredicate::ne, inputExtent,
|
|
outputExtents[rankDiff + i]));
|
|
}
|
|
|
|
{
|
|
OpBuilder::InsertionGuard guard(rewriter);
|
|
Value c0 = rewriter.create<ConstantIndexOp>(op.getLoc(), 0);
|
|
Value c1 = rewriter.create<ConstantIndexOp>(op.getLoc(), 1);
|
|
|
|
SmallVector<Value, 6> inductionVariables;
|
|
// Create the (perfectly nested) loops.
|
|
// Loop invariant: At the start of iteration `i`, the rewriter insertion
|
|
// point is inside `i` nested loops.
|
|
for (int i = 0, e = resultType.getRank(); i < e; i++) {
|
|
auto loop = rewriter.create<scf::ForOp>(
|
|
op.getLoc(), c0, outputExtents[i], c1, ValueRange({}));
|
|
Block *body = loop.getBody();
|
|
inductionVariables.push_back(body->getArgument(0));
|
|
// Leave the insertion point at the beginning of the body.
|
|
rewriter.setInsertionPointToStart(body);
|
|
}
|
|
|
|
// Create the inner loop body.
|
|
// When reading from the input, clamp any indices for dimensions that are
|
|
// being broadcast.
|
|
SmallVector<Value, 6> inputIndices;
|
|
for (int i = 0, e = inputType.getRank(); i < e; i++) {
|
|
auto c0 = rewriter.create<ConstantIndexOp>(op.getLoc(), 0);
|
|
auto select = rewriter.create<SelectOp>(
|
|
op.getLoc(), inputDimRequiresBroadcasting[i], c0,
|
|
inductionVariables[rankDiff + i]);
|
|
inputIndices.push_back(select);
|
|
}
|
|
Value load = rewriter.create<memref::LoadOp>(op.getLoc(), inputMemref,
|
|
inputIndices);
|
|
rewriter.create<memref::StoreOp>(op.getLoc(), load, resultMemref,
|
|
inductionVariables);
|
|
}
|
|
rewriter.replaceOp(op, resultMemref);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class BufferizeSplattedOp : public OpConversionPattern<tcp::SplattedOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(tcp::SplattedOp op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto resultsOrFailure = allocateResults(op, rewriter, op.getLoc());
|
|
if (failed(resultsOrFailure))
|
|
return failure();
|
|
auto results = *resultsOrFailure;
|
|
rewriter.create<linalg::FillOp>(op.getLoc(), op.splatVal(), results[0]);
|
|
rewriter.replaceOp(op, results);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class BufferizePadOp : public OpConversionPattern<tcp::PadOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(tcp::PadOp op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto resultsOrFailure = allocateResults(op, rewriter, op.getLoc());
|
|
if (failed(resultsOrFailure))
|
|
return failure();
|
|
auto results = *resultsOrFailure;
|
|
auto c1 =
|
|
rewriter.create<ConstantOp>(op.getLoc(), rewriter.getIntegerAttr(
|
|
rewriter.getIndexType(), 1));
|
|
SmallVector<Value, 6> offsets, sizes, strides;
|
|
auto resultType = op.getType().cast<RankedTensorType>();
|
|
for (int i = 0, e = resultType.getRank(); i < e; i++) {
|
|
auto dimIndex = rewriter.create<ConstantIndexOp>(op.getLoc(), i);
|
|
auto offset =
|
|
rewriter.create<tensor::ExtractOp>(op.getLoc(), op.lowerExpansion(),
|
|
ValueRange({dimIndex}));
|
|
auto size = rewriter.create<tensor::DimOp>(op.getLoc(), op.operand(), i);
|
|
auto stride = c1;
|
|
offsets.push_back(offset);
|
|
sizes.push_back(size);
|
|
strides.push_back(stride);
|
|
}
|
|
rewriter.create<linalg::FillOp>(op.getLoc(), op.fillVal(), results[0]);
|
|
auto unpadded = rewriter.create<memref::SubViewOp>(
|
|
op.getLoc(), results[0], ValueRange(offsets), ValueRange(sizes),
|
|
ValueRange(strides));
|
|
auto inputMemref = operands[0];
|
|
rewriter.create<linalg::CopyOp>(op.getLoc(), inputMemref, unpadded);
|
|
rewriter.replaceOp(op, results);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class TCPBufferizePass : public TCPBufferizeBase<TCPBufferizePass> {
|
|
void getDependentDialects(::mlir::DialectRegistry ®istry) const override {
|
|
registry.insert<refback::RefbackDialect>();
|
|
registry.insert<memref::MemRefDialect>();
|
|
registry.insert<linalg::LinalgDialect>();
|
|
registry.insert<scf::SCFDialect>();
|
|
}
|
|
|
|
void runOnOperation() override {
|
|
auto func = getOperation();
|
|
auto *context = &getContext();
|
|
|
|
BufferizeTypeConverter typeConverter;
|
|
|
|
RewritePatternSet patterns(context);
|
|
|
|
ConversionTarget target(*context);
|
|
|
|
// All lowering to buffers involves refback.alloc_memref ops.
|
|
// TODO: This makes the tests cleaner, but otherwise isn't too essential as
|
|
// we can just open-code the extents for the alloc.
|
|
target.addLegalOp<refback::AllocMemRefOp>();
|
|
|
|
patterns.add<LowerBroadcastToToLoopsPattern>(typeConverter, context);
|
|
target.addIllegalOp<tcp::BroadcastToOp>();
|
|
patterns.add<BufferizeSplattedOp>(typeConverter, context);
|
|
target.addIllegalOp<tcp::SplattedOp>();
|
|
patterns.add<BufferizePadOp>(typeConverter, context);
|
|
target.addIllegalOp<tcp::PadOp>();
|
|
|
|
target.addLegalDialect<linalg::LinalgDialect>();
|
|
target.addLegalDialect<StandardOpsDialect>();
|
|
target.addLegalDialect<scf::SCFDialect>();
|
|
target.addLegalDialect<tensor::TensorDialect>();
|
|
target.addLegalDialect<memref::MemRefDialect>();
|
|
|
|
if (failed(applyPartialConversion(func, target, std::move(patterns))))
|
|
return signalPassFailure();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
std::unique_ptr<OperationPass<FuncOp>> mlir::NPCOMP::createTCPBufferizePass() {
|
|
return std::make_unique<TCPBufferizePass>();
|
|
}
|