torch-mlir/lib/Dialect/Torch/Transforms/DecomposeComplexOps.cpp

5343 lines
219 KiB
C++

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/IR/BuiltinDialect.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "torch-mlir/Dialect/Torch/IR/TorchDialect.h"
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
#include "torch-mlir/Dialect/Torch/IR/TorchTypes.h"
#include "torch-mlir/Dialect/Torch/Transforms/Passes.h"
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSet.h"
#include <cstdint>
using namespace mlir;
using namespace mlir::torch;
using namespace mlir::torch::Torch;
// Helper function to check whether the `dtype` is None or Float type.
static bool isNoneOrFloatDtype(MLIRContext *context, Value dtype) {
if (dtype.getType().isa<Torch::NoneType>())
return true;
int64_t dtypeInt;
if (!matchPattern(dtype, m_TorchConstantInt(&dtypeInt)))
return false;
FailureOr<Type> resDtype =
getTypeForScalarType(context, (torch_upstream::ScalarType)dtypeInt);
if (failed(resDtype))
return false;
return resDtype->isa<mlir::FloatType>();
}
// Helper function to compute the return type of the reduction function.
// `dim` specifies the dimension to reduce and `keepDim` preserves the rank of
// the input tensor.
static Type computeReductionType(PatternRewriter &rewriter, Operation *op,
BaseTensorType tensorType, Value dim,
bool keepDim) {
SmallVector<int64_t> sizes;
int64_t dimInt;
if (tensorType.hasSizes()) {
ArrayRef<int64_t> inputShape = tensorType.getSizes();
int64_t inputRank = inputShape.size();
if (matchPattern(dim, m_TorchConstantInt(&dimInt))) {
dimInt = toPositiveDim(dimInt, inputRank);
if (!isValidDim(dimInt, inputRank)) {
(void)rewriter.notifyMatchFailure(op, "dim is not a valid dim");
return nullptr;
}
sizes.append(inputShape.begin(), inputShape.end());
// The dimension to be reduced is set to 1 when `keepDim` is true else it
// is removed.
if (keepDim)
sizes[dimInt] = 1;
else
sizes.erase(sizes.begin() + dimInt);
} else {
unsigned reducedRank = keepDim ? inputRank : inputRank - 1;
sizes.resize(reducedRank, kUnknownSize);
}
}
Type resultType = tensorType.getWithSizesAndDtype(
sizes.size() == 0 ? std::optional<ArrayRef<int64_t>>()
: llvm::ArrayRef(sizes),
tensorType.getOptionalDtype());
return resultType;
}
// Reduction function to calculate sum along given `dim`.
static Value createSumAlongDimension(PatternRewriter &rewriter, Location loc,
Operation *op, Value input, Value dim,
bool keepDim) {
Value dimList = rewriter.create<PrimListConstructOp>(
loc, Torch::ListType::get(dim.getType()), dim);
Value keepDimCst = rewriter.create<ConstantBoolOp>(loc, keepDim);
Value dtype = rewriter.create<ConstantNoneOp>(loc);
Type resultType = computeReductionType(
rewriter, op, input.getType().cast<BaseTensorType>(), dim, keepDim);
if (!resultType)
return nullptr;
return rewriter.create<AtenSumDimIntListOp>(loc, resultType, input, dimList,
keepDimCst, dtype);
}
// Redunction function to calculate max along given `dim`.
static Value createMaxAlongDimension(PatternRewriter &rewriter, Location loc,
Operation *op, Value input, Value dim,
bool keepDim) {
Value keepDimCst = rewriter.create<ConstantBoolOp>(loc, keepDim);
BaseTensorType valueType =
computeReductionType(rewriter, op, input.getType().cast<BaseTensorType>(),
dim, keepDim)
.cast<BaseTensorType>();
if (!valueType)
return nullptr;
BaseTensorType indexType =
valueType
.getWithSizesAndDtype(
!valueType.hasSizes() ? std::optional<ArrayRef<int64_t>>()
: llvm::ArrayRef(valueType.getSizes()),
IntegerType::get(op->getContext(), 64, IntegerType::Signed))
.cast<BaseTensorType>();
return rewriter
.create<AtenMaxDimOp>(loc, valueType, indexType, input, dim, keepDimCst)
.getValues();
}
// Helper for creating `aten::sub_tensor_op`.
static Value createTensorSub(PatternRewriter &rewriter, Location loc,
Type tensorType, Value lhs, Value rhs) {
Value alpha =
rewriter.create<ConstantFloatOp>(loc, rewriter.getF64FloatAttr(1));
Value sub =
rewriter.create<AtenSubTensorOp>(loc, tensorType, lhs, rhs, alpha);
return sub;
}
// Helper to create a tensor filled with the given scalar. Scalar would be
// converted the to the element type of the given tensor type.
static Value createInitTensor(PatternRewriter &rewriter, Location loc,
BaseTensorType resultType, Value scalar,
Value sizeList) {
assert(resultType.hasDtype() && "result must have dtype");
Value noneVal = rewriter.create<ConstantNoneOp>(loc);
Value dtype = getDtypeIntValueForType(rewriter, loc, resultType.getDtype());
return rewriter.create<AtenFullOp>(loc, resultType, sizeList, scalar, dtype,
/*layout=*/noneVal,
/*device=*/noneVal,
/*memory_format=*/noneVal);
}
// Helper to create a rank 0 tensor filled with the given `scalar`. `scalar`
// would be converted to the element type of the given `inputType`.
static Value createRank0Tensor(PatternRewriter &rewriter, Location loc,
BaseTensorType inputType, Value scalar) {
assert(inputType.hasDtype() && "input must have dtype");
SmallVector<int64_t> sizes;
BaseTensorType rank0TensorTy =
inputType.getWithSizesAndDtype(ArrayRef(sizes), inputType.getDtype())
.cast<BaseTensorType>();
Value dimList = rewriter.create<PrimListConstructOp>(
loc, Torch::ListType::get(Torch::IntType::get(inputType.getContext())),
ValueRange{});
return createInitTensor(rewriter, loc, rank0TensorTy, scalar, dimList);
}
// Share code between `softmax_backward` and `log_softmax_backward` ops.
// Returns x - y * sum(z, dim).
static Value createSoftmaxBackwardCommonKernel(PatternRewriter &rewriter,
Location loc, Operation *op,
Type tensorType, Value x,
Value y, Value z, Value dim) {
Value sum =
createSumAlongDimension(rewriter, loc, op, z, dim, /*keepDim=*/true);
if (!sum)
return nullptr;
auto broadcastSizeType =
Torch::ListType::get(Torch::IntType::get(op->getContext()));
Value broadcastSize = rewriter.create<AtenSizeOp>(loc, broadcastSizeType, z);
Value sumBroadcast =
rewriter.create<AtenBroadcastToOp>(loc, tensorType, sum, broadcastSize);
Value temp =
rewriter.create<AtenMulTensorOp>(loc, tensorType, y, sumBroadcast);
Value sub = createTensorSub(rewriter, loc, tensorType, x, temp);
return sub;
}
static SmallVector<int64_t> computeDimsOrderForMoveDim(int64_t srcDimInt,
int64_t dstDimInt,
unsigned inputRank) {
llvm::iota_range<int64_t> dimsOrderIR(0, inputRank, /*inclusive=*/false);
SmallVector<int64_t> dimsOrder(dimsOrderIR.begin(), dimsOrderIR.end());
dimsOrder.erase(dimsOrder.begin() + srcDimInt);
dimsOrder.insert(dimsOrder.begin() + dstDimInt, srcDimInt);
return dimsOrder;
}
namespace {
/// We decompose aten.amax into a set of aten.max.dim op(s) depending on the
/// number of dimensions across which the max needs to be computed.
/// Eg:
/// INPUT:
/// final_output = aten.amax(initial_input, dim=(0, 2, 1), keepdim=False)
///
/// OUTPUT:
/// input_1 = aten.max.dim(initial_input, 2, keepdim) #1
/// input_2 = aten.max.dim(input_1, 1, keepdim) #2
/// final_output = aten.max.dim(input_2, 0, keepdim) #3
///
/// NOTE: We iterate over, in reverse order, every dimension included in `dim`
/// of the `aten.amax` op and create an `aten.amax.dim` op.
/// Input tensor to the next `aten.amax.dim` op is thus the output of the
/// previous `aten.amax.dim` op.
class DecomposeAtenAmaxOp : public OpRewritePattern<AtenAmaxOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenAmaxOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
SmallVector<int64_t, 4> dims;
if (!matchPattern(op.getDim(), m_TorchListOfConstantInts(dims)))
return rewriter.notifyMatchFailure(op,
"non-const dim parameter unsupported");
bool keepDim;
if (!matchPattern(op.getKeepdim(), m_TorchConstantBool(&keepDim)))
return rewriter.notifyMatchFailure(
op, "Expected a constant boolean value for keepDim");
Value input = op.getSelf();
auto inputTy = input.getType().dyn_cast<Torch::ValueTensorType>();
if (!inputTy || !inputTy.hasSizes()) {
return rewriter.notifyMatchFailure(op,
"Expected input type having sizes");
}
// For every dimension included in `dim` of the op, iterated over in
// reverse order, we create a call to aten.max.dim.
std::sort(dims.begin(), dims.end());
std::reverse(dims.begin(), dims.end());
for (int64_t dimInt : dims) {
int64_t inputRank = inputTy.getSizes().size();
dimInt = toPositiveDim(dimInt, inputRank);
if (!isValidDim(dimInt, inputRank))
return rewriter.notifyMatchFailure(op, "dim is statically invalid");
Value dim = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(dimInt));
// The input to the next invocation of aten.max.dim is the output of the
// previous aten.max.dim op.
input = createMaxAlongDimension(rewriter, loc, op, input, dim, keepDim);
}
rewriter.replaceOp(op, input);
return success();
}
};
} // end namespace
namespace {
class DecomposeAtenSizeOp : public OpRewritePattern<AtenSizeOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenSizeOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value self = op.getSelf();
MLIRContext *context = op.getContext();
std::optional<unsigned> maybeRank = getTensorRank(self);
if (!maybeRank)
return rewriter.notifyMatchFailure(op, "Unimplemented: unranked tensor");
unsigned rank = *maybeRank;
SmallVector<Value> sizes;
for (unsigned i = 0; i < rank; i++) {
Value dim = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(i));
sizes.push_back(rewriter.create<AtenSizeIntOp>(loc, self, dim));
}
Value sizeList = rewriter.create<PrimListConstructOp>(
loc, Torch::ListType::get(Torch::IntType::get(context)), sizes);
rewriter.replaceOp(op, sizeList);
return success();
}
};
} // namespace
namespace {
class DecomposeAtenSelectIntOp : public OpRewritePattern<AtenSelectIntOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenSelectIntOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value start = op.getIndex();
Value dim = op.getDim();
Value self = op.getSelf();
// convert `start` to non-negative: start += int(start < 0) * dimSize
Value zero =
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(0));
Value isNegative = rewriter.create<AtenLtIntOp>(loc, start, zero);
isNegative = rewriter.create<AtenIntBoolOp>(loc, isNegative);
Value dimSize = rewriter.create<AtenSizeIntOp>(loc, self, dim);
Value indexOffset = rewriter.create<AtenMulIntOp>(loc, isNegative, dimSize);
start = rewriter.create<AtenAddIntOp>(loc, start, indexOffset);
Value one =
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(1));
Value startPlusOne =
rewriter.create<AtenAddIntOp>(loc, one.getType(), start, one);
Value slice = rewriter.create<AtenSliceTensorOp>(
loc,
computeReductionType(rewriter, op,
self.getType().cast<BaseTensorType>(), dim,
/*keepDim=*/true),
op.getSelf(), dim, start, startPlusOne, /*step=*/one);
// `aten.slice.tensor` doesn't squeeze the dim even when it's size 1 after
// slicing, while `aten.select.int` does.
rewriter.replaceOpWithNewOp<AtenSqueezeDimOp>(op, op.getResult().getType(),
slice, op.getDim());
return success();
}
};
} // namespace
namespace {
class DecomposeAtenNarrowOp : public OpRewritePattern<AtenNarrowOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenNarrowOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value start = op.getStart();
Value dim = op.getDim();
Value length = op.getLength();
Value one =
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(1));
Value startPlusLength =
rewriter.create<AtenAddIntOp>(loc, one.getType(), start, length);
rewriter.replaceOpWithNewOp<AtenSliceTensorOp>(
op, op.getResult().getType(), op.getSelf(), /*dim=*/dim, /*start=*/start,
/*end=*/startPlusLength, /*step=*/one);
return success();
}
};
} // namespace
namespace {
// Decompose `aten.narrow.Tensor` to `aten.narrow` op
class DecomposeAtenNarrowTensorOp
: public OpRewritePattern<AtenNarrowTensorOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenNarrowTensorOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
auto *context = op.getContext();
// PyTorch makes sure that `start` param is an 0-dim integral tensor.
// REF: https://pytorch.org/docs/stable/generated/torch.narrow.html.
auto start = rewriter.create<Torch::AtenScalarImplicitOp>(
loc, Torch::IntType::get(context), op.getStart());
rewriter.replaceOpWithNewOp<Torch::AtenNarrowOp>(
op, op.getType(), op.getSelf(), op.getDim(), start, op.getLength());
return success();
}
};
} // namespace
namespace {
class DecomposeAtenZeroOp
: public OpRewritePattern<AtenZeroOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenZeroOp op,
PatternRewriter &rewriter) const override {
Value zero = rewriter.create<ConstantIntOp>(op.getLoc(),
rewriter.getI64IntegerAttr(0));
rewriter.replaceOpWithNewOp<AtenFillScalarOp>(op, op.getType(), op.getSelf(),
zero);
return success();
}
};
} // namespace
namespace {
class DecomposeAtenIsnanOp : public OpRewritePattern<AtenIsnanOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenIsnanOp op,
PatternRewriter &rewriter) const override {
Value input = op.getSelf();
// Create a new aten.ne operation with the same type and input value.
rewriter.replaceOpWithNewOp<AtenNeTensorOp>(op, op.getType(), input, input);
return success();
}
};
} // namespace
namespace {
class DecomposeAtenReshapeOp : public OpRewritePattern<AtenReshapeOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenReshapeOp op,
PatternRewriter &rewriter) const override {
Value input = op.getSelf();
// TODO: Handle non value tensor type operands.
if (!input.getType().isa<ValueTensorType>()) {
return rewriter.notifyMatchFailure(
op, "unimplemented: only value tensor type operands are supported");
}
rewriter.replaceOpWithNewOp<AtenViewOp>(op, op.getType(), input,
op.getShape());
return success();
}
};
} // namespace
// Calculates the softmax function on the given `input` tensor. Softmax(x) =
// exp(x)/sum(exp(x)).
// To avoid overflow we use the following decomposition rule:
// x_max = max(input, dim, keepdim = True)
// unnorm = aten.exp(input - x_max)
// softmax = unnorm / sum(unnorm, dim, keepdim = True)
template <typename OpTy>
static Value getSoftmaxResult(OpTy op, Value self, Type resultType,
PatternRewriter &rewriter) {
Location loc = op.getLoc();
Value dim = op.getDim();
Value xMax =
createMaxAlongDimension(rewriter, loc, op, self, dim, /*keepDim=*/true);
if (!xMax)
return nullptr;
Value unNormalized = createTensorSub(rewriter, loc, resultType, self, xMax);
Value unNormalizedExp =
rewriter.create<AtenExpOp>(loc, resultType, unNormalized);
Value sum = createSumAlongDimension(rewriter, loc, op, unNormalizedExp, dim,
/*keepDim=*/true);
if (!sum)
return nullptr;
return rewriter.create<AtenDivTensorOp>(loc, resultType, unNormalizedExp,
sum);
}
// Decompose softmax into: exp(x) / sum(exp(x))
namespace {
class DecomposeAtenSoftmaxIntOp : public OpRewritePattern<AtenSoftmaxIntOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenSoftmaxIntOp op,
PatternRewriter &rewriter) const override {
Value self = op.getSelf();
BaseTensorType resultTensorType = op.getType().cast<BaseTensorType>();
if (!resultTensorType.hasDtype()) {
return rewriter.notifyMatchFailure(
op, "expected result type to have a dtype");
}
Type resultTensorDtype = resultTensorType.getDtype();
if (!resultTensorDtype.isa<mlir::FloatType>())
return rewriter.notifyMatchFailure(op,
"Only support floating-point type");
// If `dtype` arg is non-none then convert the input to `dtype`.
if (!op.getDtype().getType().isa<Torch::NoneType>()) {
Location loc = op.getLoc();
Value none = rewriter.create<ConstantNoneOp>(loc);
Value cstFalse = rewriter.create<ConstantBoolOp>(loc, false);
self = rewriter.create<AtenToDtypeOp>(
loc, resultTensorType, self,
getDtypeIntValueForType(rewriter, loc, resultTensorDtype),
/*non_blocking=*/cstFalse, /*copy=*/cstFalse, /*memory_format=*/none);
}
Value result = getSoftmaxResult(op, self, resultTensorType, rewriter);
if (!result)
return failure();
rewriter.replaceOpWithNewOp<TensorStaticInfoCastOp>(op, op.getType(),
result);
return success();
}
};
} // namespace
namespace {
class DecomposeAten_SoftmaxOp : public OpRewritePattern<Aten_SoftmaxOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(Aten_SoftmaxOp op,
PatternRewriter &rewriter) const override {
Value self = op.getSelf();
BaseTensorType tensorType = self.getType().cast<BaseTensorType>();
if (!tensorType.hasDtype() || !tensorType.getDtype().isa<mlir::FloatType>())
return rewriter.notifyMatchFailure(op, "Only support floating type");
bool halfToFloat;
if (!matchPattern(op.getHalfToFloat(), m_TorchConstantBool(&halfToFloat)))
return rewriter.notifyMatchFailure(
op, "Expected a boolean value for half_to_float");
BaseTensorType resultTensorType = op.getType().cast<BaseTensorType>();
if (!resultTensorType.hasDtype()) {
return rewriter.notifyMatchFailure(
op, "expected result type to have a dtype");
}
Type resultTensorDtype = resultTensorType.getDtype();
// `torch.ops.aten._softmax`'s softmax with half to float conversion is not
// supported on CPU, but we go ahead with the decomposing.
// TODO: Add an e2e test once upstream support is added.
// If `half_to_float` is set, we convert the input's elemental type to match
// that of output's.
if (halfToFloat) {
Location loc = op.getLoc();
Value none = rewriter.create<ConstantNoneOp>(loc);
Value cstFalse = rewriter.create<ConstantBoolOp>(loc, false);
self = rewriter.create<AtenToDtypeOp>(
loc, resultTensorType, self,
getDtypeIntValueForType(rewriter, loc, resultTensorDtype),
/*non_blocking=*/cstFalse, /*copy=*/cstFalse, /*memory_format=*/none);
}
Value result = getSoftmaxResult(op, self, resultTensorType, rewriter);
if (!result)
return op.emitError("failed to get softmax result");
rewriter.replaceOpWithNewOp<TensorStaticInfoCastOp>(op, resultTensorType,
result);
return success();
}
};
} // namespace
// Aten_SoftmaxBackwardDataOp(gradOutput, output, dim) =>
// newGrad = gradOutput * output
// result = newGrad - output * sum(newGrad, dim))
//
// Refer to
// https://github.com/pytorch/pytorch/blob/15fecc4c830a3907fde4b44c9962dc4144da50a4/torch/csrc/jit/codegen/cuda/ops/normalization.cpp#L31
namespace {
class DecomposeAten_SoftmaxBackwardDataOp
: public OpRewritePattern<Aten_SoftmaxBackwardDataOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(Aten_SoftmaxBackwardDataOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value gradOutput = op.getGradOutput();
Value output = op.getOutput();
Value dim = op.getDim();
BaseTensorType tensorType = gradOutput.getType().cast<BaseTensorType>();
if (!tensorType.hasDtype() || !tensorType.getDtype().isa<mlir::FloatType>())
return rewriter.notifyMatchFailure(op, "Only support floating type");
Value newGrad =
rewriter.create<AtenMulTensorOp>(loc, tensorType, gradOutput, output);
Value result = createSoftmaxBackwardCommonKernel(
rewriter, loc, op, tensorType, newGrad, output, newGrad, dim);
if (!result)
return rewriter.notifyMatchFailure(
op,
"nullptr returned by createSoftmaxBackwardCommonKernel function.");
rewriter.replaceOp(op, result);
return success();
}
};
} // namespace
// AtenTanhBackwardOp(gradOutput, output) =>
// result = gradOutput * (1 - output^2)
// To get away from broadcasts the above formula is expanded i.e.,
// result = gradOutput - (gradOutput * output^2)
namespace {
class DecomposeAtenTanhBackwardOp
: public OpRewritePattern<AtenTanhBackwardOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenTanhBackwardOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value gradOutput = op.getGradOutput();
// `output` is the value flowing out from tanh. Hence, tanh(x) = output.
// Since, dTanh(x) = (1 - tanh(x)^2) hence, dOutput = (1 - output^2).
Value output = op.getOutput();
BaseTensorType tensorType = gradOutput.getType().cast<BaseTensorType>();
if (!tensorType.hasDtype() || !tensorType.getDtype().isa<mlir::FloatType>())
return rewriter.notifyMatchFailure(op, "Only support floating type");
Value tanhSquare =
rewriter.create<AtenMulTensorOp>(loc, tensorType, output, output);
Value gradMulTanhSquare = rewriter.create<AtenMulTensorOp>(
loc, tensorType, tanhSquare, gradOutput);
Value newGrad = createTensorSub(rewriter, loc, tensorType, gradOutput,
gradMulTanhSquare);
rewriter.replaceOp(op, newGrad);
return success();
}
};
} // namespace
// Aten_LogSoftmaxBackwardDataOp(gradOutput, output, dim) =>
// result = gradOutput - (exp(output) * sum(gradOutput, dim))
namespace {
class DecomposeAten_LogSoftmaxBackwardDataOp
: public OpRewritePattern<Aten_LogSoftmaxBackwardDataOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(Aten_LogSoftmaxBackwardDataOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value gradOutput = op.getGradOutput();
Value output = op.getOutput();
Value dim = op.getDim();
BaseTensorType tensorType = gradOutput.getType().cast<BaseTensorType>();
if (!tensorType.hasDtype() || !tensorType.getDtype().isa<mlir::FloatType>())
return rewriter.notifyMatchFailure(op, "Only support floating type");
Value expOut = rewriter.create<AtenExpOp>(loc, tensorType, output);
Value result = createSoftmaxBackwardCommonKernel(
rewriter, loc, op, tensorType, gradOutput, expOut, gradOutput, dim);
if (!result)
return rewriter.notifyMatchFailure(
op,
"nullptr returned by createSoftmaxBackwardCommonKernel function.");
rewriter.replaceOp(op, result);
return success();
}
};
} // namespace
// Decompose `AtenArgMaxOp` into `AtenMaxDimOp`.
namespace {
class DecomposeAtenArgMaxOp : public OpRewritePattern<AtenArgmaxOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenArgmaxOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value input = op.getSelf();
Value dim = op.getDim();
Value keepDim = op.getKeepdim();
Value result = op.getResult();
BaseTensorType inputType = input.getType().cast<BaseTensorType>();
BaseTensorType indicesTensorType = result.getType().cast<BaseTensorType>();
std::optional<unsigned> maybeInputRank = getTensorRank(input);
if (!maybeInputRank) {
return rewriter.notifyMatchFailure(
op, "expected input tensor to have a rank");
}
unsigned inputRank = *maybeInputRank;
if (!indicesTensorType.hasSizes())
return failure();
BaseTensorType valueTensorType =
inputType
.getWithSizesAndDtype(indicesTensorType.getOptionalSizes(),
inputType.getOptionalDtype())
.cast<BaseTensorType>();
// If the dim type is `NoneType` i.e. reduce along all the dimensions.
// `AtenMaxDimOp` doesn't support dim as `NoneType` so first the input
// tensor is flattened to 1d tensor and then the reduction happens on the
// 0th dimension.
if (dim.getType().isa<Torch::NoneType>()) {
BaseTensorType flattenType =
inputType
.getWithSizesAndDtype({kUnknownSize},
inputType.getOptionalDtype())
.cast<BaseTensorType>();
dim = rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(0));
Value end = rewriter.create<ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(inputRank - 1));
input = rewriter.create<AtenFlattenUsingIntsOp>(loc, flattenType, input,
dim, end);
}
Value maxResult =
rewriter
.create<AtenMaxDimOp>(loc, valueTensorType, indicesTensorType,
input, dim, keepDim)
.getIndices();
rewriter.replaceOp(op, maxResult);
return success();
}
};
} // namespace
// Decompose `aten.bucketize` into the following op sequence:
//
// def aten_bucketize(input, boundaries, out_int32, right):
// unsqz_input = input.unsqueeze(-1)
// if not right:
// comparison = unsqz_input <= boundaries
// else:
// comparison = unsqz_input < boundaries
// indices = torch.argmax(comparison.float(), dim=-1)
// within_bound = comparison[..., -1]
// result = torch.where(within_bound, indices, boundaries.shape[0])
// if out_int32:
// result = result.int()
// return result
//
namespace {
class DecomposeAtenBucketizeTensorOp
: public OpRewritePattern<AtenBucketizeTensorOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenBucketizeTensorOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value input = op.getSelf();
auto inputType = input.getType().cast<BaseTensorType>();
if (!inputType.hasSizes()) {
return rewriter.notifyMatchFailure(
op, "unimplemented: input must have known sizes");
}
ArrayRef<int64_t> inputShape = inputType.getSizes();
Value boundaries = op.getBoundaries();
auto boundariesType = boundaries.getType().cast<BaseTensorType>();
if (!boundariesType.hasSizes() || boundariesType.getSizes().size() != 1) {
return rewriter.notifyMatchFailure(op,
"unimplemented: boundaries must have "
"known sizes and must be a 1D array");
}
int64_t boundariesSize = boundariesType.getSizes()[0];
bool outInt32;
if (!matchPattern(op.getOutInt32(), m_TorchConstantBool(&outInt32))) {
return rewriter.notifyMatchFailure(
op, "unimplemented: out_int32 must be a constant bool");
}
bool right;
if (!matchPattern(op.getRight(), m_TorchConstantBool(&right))) {
return rewriter.notifyMatchFailure(
op, "unimplemented: right must be a constant bool");
}
// unsqueeze input at the last dim to make it broadcastable with boundaries
Value constMinusOne = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(-1));
auto unsqzTensorInfo =
unsqueezeTensor(rewriter, op, input, /*dim=*/constMinusOne);
if (failed(unsqzTensorInfo)) {
return rewriter.notifyMatchFailure(op,
"cannot generate unsqueeze tensor");
}
Value unsqzInput = *unsqzTensorInfo;
// compare unsqueezed input with boundaries
SmallVector<int64_t> compareShape(inputShape);
compareShape.push_back(boundariesSize);
Type compareType =
inputType.getWithSizesAndDtype(compareShape, rewriter.getI1Type());
Value compare;
if (!right) {
compare = rewriter.create<AtenLeTensorOp>(loc, compareType, unsqzInput,
boundaries);
} else {
compare = rewriter.create<AtenLtTensorOp>(loc, compareType, unsqzInput,
boundaries);
}
// convert the comparison results to float32 as the argmax op input,
// which does not support integer dtype in LINALG backend
Value compareF32 =
convertTensorToDtype(rewriter, loc, compare, rewriter.getF32Type());
// get the first boundary index where the input element is less than (or
// equal to) the boundary value
Type indicesType = inputType.getWithSizesAndDtype(
inputShape, rewriter.getIntegerType(64, IntegerType::Signed));
Value constFalse = rewriter.create<Torch::ConstantBoolOp>(loc, false);
Value indices = rewriter.create<AtenArgmaxOp>(loc, indicesType, compareF32,
/*dim=*/constMinusOne,
/*keepdim=*/constFalse);
// get the comparison results between each input element and the rightmost
// boundary value
Type withinUpperBoundType =
inputType.getWithSizesAndDtype(inputShape, rewriter.getI1Type());
Value withinUpperBound = rewriter.create<AtenSelectIntOp>(
loc, withinUpperBoundType, compare, /*dim=*/constMinusOne,
/*index=*/constMinusOne);
// If the input element is less than (or equal to) the rightmost boundary,
// take the max index as result. Otherwise, the element is beyond the
// rightmost boundary, so take the boundary size.
Value constZero = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(0));
Value upperBound =
rewriter.create<AtenSizeIntOp>(loc, boundaries, /*dim=*/constZero);
Value result = rewriter.create<AtenWhereScalarOtherOp>(
loc, indicesType, withinUpperBound, indices, upperBound);
if (outInt32) {
result = convertTensorToDtype(
rewriter, loc, result,
rewriter.getIntegerType(32, IntegerType::Signed));
}
rewriter.replaceOp(op, result);
return success();
}
};
} // namespace
// To avoid overflow we use the following decomposition rule:
// x_max = aten.max(x, dim, keepdim=True)[0]
// shifted = x - x_max
// shifted_logsumexp = aten.log(aten.sum(aten.exp(shifted), dim, keepdim=True))
// log_softmax = shifted - shifted_logsumexp
template <typename OpTy>
static Value getLogSoftmaxResult(OpTy op, PatternRewriter &rewriter) {
Location loc = op.getLoc();
Value dim = op.getDim();
Value self = op.getSelf();
BaseTensorType tensorType = self.getType().cast<BaseTensorType>();
Value xMax =
createMaxAlongDimension(rewriter, loc, op, self, dim, /*keepDim=*/true);
if (!xMax)
return nullptr;
Value shifted = createTensorSub(rewriter, loc, tensorType, self, xMax);
Value shiftedExp = rewriter.create<AtenExpOp>(loc, tensorType, shifted);
Value shiftedSumExp =
createSumAlongDimension(rewriter, loc, op, shiftedExp, dim,
/*keepDim=*/true);
if (!shiftedSumExp)
return nullptr;
Value shiftedLogSumExp =
rewriter.create<AtenLogOp>(loc, shiftedSumExp.getType(), shiftedSumExp);
Value result =
createTensorSub(rewriter, loc, op.getType(), shifted, shiftedLogSumExp);
return result;
}
namespace {
class DecomposeAtenLogSoftmaxIntOp
: public OpRewritePattern<AtenLogSoftmaxIntOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenLogSoftmaxIntOp op,
PatternRewriter &rewriter) const override {
Value self = op.getSelf();
if (!op.getDtype().getType().isa<Torch::NoneType>())
return rewriter.notifyMatchFailure(
op, "Unimplemented non-None dtype for log_softmax");
BaseTensorType tensorType = self.getType().cast<BaseTensorType>();
if (!tensorType.hasDtype() || !tensorType.getDtype().isa<mlir::FloatType>())
return rewriter.notifyMatchFailure(op, "Only support floating type");
Value logSoftmax = getLogSoftmaxResult(op, rewriter);
if (!logSoftmax)
return rewriter.notifyMatchFailure(
op, "getLogSoftmaxResult function returned nullptr");
rewriter.replaceOp(op, logSoftmax);
return success();
}
};
} // namespace
namespace {
class DecomposeAten_LogSoftmaxOp : public OpRewritePattern<Aten_LogSoftmaxOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(Aten_LogSoftmaxOp op,
PatternRewriter &rewriter) const override {
bool halfToFloat;
if (!matchPattern(op.getHalfToFloat(), m_TorchConstantBool(&halfToFloat)))
return rewriter.notifyMatchFailure(
op, "Expected a boolean value for half_to_float");
// Currently, setting `halfToFloat` is not supported as the E2E testing for
// the same is not present on CPU.
if (halfToFloat)
return rewriter.notifyMatchFailure(
op, "halfToFloat is currently not supported.");
Value _logSoftmax = getLogSoftmaxResult(op, rewriter);
if (!_logSoftmax)
return rewriter.notifyMatchFailure(
op, "getLogSoftmaxResult function returned nullptr");
rewriter.replaceOp(op, _logSoftmax);
return success();
}
};
} // namespace
// Decompose aten.matmul into: aten.mm and aten.bmm according to ranks.
namespace {
class DecomposeAtenMatmulOp : public OpRewritePattern<AtenMatmulOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenMatmulOp op,
PatternRewriter &rewriter) const override {
Value lhs = op.getSelf();
Value rhs = op.getOther();
std::optional<unsigned> maybeLhsRank = getTensorRank(lhs);
std::optional<unsigned> maybeRhsRank = getTensorRank(rhs);
if (!maybeLhsRank || !maybeRhsRank) {
return rewriter.notifyMatchFailure(
op, "expected input tensors to have a rank");
}
unsigned lhsRank = *maybeLhsRank;
unsigned rhsRank = *maybeRhsRank;
if (lhsRank == 2 && rhsRank == 2) {
// If both lhs and rhs ranks are 2 then map it to `aten.mm` op.
rewriter.replaceOpWithNewOp<AtenMmOp>(op, op.getType(), lhs, rhs);
} else if (lhsRank == 3 && rhsRank == 3) {
// If both lhs and rhs ranks are 3 then map it to `aten.bmm` op.
rewriter.replaceOpWithNewOp<AtenBmmOp>(op, op.getType(), lhs, rhs);
} else {
return failure();
}
return success();
}
};
} // namespace
// Decompose aten.mv into: aten.matmul.
namespace {
class DecomposeAtenMvOp : public OpRewritePattern<AtenMvOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenMvOp op,
PatternRewriter &rewriter) const override {
Value lhs = op.getSelf();
Value rhs = op.getVec();
rewriter.replaceOpWithNewOp<AtenMatmulOp>(op, op.getType(), lhs, rhs);
return success();
}
};
} // namespace
// ReLU6(x) = min(max(0, x), 6) = min(Relu(x), 6)
static Value getRelu6Results(PatternRewriter &rewriter, Location loc,
Value input) {
BaseTensorType inputType = input.getType().cast<BaseTensorType>();
Value relu = rewriter.create<AtenReluOp>(loc, inputType, input);
Value cst6 =
rewriter.create<Torch::ConstantIntOp>(loc, rewriter.getI64IntegerAttr(6));
Value sixTensor = createRank0Tensor(rewriter, loc, inputType, cst6);
Value relu6Out =
rewriter.create<AtenMinimumOp>(loc, inputType, relu, sixTensor);
return relu6Out;
}
namespace {
class DecomposeAtenRelu6Op : public OpRewritePattern<AtenRelu6Op> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenRelu6Op op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
auto resType = op.getType().cast<BaseTensorType>();
if (!resType.hasDtype()) {
return rewriter.notifyMatchFailure(op, "result should have dtype");
}
Value relu6 = getRelu6Results(rewriter, loc, op.getSelf());
rewriter.replaceOp(op, relu6);
return success();
}
};
} // namespace
// Hardswish(x) = x * Relu6(x+3)/6
namespace {
class DecomposeAtenHardswishOp : public OpRewritePattern<AtenHardswishOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenHardswishOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value input = op.getSelf();
Type inputType = input.getType();
Value constantOne = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(1));
Value constantThree = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(3));
Value constantSix = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(6));
Value inputPlusThree = rewriter.create<AtenAddScalarOp>(
loc, inputType, input, constantThree, /*alpha=*/constantOne);
Value relu6 = getRelu6Results(rewriter, loc, inputPlusThree);
Value divTensor =
rewriter.create<AtenDivScalarOp>(loc, inputType, relu6, constantSix);
Value mulTensor =
rewriter.create<AtenMulTensorOp>(loc, inputType, divTensor, input);
rewriter.replaceOp(op, mulTensor);
return success();
}
};
} // namespace
// LeakyRelu = max(0,x) + negative_slope * min(0,x)
namespace {
class DecomposeAtenLeakyReluOp : public OpRewritePattern<AtenLeakyReluOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenLeakyReluOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value input = op.getSelf();
Value negativeSlope = op.getNegativeSlope();
auto resType = op.getType().cast<BaseTensorType>();
if (!resType.hasDtype()) {
return rewriter.notifyMatchFailure(op, "result should have dtype");
}
Value constantZero =
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(0));
Value constantOne =
rewriter.create<ConstantFloatOp>(loc, rewriter.getF64FloatAttr(1.0));
Value zeroTensor = createRank0Tensor(rewriter, loc, resType, constantZero);
Value positiveOutput =
rewriter.create<AtenMaximumOp>(loc, resType, zeroTensor, input);
Value negativeOutput =
rewriter.create<AtenMinimumOp>(loc, resType, zeroTensor, input);
Value scaledNegativeOutput = rewriter.create<AtenMulScalarOp>(
loc, resType, negativeOutput, negativeSlope);
Value leakyReluOutput = rewriter.create<AtenAddTensorOp>(
loc, resType, positiveOutput, scaledNegativeOutput, constantOne);
rewriter.replaceOp(op, leakyReluOutput);
return success();
}
};
} // namespace
// LeakyReluBackward = max(0,grad) + negative_slope * min(0,x)
namespace {
class DecomposeAtenLeakyReluBackwardOp
: public OpRewritePattern<AtenLeakyReluBackwardOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenLeakyReluBackwardOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value gradOutput = op.getGradOutput();
Value input = op.getSelf();
Value negativeSlope = op.getNegativeSlope();
auto resType = op.getType().cast<BaseTensorType>();
if (!resType.hasDtype()) {
return rewriter.notifyMatchFailure(op, "result should have dtype");
}
bool selfIsResult = false;
if (!matchPattern(op.getSelfIsResult(),
m_TorchConstantBool(&selfIsResult)) ||
selfIsResult)
return rewriter.notifyMatchFailure(
op, "unimplemented: self_is_result should be false");
Value constantZero =
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(0));
Value constantOne =
rewriter.create<ConstantFloatOp>(loc, rewriter.getF64FloatAttr(1.0));
Value zeroTensor = createRank0Tensor(rewriter, loc, resType, constantZero);
Value positiveOutput =
rewriter.create<AtenMaximumOp>(loc, resType, zeroTensor, gradOutput);
Value negativeOutput =
rewriter.create<AtenMinimumOp>(loc, resType, zeroTensor, input);
Value scaledNegativeOutput = rewriter.create<AtenMulScalarOp>(
loc, resType, negativeOutput, negativeSlope);
Value leakyReluBackwardOutput = rewriter.create<AtenAddTensorOp>(
loc, resType, positiveOutput, scaledNegativeOutput, constantOne);
rewriter.replaceOp(op, leakyReluBackwardOutput);
return success();
}
};
} // namespace
// Elu = scale * max(0,x) + alpha * scale * (exp(min(0,x) * input_scale) - 1)
namespace {
class DecomposeAtenEluOp : public OpRewritePattern<AtenEluOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenEluOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value input = op.getSelf();
Value alpha = op.getAlpha();
Value scale = op.getScale();
Value inputScale = op.getInputScale();
auto resType = op.getType().cast<BaseTensorType>();
if (!resType.hasDtype()) {
return rewriter.notifyMatchFailure(op, "result should have dtype");
}
Value constantZero =
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(0));
Value constantOne =
rewriter.create<ConstantFloatOp>(loc, rewriter.getF64FloatAttr(1.0));
Value zeroTensor = createRank0Tensor(rewriter, loc, resType, constantZero);
Value maxZeroX = rewriter.create<AtenMaximumOp>(loc, resType, zeroTensor, input);
Value positiveOutput = rewriter.create<AtenMulScalarOp>(loc, resType, maxZeroX, scale);
Value minZeroX = rewriter.create<AtenMinimumOp>(loc, resType, zeroTensor, input);
Value scaledMinZeroX = rewriter.create<AtenMulScalarOp>(loc, resType, minZeroX, inputScale);
Value expX = rewriter.create<AtenExpOp>(loc, resType, scaledMinZeroX);
Value expXM1 = rewriter.create<AtenSubScalarOp>(loc, resType, expX, constantOne, constantOne);
Value scaledExpXM1 = rewriter.create<AtenMulScalarOp>(loc, resType, expXM1, scale);
Value negativeOutput = rewriter.create<AtenMulScalarOp>(loc, resType, scaledExpXM1, alpha);
Value eluOutput = rewriter.create<AtenAddTensorOp>(
loc, resType, positiveOutput, negativeOutput, constantOne);
rewriter.replaceOp(op, eluOutput);
return success();
}
};
} // namespace
namespace {
class DecomposeAtenTOp : public OpRewritePattern<AtenTOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenTOp op,
PatternRewriter &rewriter) const override {
Value lhs = op.getSelf();
std::optional<unsigned> lhsRank = getTensorRank(lhs);
auto loc = op.getLoc();
if (!lhsRank) {
return rewriter.notifyMatchFailure(op, "expected input to have a rank");
} else if (*lhsRank > 2) {
std::string errorMessage =
"t() expects a tensor with <=2 dimensions, but self is " +
std::to_string(*lhsRank) + "D";
return rewriter.notifyMatchFailure(op, errorMessage.c_str());
} else if (*lhsRank < 2)
rewriter.replaceOp(op, lhs);
else {
Value zero =
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(0));
Value one =
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(1));
rewriter.replaceOpWithNewOp<AtenTransposeIntOp>(op, op.getType(), lhs,
zero, one);
}
return success();
}
};
} // namespace
// Decompose `aten.stack` into `aten.unsqueeze` and `aten.cat`.
namespace {
class DecomposeAtenStackOp : public OpRewritePattern<AtenStackOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenStackOp op,
PatternRewriter &rewriter) const override {
SmallVector<Value> tensors;
if (!getListConstructElements(op.getTensors(), tensors)) {
return rewriter.notifyMatchFailure(
op, "unimplemented: the tensor list is not from list construct");
}
// Ensure all tensors have known sizes
for (Value tensor : tensors) {
BaseTensorType tensorType = tensor.getType().cast<BaseTensorType>();
if (!tensorType.hasSizes()) {
return rewriter.notifyMatchFailure(
op, "unimplemented: one tensor does not have known sizes");
}
}
SmallVector<Value> unsqueezedTensors;
for (Value tensor : tensors) {
auto unsqueezedInfo = unsqueezeTensor(rewriter, op, tensor, op.getDim());
if (failed(unsqueezedInfo)) {
return rewriter.notifyMatchFailure(
op, "cannot generate unsqueeze tensor op");
}
unsqueezedTensors.push_back(*unsqueezedInfo);
}
Type listElemType =
op.getType().cast<BaseTensorType>().getWithSizesAndDtype(
/*optionalSizes=*/std::nullopt, /*optionalDtype=*/nullptr);
Type listType = Torch::ListType::get(listElemType);
Value unsqueezedTensorList = rewriter.create<PrimListConstructOp>(
op.getLoc(), listType, unsqueezedTensors);
rewriter.replaceOpWithNewOp<AtenCatOp>(op, op.getType(),
unsqueezedTensorList, op.getDim());
return success();
}
};
} // namespace
// Decompose aten.roll into aten.slice and aten.cat ops.
// https://pytorch.org/docs/stable/generated/torch.roll.html
namespace {
class DecomposeAtenRollOp : public OpRewritePattern<AtenRollOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenRollOp op,
PatternRewriter &rewriter) const override {
SmallVector<Value> shifts;
if (!getListConstructElements(op.getShifts(), shifts))
return rewriter.notifyMatchFailure(
op, "unimplemented: shifts not list of Scalar");
SmallVector<Value> dims;
if (!getListConstructElements(op.getDims(), dims))
return rewriter.notifyMatchFailure(
op, "unimplemented: dims not list of Scalar");
if (shifts.size() != dims.size())
return op.emitError("list sizes of shifts and dims are not the same");
auto loc = op.getLoc();
Value constNone = rewriter.create<ConstantNoneOp>(loc);
Value constZero = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(0));
Value constOne = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(1));
auto self = op.getSelf();
auto selfTy = self.getType().cast<BaseTensorType>();
// roll(input, shift, dim) = cat({
// slice(input, dim, -shift, none),
// slice(input, dim, 0, -shift)}, dim)
auto imitateRoll = [&](Value input, Value shift, Value dim,
int64_t cstDim) {
Value negShift = rewriter.create<AtenNegIntOp>(loc, shift);
ArrayRef<int64_t> inputShape = selfTy.getSizes();
SmallVector<int64_t> sizes;
sizes.append(inputShape.begin(), inputShape.end());
sizes[cstDim] = kUnknownSize;
Type sliceTy = selfTy.getWithSizesAndDtype(llvm::ArrayRef(sizes),
selfTy.getOptionalDtype());
Value slice0 = rewriter.create<AtenSliceTensorOp>(
loc, sliceTy, input, dim, negShift, constNone, constOne);
Value slice1 = rewriter.create<AtenSliceTensorOp>(
loc, sliceTy, input, dim, constZero, negShift, constOne);
Type listType = Torch::ListType::get(sliceTy);
Value slices = rewriter.create<PrimListConstructOp>(
loc, listType, llvm::ArrayRef<Value>{slice0, slice1});
return rewriter.create<AtenCatOp>(loc, self.getType(), slices, dim);
};
std::optional<unsigned> maybeRank = getTensorRank(self);
if (!maybeRank)
return rewriter.notifyMatchFailure(op, "Unimplemented: unranked tensor");
unsigned rank = *maybeRank;
Value output = self;
auto nShifts = shifts.size();
for (size_t k = 0; k < nShifts; ++k) {
auto dim = dims[k];
int64_t cstDim = -1;
if (!matchPattern(dim, m_TorchConstantInt(&cstDim)))
return rewriter.notifyMatchFailure(
op, "unimplemented: dim must be constant");
cstDim = toPositiveDim(cstDim, rank);
output = imitateRoll(output, shifts[k], dim, cstDim);
}
rewriter.replaceOp(op, output);
return success();
}
};
} // namespace
// Decompose aten.repeat into aten.expand and aten.view ops.
//
// Ref: https://pytorch.org/docs/stable/generated/torch.Tensor.repeat.html
//
// For shape [S1, S2, S3] and repeats [M0, M1, M2, M3]
// MS0 = M0; MS1 = M1 * S1; MS2 = M2 * S2; MS3 = M3 * S3
//
// def aten_repeat(self, repeats):
// sizes = self.size()
// unsqueezed_sizes = []
// expanded_sizes = []
// reshape_sizes = []
// leading_rank = repeats.size() - sizes.size()
// for r in range(leading_rank):
// unsqueezed_sizes.append(1)
// expanded_sizes.append(repeats[r])
// reshaped_sizes.append(repeats[r])
//
// for s, m in zip(sizes, repeats[leading_rank:]):
// unsqueezed_sizes += [1, s]
// expanded_sizes += [m, s]
// reshaped_sizes += [m * s]
// return
// self.view(unsqueezed_sizes).expand(expanded_sizes).view(reshaped_sizes)
//
namespace {
class DecomposeAtenRepeatOp : public OpRewritePattern<AtenRepeatOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenRepeatOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value self = op.getSelf();
MLIRContext *context = op.getContext();
std::optional<unsigned> maybeRank = getTensorRank(self);
if (!maybeRank)
return rewriter.notifyMatchFailure(op, "Unimplemented: unranked tensor");
unsigned rank = *maybeRank;
SmallVector<Value> repeats;
if (!getListConstructElements(op.getRepeats(), repeats))
return rewriter.notifyMatchFailure(
op, "Unimplemented: repeats not list of Scalar");
if (rank > repeats.size()) {
return rewriter.notifyMatchFailure(
op, "repeats are not matched with self's rank");
}
auto insertDimSizes = [](SmallVector<Value> &dimSizes,
SmallVector<int64_t> &shape,
const ArrayRef<Value> &vals) {
dimSizes.insert(dimSizes.end(), vals.begin(), vals.end());
std::transform(vals.begin(), vals.end(), std::back_inserter(shape),
[&](Value val) -> int64_t {
int64_t cst_val;
if (matchPattern(val, m_TorchConstantInt(&cst_val))) {
return cst_val;
} else {
return kUnknownSize;
}
});
};
Value one = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(1));
SmallVector<Value> unsqueezedSizes, expandedSizes, reshapedSizes;
SmallVector<int64_t> unsqueezedIntSizes, expandedIntSizes;
assert(repeats.size() >= rank && "leadingRank should greater than 0");
auto leadingRank = repeats.size() - rank;
for (size_t i = 0; i < leadingRank; ++i) {
insertDimSizes(unsqueezedSizes, unsqueezedIntSizes, ArrayRef<Value>{one});
insertDimSizes(expandedSizes, expandedIntSizes,
ArrayRef<Value>{repeats[i]});
reshapedSizes.push_back(repeats[i]);
}
auto selfType = self.getType().dyn_cast<BaseTensorType>();
auto selfShape = selfType.getSizes();
for (unsigned i = 0; i < rank; i++) {
auto scale = repeats[i + leadingRank];
Value dimSize;
if (selfShape[i] == kUnknownSize) {
Value dim = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(i));
dimSize = rewriter.create<AtenSizeIntOp>(loc, self, dim);
} else {
dimSize = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(selfShape[i]));
}
insertDimSizes(unsqueezedSizes, unsqueezedIntSizes,
ArrayRef<Value>{one, dimSize});
insertDimSizes(expandedSizes, expandedIntSizes,
ArrayRef<Value>{scale, dimSize});
Value scaledSize = rewriter.create<AtenMulIntOp>(loc, dimSize, scale);
reshapedSizes.push_back(scaledSize);
}
Type dtype = self.getType().cast<ValueTensorType>().getOptionalDtype();
Type unsqueezedType = ValueTensorType::get(
context, llvm::ArrayRef(unsqueezedIntSizes), dtype);
Type expandedType =
ValueTensorType::get(context, llvm::ArrayRef(expandedIntSizes), dtype);
auto listType = Torch::ListType::get(Torch::IntType::get(op.getContext()));
Value unsqueezedDims =
rewriter.create<PrimListConstructOp>(loc, listType, unsqueezedSizes);
Value expandedDims =
rewriter.create<PrimListConstructOp>(loc, listType, expandedSizes);
Value reshapedDims =
rewriter.create<PrimListConstructOp>(loc, listType, reshapedSizes);
auto reshaped = rewriter.create<AtenViewOp>(loc, unsqueezedType, op.getSelf(),
unsqueezedDims);
auto expanded = rewriter.create<AtenBroadcastToOp>(loc, expandedType,
reshaped, expandedDims);
rewriter.replaceOpWithNewOp<AtenViewOp>(op, op.getType(), expanded,
reshapedDims);
return success();
}
};
} // namespace
// Decompose aten.flatten.using_ints into aten.view op.
namespace {
class DecomposeAtenFlattenUsingIntsOp
: public OpRewritePattern<AtenFlattenUsingIntsOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenFlattenUsingIntsOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value self = op.getSelf();
MLIRContext *context = op.getContext();
std::optional<unsigned> maybeRank = getTensorRank(self);
if (!maybeRank)
return rewriter.notifyMatchFailure(op, "unimplemented: unranked tensor");
unsigned rank = *maybeRank;
int64_t start, end;
if (!matchPattern(op.getStartDim(), m_TorchConstantInt(&start)) ||
!matchPattern(op.getEndDim(), m_TorchConstantInt(&end))) {
return rewriter.notifyMatchFailure(
op, "unimplemented: requires start and end dims to be constants");
}
SmallVector<Value, 4> newSizes;
if (rank == 0) {
Value one =
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(1));
newSizes.push_back(one);
} else {
start = toPositiveDim(start, rank);
end = toPositiveDim(end, rank);
if (start > end) {
return rewriter.notifyMatchFailure(
op, "expected end dim larger than start dim");
}
newSizes.reserve(rank - end + start);
for (int64_t k = 0; k < start; ++k) {
Value dim =
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(k));
newSizes.push_back(
rewriter.create<AtenSizeIntOp>(loc, self, /*dim=*/dim));
}
Value flattenDimSize =
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(-1));
newSizes.push_back(flattenDimSize);
for (int64_t k = end + 1; k < rank; ++k) {
Value dim =
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(k));
newSizes.push_back(
rewriter.create<AtenSizeIntOp>(loc, self, /*dim=*/dim));
}
}
Value newSizeList = rewriter.create<PrimListConstructOp>(
loc, ListType::get(IntType::get(context)), newSizes);
rewriter.replaceOpWithNewOp<AtenViewOp>(op, op.getType(), op.getSelf(),
newSizeList);
return success();
}
};
} // namespace
// Decompose aten.expand into aten.broadcast_to op.
namespace {
class DecomposeAtenExpandOp : public OpRewritePattern<AtenExpandOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenExpandOp op,
PatternRewriter &rewriter) const override {
bool implicit = false;
if (!matchPattern(op.getImplicit(), m_TorchConstantBool(&implicit)) ||
implicit) {
return rewriter.notifyMatchFailure(
op, "unimplemented: requires implicit to be false");
}
rewriter.replaceOpWithNewOp<AtenBroadcastToOp>(op, op.getType(), op.getSelf(),
op.getSize());
return success();
}
};
} // namespace
// Decompose aten.where.Scalar into aten.where.self op.
namespace {
class DecomposeAtenWhereScalarOp : public OpRewritePattern<AtenWhereScalarOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenWhereScalarOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
auto resType = op.getType().cast<BaseTensorType>();
if (!resType.hasDtype()) {
return rewriter.notifyMatchFailure(op, "result should have dtype");
}
Value selfTensor = createRank0Tensor(rewriter, loc, resType, op.getSelf());
Value otherTensor = createRank0Tensor(rewriter, loc, resType, op.getOther());
rewriter.replaceOpWithNewOp<AtenWhereSelfOp>(op, resType, op.getCondition(),
selfTensor, otherTensor);
return success();
}
};
} // namespace
// Decompose aten.where.ScalarOther into aten.where.self op.
namespace {
class DecomposeAtenWhereScalarOtherOp
: public OpRewritePattern<AtenWhereScalarOtherOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenWhereScalarOtherOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
auto resType = op.getType().cast<BaseTensorType>();
if (!resType.hasDtype()) {
return rewriter.notifyMatchFailure(op, "result should have dtype");
}
Value otherTensor = createRank0Tensor(rewriter, loc, resType, op.getOther());
rewriter.replaceOpWithNewOp<AtenWhereSelfOp>(op, resType, op.getCondition(),
op.getSelf(), otherTensor);
return success();
}
};
} // namespace
// Decompose aten.where.ScalarSelf into aten.where.self op.
namespace {
class DecomposeAtenWhereScalarSelfOp
: public OpRewritePattern<AtenWhereScalarSelfOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenWhereScalarSelfOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
auto resType = op.getType().cast<BaseTensorType>();
if (!resType.hasDtype()) {
return rewriter.notifyMatchFailure(op, "result should have dtype");
}
Value selfTensor = createRank0Tensor(rewriter, loc, resType, op.getSelf());
rewriter.replaceOpWithNewOp<AtenWhereSelfOp>(op, resType, op.getCondition(),
selfTensor, op.getOther());
return success();
}
};
} // namespace
// Decompose aten.masked_fill.Scalar into aten.where.self op.
namespace {
class DecomposeAtenMaskedFillScalarOp
: public OpRewritePattern<AtenMaskedFillScalarOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenMaskedFillScalarOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
auto resType = op.getType().cast<BaseTensorType>();
if (!resType.hasDtype()) {
return rewriter.notifyMatchFailure(op, "result should have dtype");
}
Value mask = op.getMask();
Value value = createRank0Tensor(rewriter, loc, resType, op.getValue());
rewriter.replaceOpWithNewOp<AtenWhereSelfOp>(op, resType, mask,
value, op.getSelf());
return success();
}
};
} // namespace
// Decompose aten._convolution-like to aten.convolution
namespace {
template <typename ConvolutionLikeOp>
class DecomposeAten_ConvolutionLikeOp
: public OpRewritePattern<ConvolutionLikeOp> {
public:
using OpRewritePattern<ConvolutionLikeOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ConvolutionLikeOp op,
PatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<AtenConvolutionOp>(
op, op->getResultTypes(), op.getInput(), op.getWeight(), op.getBias(),
op.getStride(), op.getPadding(), op.getDilation(), op.getTransposed(),
op.getOutputPadding(), op.getGroups());
return success();
}
};
} // namespace
// Decompose aten.conv2d to aten.convolution
namespace {
class DecomposeAtenConv2dOp : public OpRewritePattern<AtenConv2dOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenConv2dOp op,
PatternRewriter &rewriter) const override {
Value emptyList = rewriter.create<PrimListConstructOp>(
op.getLoc(), Torch::ListType::get(Torch::IntType::get(op.getContext())),
SmallVector<Value>());
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(op.getLoc(), false);
rewriter.replaceOpWithNewOp<AtenConvolutionOp>(
op, op->getResultTypes(), op.getInput(), op.getWeight(), op.getBias(),
op.getStride(), op.getPadding(), op.getDilation(), cstFalse, emptyList,
op.getGroups());
return success();
}
};
} // namespace
// Decompose aten.conv_transpose2d to aten.convolution
namespace {
class DecomposeAtenConvTranspose2dOp
: public OpRewritePattern<AtenConvTranspose2dInputOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenConvTranspose2dInputOp op,
PatternRewriter &rewriter) const override {
Value cstTrue = rewriter.create<Torch::ConstantBoolOp>(op.getLoc(), true);
rewriter.replaceOpWithNewOp<AtenConvolutionOp>(
op, op->getResultTypes(), op.getInput(), op.getWeight(), op.getBias(),
op.getStride(), op.getPadding(), op.getDilation(), /*transposed=*/cstTrue,
op.getOutputPadding(), op.getGroups());
return success();
}
};
} // namespace
static LogicalResult getTransposedType(BaseTensorType inType, int64_t dimA,
int64_t dimB, Type &transposedType) {
if (!inType.hasSizes())
return failure();
SmallVector<int64_t> shape(inType.getSizes());
int64_t tmp = shape[0];
shape[0] = shape[1];
shape[1] = tmp;
transposedType = inType.getWithSizesAndDtype(llvm::ArrayRef(shape),
inType.getOptionalDtype());
return success();
}
// The convolution backward op is decomposed as follows:
// inputH, inputW = input.shape[2:]
// output_padding_ = [
// inputH
// - 1
// + 2 * padding_[0]
// - dilation_[0] * (weight.shape[2] - 1)
// - (grad_output.shape[2] - 1) * stride_[0],
// inputW
// - 1
// + 2 * padding_[1]
// - dilation_[1] * (weight.shape[3] - 1)
// - (grad_output.shape[3] - 1) * stride_[1],
// ]
//
// decomp_grad_input = torch.nn.functional.conv_transpose2d(
// grad_output,
// weight,
// None,
// stride_,
// padding_,
// output_padding_,
// groups_,
// dilation_,
// )
//
// input_transposed = torch.ops.aten.transpose(input, 0, 1)
// grad_output_transposed = grad_output.view(
// grad_output.shape[0] * grad_output.shape[1], 1, *grad_output.shape[2:]
// )
// decomp_grad_weight = torch.ops.aten.convolution(
// input_transposed,
// grad_output_transposed,
// bias=None,
// stride=dilation_,
// padding=padding_,
// dilation=stride_,
// transposed=False,
// output_padding=[0, 0],
// groups=input.shape[0],
// )
// decomp_grad_weight = torch.narrow(decomp_grad_weight, 2, 0, weight.shape[2])
// decomp_grad_weight = torch.narrow(decomp_grad_weight, 3, 0, weight.shape[3])
// decomp_grad_weight = decomp_grad_weight.view(
// input_transposed.shape[0],
// input_transposed.shape[1],
// grad_output.shape[1],
// *decomp_grad_weight.shape[2:]
// )
// decomp_grad_weight = decomp_grad_weight.movedim(0, 2)
// decomp_grad_weight = decomp_grad_weight.sum(dim=0)
//
// decomp_grad_bias = torch.sum(grad_output, dim=[0, 2, 3])
namespace {
class DecomposeAtenConvolutionBackwardOp
: public OpRewritePattern<AtenConvolutionBackwardOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenConvolutionBackwardOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
MLIRContext *context = op.getContext();
Value input = op.getInput();
Value weight = op.getWeight();
Value gradOutput = op.getGradOutput();
std::optional<unsigned> maybeGradRank = getTensorRank(gradOutput);
if (!maybeGradRank) {
return rewriter.notifyMatchFailure(op,
"expected grad output to have a rank");
}
unsigned gradRank = *maybeGradRank;
if (gradRank != 4)
return rewriter.notifyMatchFailure(
op, "unimplemented: only 2D convolutions supported.");
Value cstZero = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(0));
Value cstOne = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(1));
Value cstTwo = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(2));
Value cstNone = rewriter.create<Torch::ConstantNoneOp>(loc);
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(
loc, rewriter.getBoolAttr(false));
SmallVector<Value> padding, dilation, stride;
SmallVector<int64_t, 2> paddingInt, dilationInt, strideInt,
outputPaddingInt;
if (!matchPattern(op.getPadding(), m_TorchListOfConstantInts(paddingInt)))
return rewriter.notifyMatchFailure(
op, "padding must be a list of constant ints");
if (!matchPattern(op.getStride(), m_TorchListOfConstantInts(strideInt)))
return rewriter.notifyMatchFailure(
op, "stride must be a list of constant ints");
if (!matchPattern(op.getDilation(), m_TorchListOfConstantInts(dilationInt)))
return rewriter.notifyMatchFailure(
op, "dilation must be a list of constant ints");
if (!llvm::all_of(dilationInt,
[](int64_t dilationVal) { return dilationVal == 1; }))
return rewriter.notifyMatchFailure(
op, "unimplemented: only dilations of 1 supported.");
if (!matchPattern(op.getOutputPadding(),
m_TorchListOfConstantInts(outputPaddingInt)))
return rewriter.notifyMatchFailure(
op, "output padding must be a list of constant ints");
if (!llvm::all_of(outputPaddingInt,
[](int64_t outPad) { return outPad == 0; }))
return rewriter.notifyMatchFailure(
op, "unimplemented: only output padding of 0 supported.");
SmallVector<bool> outMask;
if (!matchPattern(op.getOutputMask(), m_TorchListOfConstantBools(outMask)))
return rewriter.notifyMatchFailure(
op, "only constant bool output_mask is supported.");
for (unsigned i = 0; i < outMask.size(); i++) {
if (outMask[i] == false) {
Value result = op->getResults()[i];
if (!result.getUsers().empty())
return rewriter.notifyMatchFailure(
op, "unimplemented: false value supported for output_mask only "
"when the result tensor corresponding to that has no users.");
}
}
bool transposed;
if (!matchPattern(op.getTransposed(), m_TorchConstantBool(&transposed)))
return rewriter.notifyMatchFailure(
op, "transposed arg should be a constant bool.");
if (transposed)
return rewriter.notifyMatchFailure(
op, "unimplemented: transposed convolutions are not supported.");
getListConstructElements(op.getPadding(), padding);
getListConstructElements(op.getStride(), stride);
getListConstructElements(op.getDilation(), dilation);
// Computing Grad Input.
// Calculate output padding for first convolution.
// output_padding_ = [
// inputH - 1 + (2 * padding_[0]) - (dilation_[0] * (weight.size()[2]
// - 1)) - ((grad_out.size()[2] - 1) * stride_[0]), inputW - 1 + (2 *
// padding_[1]) - (dilation_[1] * (weight.size()[3] - 1)) -
// ((grad_out.size()[3] - 1) * stride_[1]),
// ]
SmallVector<Value> outputPaddingValues;
for (unsigned i = 2; i < gradRank; i++) {
Value dim = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(i));
Value inputVecDim =
rewriter.create<Torch::AtenSizeIntOp>(loc, input, dim);
Value gradOutDim =
rewriter.create<Torch::AtenSizeIntOp>(loc, gradOutput, dim);
Value weightDim = rewriter.create<Torch::AtenSizeIntOp>(loc, weight, dim);
Value inputVecDimMinusOne =
rewriter.create<Torch::AtenSubIntOp>(loc, inputVecDim, cstOne);
Value gradOutDimMinusOne =
rewriter.create<Torch::AtenSubIntOp>(loc, gradOutDim, cstOne);
Value weightDimMinusOne =
rewriter.create<Torch::AtenSubIntOp>(loc, weightDim, cstOne);
Value twoTimesPadding =
rewriter.create<Torch::AtenMulIntOp>(loc, padding[i - 2], cstTwo);
Value tmpA = rewriter.create<Torch::AtenMulIntOp>(loc, weightDimMinusOne,
dilation[i - 2]);
Value tmpB = rewriter.create<Torch::AtenMulIntOp>(loc, gradOutDimMinusOne,
stride[i - 2]);
Value outputPaddingVal = rewriter.create<AtenAddIntOp>(
loc, inputVecDimMinusOne, twoTimesPadding);
outputPaddingVal =
rewriter.create<AtenSubIntOp>(loc, outputPaddingVal, tmpA);
outputPaddingVal =
rewriter.create<AtenSubIntOp>(loc, outputPaddingVal, tmpB);
outputPaddingValues.push_back(outputPaddingVal);
}
Value outputPaddingForGradInput =
rewriter.create<Torch::PrimListConstructOp>(
loc, ListType::get(IntType::get(context)), outputPaddingValues);
Value gradInput = rewriter.create<Torch::AtenConvTranspose2dInputOp>(
loc, op.getResultTypes()[0], gradOutput, weight, cstNone,
op.getStride(), op.getPadding(), outputPaddingForGradInput,
op.getGroups(), op.getDilation());
Type transposedType;
if (failed(getTransposedType(input.getType().cast<BaseTensorType>(), 0, 1,
transposedType)))
return failure();
Value inputTransposed = rewriter.create<Torch::AtenTransposeIntOp>(
loc, transposedType, input, cstZero, cstOne);
// For the cases where the stride is non-unit, we compute the `GradWeight`
// through this implementation.
Value gradWeight;
if (!llvm::all_of(strideInt, [](int64_t stride) { return stride == 1; })) {
// Computing Grad Weight.
SmallVector<Value, 4> gradOutputSize;
for (unsigned i = 0; i < gradRank; i++) {
gradOutputSize.push_back(rewriter.create<Torch::AtenSizeIntOp>(
loc, gradOutput,
rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(i))));
}
Value gradOutputViewDimZero = rewriter.create<Torch::AtenMulIntOp>(
loc, gradOutputSize[0], gradOutputSize[1]);
Value gradOutputViewShapeList =
rewriter.create<Torch::PrimListConstructOp>(
loc, Torch::ListType::get(Torch::IntType::get(op.getContext())),
ValueRange{gradOutputViewDimZero, cstOne, gradOutputSize[2],
gradOutputSize[3]});
BaseTensorType gradOutputTy = gradOutput.getType().cast<BaseTensorType>();
if (!gradOutputTy.hasSizes())
return failure();
SmallVector<int64_t> gradOutputSizesInt(gradOutputTy.getSizes());
SmallVector<int64_t> gradOutputViewSizesInt(gradOutputSizesInt);
if (gradOutputViewSizesInt[0] != kUnknownSize &&
gradOutputViewSizesInt[1] != kUnknownSize)
gradOutputViewSizesInt[0] *= gradOutputViewSizesInt[1];
else
gradOutputViewSizesInt[0] = kUnknownSize;
gradOutputViewSizesInt[1] = 1;
BaseTensorType gradOutputTypeForView =
gradOutputTy
.getWithSizesAndDtype(llvm::ArrayRef(gradOutputViewSizesInt),
gradOutputTy.getOptionalDtype())
.cast<BaseTensorType>();
Value gradOutputView = rewriter.create<Torch::AtenViewOp>(
loc, gradOutputTypeForView, gradOutput, gradOutputViewShapeList);
BaseTensorType inputTransposedTy =
inputTransposed.getType().cast<BaseTensorType>();
if (!inputTransposedTy.hasSizes())
return failure();
SmallVector<int64_t> inputTransposedSizesInt(
inputTransposedTy.getSizes());
SmallVector<int64_t> gradWeightSizesInt{inputTransposedSizesInt[0],
gradOutputViewSizesInt[0]};
for (unsigned i = 2; i < gradRank; i++) {
if (inputTransposedSizesInt[i] != kUnknownSize &&
gradOutputViewSizesInt[i] != kUnknownSize) {
int64_t kernelSizeInt =
strideInt[i - 2] * (gradOutputViewSizesInt[i] - 1) + 1;
gradWeightSizesInt.push_back(
((inputTransposedSizesInt[i] + (paddingInt[i - 2] * 2) -
kernelSizeInt) /
dilationInt[i - 2]) +
1);
} else {
gradWeightSizesInt.push_back(kUnknownSize);
}
}
BaseTensorType gradWeightTy =
inputTransposedTy
.getWithSizesAndDtype(llvm::ArrayRef(gradWeightSizesInt),
inputTransposedTy.getOptionalDtype())
.cast<BaseTensorType>();
Value numGroup = rewriter.create<AtenSizeIntOp>(loc, input, cstZero);
gradWeight = rewriter.create<Torch::AtenConvolutionOp>(
loc, gradWeightTy, inputTransposed, gradOutputView, cstNone,
/*stride=*/op.getDilation(), op.getPadding(),
/*dilation=*/op.getStride(), op.getTransposed(),
op.getOutputPadding(), numGroup);
BaseTensorType weightTy = weight.getType().cast<BaseTensorType>();
if (!weightTy.hasSizes())
return failure();
SmallVector<int64_t> weightSizes(weightTy.getSizes());
for (unsigned i = 0; i < gradWeightTy.getSizes().size() - 2; i++) {
gradWeightSizesInt[i + 2] = weightSizes[i + 2];
BaseTensorType gradWeightNarrowTy =
gradWeightTy
.getWithSizesAndDtype(llvm::ArrayRef(gradWeightSizesInt),
gradWeightTy.getOptionalDtype())
.cast<BaseTensorType>();
Value dim = rewriter.create<ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(i + 2));
Value length = rewriter.create<Torch::AtenSizeIntOp>(loc, weight, dim);
gradWeight = rewriter.create<Torch::AtenNarrowOp>(
loc, gradWeightNarrowTy, gradWeight, dim, /*start=*/cstZero,
length);
}
SmallVector<int64_t, 5> gradWeightViewShapeInt{
inputTransposedSizesInt[0], inputTransposedSizesInt[1]};
gradWeightViewShapeInt.push_back(gradOutputSizesInt[1]);
gradWeightViewShapeInt.insert(
gradWeightViewShapeInt.end(),
{gradWeightSizesInt[2], gradWeightSizesInt[3]});
SmallVector<Value> gradWeightViewShapeValue;
for (unsigned i = 0; i < gradWeightViewShapeInt.size(); i++) {
gradWeightViewShapeValue.push_back(
rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(gradWeightViewShapeInt[i])));
}
Value gradWeightViewShapeList =
rewriter.create<Torch::PrimListConstructOp>(
loc, Torch::ListType::get(Torch::IntType::get(op.getContext())),
gradWeightViewShapeValue);
BaseTensorType gradWeightTypeForView =
gradWeightTy
.getWithSizesAndDtype(llvm::ArrayRef(gradWeightViewShapeInt),
gradWeightTy.getOptionalDtype())
.cast<BaseTensorType>();
gradWeight = rewriter.create<Torch::AtenViewOp>(
loc, gradWeightTypeForView, gradWeight, gradWeightViewShapeList);
gradWeightTy = gradWeight.getType().cast<BaseTensorType>();
SmallVector<int64_t, 5> gradWeightDimsOrder =
computeDimsOrderForMoveDim(0, 2, gradWeightViewShapeInt.size());
SmallVector<int64_t, 5> gradWeightMoveDimShape;
for (unsigned i = 0; i < gradWeightDimsOrder.size(); i++) {
gradWeightMoveDimShape.push_back(
gradWeightViewShapeInt[gradWeightDimsOrder[i]]);
}
BaseTensorType gradWeightTypeForMoveDim =
gradWeightTy
.getWithSizesAndDtype(llvm::ArrayRef(gradWeightMoveDimShape),
gradWeightTy.getOptionalDtype())
.cast<BaseTensorType>();
gradWeight = rewriter.create<AtenMovedimIntOp>(
loc, gradWeightTypeForMoveDim, gradWeight, /*source=*/cstZero,
/*destination=*/cstTwo);
Value gradIntList = rewriter.create<Torch::PrimListConstructOp>(
loc, Torch::ListType::get(Torch::IntType::get(op.getContext())),
llvm::ArrayRef{cstZero});
gradWeight = rewriter.create<Torch::AtenSumDimIntListOp>(
loc, op.getResultTypes()[1], /*self=*/gradWeight, /*dim=*/gradIntList,
/*keepdim=*/cstFalse,
/*dtype=*/cstNone);
} else {
if (failed(getTransposedType(gradOutput.getType().cast<BaseTensorType>(),
0, 1, transposedType)))
return failure();
Value gradOutputTransposed = rewriter.create<Torch::AtenTransposeIntOp>(
loc, transposedType, gradOutput, cstZero, cstOne);
// Convolve input with grad_output.
if (failed(
getTransposedType(op.getResultTypes()[1].cast<BaseTensorType>(),
0, 1, transposedType)))
return failure();
gradWeight = rewriter.create<Torch::AtenConvolutionOp>(
loc, transposedType, inputTransposed, gradOutputTransposed, cstNone,
op.getStride(), op.getPadding(), op.getDilation(), op.getTransposed(),
op.getOutputPadding(), op.getGroups());
gradWeight = rewriter.create<Torch::AtenTransposeIntOp>(
loc, op.getResultTypes()[1], gradWeight, cstZero, cstOne);
}
// Computing Grad Bias.
SmallVector<Value> dimIntList{cstZero};
for (unsigned i = 2; i < gradRank; i++)
dimIntList.push_back(rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(i)));
Value gradIntList = rewriter.create<Torch::PrimListConstructOp>(
loc, Torch::ListType::get(Torch::IntType::get(op.getContext())),
dimIntList);
// Sum grad_output along dim 1.
Value gradBias = rewriter.create<Torch::AtenSumDimIntListOp>(
loc, op.getResultTypes()[2], gradOutput, gradIntList, cstFalse,
cstNone);
rewriter.replaceOp(op, {gradInput, gradWeight, gradBias});
return success();
}
};
} // namespace
// Decompose aten.addmm into aten.mm and aten.add.Tensor op.
namespace {
class DecomposeAtenAddmmOp : public OpRewritePattern<AtenAddmmOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenAddmmOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value input = op.getSelf();
Value mat1 = op.getMat1();
Value mat2 = op.getMat2();
std::optional<unsigned> mat1Rank = getTensorRank(mat1);
std::optional<unsigned> mat2Rank = getTensorRank(mat2);
// The operands `mat1`, `mat2` to aten.addmm must be of rank 2.
if (!mat1Rank || !mat2Rank || *mat1Rank != 2 || *mat2Rank != 2) {
return rewriter.notifyMatchFailure(
op, "expected mat1, mat2 operands to aten.addmm to be rank 2");
}
// TODO: Handle integer type operands.
auto inputType = input.getType().cast<BaseTensorType>();
if (!inputType.hasDtype() || !inputType.getDtype().isa<mlir::FloatType>()) {
return rewriter.notifyMatchFailure(
op, "unimplemented: non-floating point dtype");
}
// matrix multiplication: matmul = mat1 @ mat2
Value matmul = rewriter.create<AtenMmOp>(loc, op.getType(), mat1, mat2);
// scaledInput = self * beta
Value scaledInput = rewriter.create<AtenMulScalarOp>(loc, input.getType(),
input, op.getBeta());
// result = scaledInput + alpha * matmul
rewriter.replaceOpWithNewOp<AtenAddTensorOp>(op, op.getType(), scaledInput,
matmul, op.getAlpha());
return success();
}
};
} // namespace
// Decompose aten.mean into: sum(x)/div(numTensorElements).
namespace {
class DecomposeAtenMeanOp : public OpRewritePattern<AtenMeanOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenMeanOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value input = op.getSelf();
Value output = op.getResult();
BaseTensorType outputTensorType = output.getType().cast<BaseTensorType>();
Value sum =
rewriter.create<AtenSumOp>(loc, outputTensorType, input, op.getDtype());
Value numTensorElements = rewriter.create<AtenNumelOp>(loc, input);
rewriter.replaceOpWithNewOp<AtenDivScalarOp>(op, outputTensorType, sum,
numTensorElements);
return success();
}
};
} // namespace
// productDimSize = product(size(dim) for dim in dims)
// aten.mean(x, dims) = aten.sum(x, dims) / productDimSize.
namespace {
class DecomposeAtenMeanDimOp : public OpRewritePattern<AtenMeanDimOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenMeanDimOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value input = op.getSelf();
std::optional<unsigned> maybeInputRank = getTensorRank(input);
if (!maybeInputRank) {
return rewriter.notifyMatchFailure(op, "expected input to have a rank");
}
unsigned inputRank = *maybeInputRank;
Value dimList = op.getDim();
Value keepDim = op.getKeepdim();
Value dtype = op.getDtype();
Type outputType = op.getType();
MLIRContext *context = op.getContext();
BaseTensorType inputType = input.getType().cast<BaseTensorType>();
if (!inputType.hasDtype() || !inputType.getDtype().isa<mlir::FloatType>() ||
!isNoneOrFloatDtype(context, dtype)) {
return rewriter.notifyMatchFailure(
op, "only floating-point type is supported");
}
SmallVector<Value> dimListElements;
if (!getListConstructElements(dimList, dimListElements) &&
!dimList.getType().isa<Torch::NoneType>()) {
return rewriter.notifyMatchFailure(
op, "expected `dim` to be `None` or constructed from list construct");
}
// Compute sum along dimensions specified in `dimList`.
Value sumAlongDims = rewriter.create<AtenSumDimIntListOp>(
loc, outputType, input, dimList, keepDim, dtype);
// `productDimSize` is product of sizes of dimensions to be reduced.
Value productDimSize;
// Case: Reduce along all dims.
if (dimListElements.empty() && inputRank != 0) {
productDimSize = rewriter.create<AtenNumelOp>(loc, input);
} else {
productDimSize = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(1));
for (Value dim : dimListElements) {
Value dimSize = rewriter.create<AtenSizeIntOp>(loc, input, dim);
productDimSize =
rewriter.create<AtenMulIntOp>(loc, productDimSize, dimSize);
}
}
rewriter.replaceOpWithNewOp<AtenDivScalarOp>(op, outputType, sumAlongDims,
productDimSize);
return success();
}
};
} // namespace
namespace {
class DecomposeAtenSquareOp : public OpRewritePattern<AtenSquareOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenSquareOp op,
PatternRewriter &rewriter) const override {
Value self = op.getSelf();
rewriter.replaceOpWithNewOp<AtenMulTensorOp>(op, op.getType(), self, self);
return success();
}
};
} // namespace
// Silu(x) = sigmoid(x) * x
namespace {
class DecomposeAtenSiluOp : public OpRewritePattern<AtenSiluOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenSiluOp op,
PatternRewriter &rewriter) const override {
Value self = op.getSelf();
Value sigmoid =
rewriter.create<AtenSigmoidOp>(op.getLoc(), op.getType(), self);
rewriter.replaceOpWithNewOp<AtenMulTensorOp>(op, op.getType(), sigmoid,
self);
return success();
}
};
} // namespace
// pDash = 1.0 - p
// boolMask = aten.rand_like(input) < pDash
// dropout(input, p, train=True) = (boolMask * input) / pDash
// dropout(input, p, train=False) = input
namespace {
class DecomposeAtenDropoutOp : public OpRewritePattern<AtenDropoutOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenDropoutOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value input = op.getInput();
Value prob = op.getP();
bool train = false;
if (!matchPattern(op.getTrain(), m_TorchConstantBool(&train)))
return rewriter.notifyMatchFailure(op,
"train must be a boolean constant");
if (!train) {
rewriter.replaceOp(op, input);
return success();
}
BaseTensorType inputType = input.getType().cast<BaseTensorType>();
if (!inputType.hasDtype() || !inputType.getDtype().isa<mlir::FloatType>())
return rewriter.notifyMatchFailure(
op, "only support floating type input for training mode");
Value noneVal = rewriter.create<ConstantNoneOp>(loc);
Value floatOne =
rewriter.create<ConstantFloatOp>(loc, rewriter.getF64FloatAttr(1.0));
Value oneMinusP = rewriter.create<AtenSubFloatOp>(loc, floatOne, prob);
Value boolMask = rewriter.create<ValsemVariantAtenBernoulliFloatOp>(
loc, inputType, input, oneMinusP, /*generator=*/noneVal);
Value maskedInput =
rewriter.create<AtenMulTensorOp>(loc, inputType, boolMask, input);
rewriter.replaceOpWithNewOp<AtenDivScalarOp>(op, op.getType(), maskedInput,
oneMinusP);
return success();
}
};
class DeomposeAtenNativeDropoutOp
: public OpRewritePattern<AtenNativeDropoutOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenNativeDropoutOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
MLIRContext *context = op->getContext();
Value input = op.getInput();
Value prob = op.getP();
bool train = false;
if (!op.getTrain().getType().isa<Torch::NoneType>()) {
if (!matchPattern(op.getTrain(), m_TorchConstantBool(&train))) {
return rewriter.notifyMatchFailure(
op, "train must be a boolean constant or none");
}
}
Value noneVal = rewriter.create<ConstantNoneOp>(loc);
if (!train) {
Value i1Type =
getDtypeIntValueForType(rewriter, loc, IntegerType::get(context, 1));
Value inputSize = rewriter.create<AtenSizeOp>(
loc, Torch::ListType::get(Torch::IntType::get(context)), input);
Value trueValue = rewriter.create<ConstantIntOp>(loc, 1);
Value trueMask = rewriter.create<AtenFullOp>(
loc, op->getResultTypes()[1], inputSize, trueValue, i1Type,
/*layout=*/noneVal, /*device=*/noneVal, /*pin_memory=*/noneVal);
rewriter.replaceOp(op, ArrayRef<Value>{input, trueMask});
return success();
}
BaseTensorType inputType = input.getType().cast<BaseTensorType>();
if (!inputType.hasDtype() || !inputType.getDtype().isa<mlir::FloatType>()) {
return rewriter.notifyMatchFailure(
op, "only support floating type input for training mode");
}
Value floatOne =
rewriter.create<ConstantFloatOp>(loc, rewriter.getF64FloatAttr(1.0));
Value oneMinusP = rewriter.create<AtenSubFloatOp>(loc, floatOne, prob);
Value boolMask = rewriter.create<ValsemVariantAtenBernoulliFloatOp>(
loc, inputType, input, oneMinusP, /*generator=*/noneVal);
Value maskedInput =
rewriter.create<AtenMulTensorOp>(loc, inputType, boolMask, input);
Value output = rewriter.create<AtenDivScalarOp>(
loc, op->getResultTypes()[0], maskedInput, oneMinusP);
rewriter.replaceOp(
op, ArrayRef<Value>{
output, convertTensorToDtype(rewriter, loc, boolMask,
IntegerType::get(context, 1))});
return success();
}
};
} // namespace
// Decompose aten.var into: aten.var.dim op.
namespace {
class DecomposeAtenVarOp : public OpRewritePattern<AtenVarOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenVarOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value self = op.getSelf();
std::optional<unsigned> maybeInputRank = getTensorRank(self);
if (!maybeInputRank) {
return rewriter.notifyMatchFailure(op, "expected input to have a rank");
}
unsigned inputRank = *maybeInputRank;
BaseTensorType rank0FloatTensorTy = op.getType().cast<BaseTensorType>();
if (!rank0FloatTensorTy.hasSizes() ||
rank0FloatTensorTy.getSizes().size() != 0) {
return rewriter.notifyMatchFailure(
op, "expected aten.var to have a rank 0 tensor type");
}
SmallVector<Value> dims;
for (unsigned i = 0; i < inputRank; i++)
dims.push_back(rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(i)));
Value dimList = rewriter.create<PrimListConstructOp>(
loc, Torch::ListType::get(Torch::IntType::get(op.getContext())), dims);
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(op.getLoc(), false);
rewriter.replaceOpWithNewOp<AtenVarDimOp>(op, rank0FloatTensorTy, self,
dimList, op.getUnbiased(),
/*keepdim=*/cstFalse);
return success();
}
};
} // namespace
// Decompose aten.std to sqrt(var(x))
namespace {
class DecomposeAtenStdOp : public OpRewritePattern<AtenStdOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenStdOp op,
PatternRewriter &rewriter) const override {
Value self = op.getSelf();
BaseTensorType inputTensorTy = self.getType().cast<BaseTensorType>();
if (!inputTensorTy.hasDtype() ||
!inputTensorTy.getDtype().isa<mlir::FloatType>()) {
return rewriter.notifyMatchFailure(op,
"Only aten.std support floating type");
}
Value var = rewriter.create<AtenVarOp>(op->getLoc(), op.getType(),
op.getSelf(), op.getUnbiased());
rewriter.replaceOpWithNewOp<AtenSqrtOp>(op, op.getType(), var);
return success();
}
};
} // namespace
// Softplus(x, beta, threshold) =
// x * beta > threshold ? x : log(1 + exp(x * beta)) / beta
namespace {
class DecomposeAtenSoftplusOp : public OpRewritePattern<AtenSoftplusOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenSoftplusOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value input = op.getSelf();
BaseTensorType inputType = input.getType().cast<BaseTensorType>();
Value inputTimesBeta =
rewriter.create<AtenMulScalarOp>(loc, inputType, input, op.getBeta());
// out = log1p(exp(input * beta)) / beta
Value exp = rewriter.create<AtenExpOp>(loc, inputType, inputTimesBeta);
Value log1p = rewriter.create<AtenLog1pOp>(loc, inputType, exp);
Value out =
rewriter.create<AtenDivScalarOp>(loc, inputType, log1p, op.getBeta());
// Select where x * beta > threshold
auto boolResType = inputType.getWithSizesAndDtype(inputType.getSizes(),
rewriter.getI1Type());
Value condition = rewriter.create<AtenGtScalarOp>(
loc, boolResType, inputTimesBeta, op.getThreshold());
rewriter.replaceOpWithNewOp<AtenWhereSelfOp>(op, op.getType(), condition,
input, out);
return success();
}
};
} // namespace
// Decompose aten.std.dim to sqrt(var.dim(x))
namespace {
class DecomposeAtenStdDimOp : public OpRewritePattern<AtenStdDimOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenStdDimOp op,
PatternRewriter &rewriter) const override {
Value self = op.getSelf();
BaseTensorType inputTensorType = self.getType().cast<BaseTensorType>();
if (!inputTensorType.hasDtype() ||
!inputTensorType.getDtype().isa<mlir::FloatType>()) {
return rewriter.notifyMatchFailure(
op, "aten.std.dim expects input tensor of floating-point type");
}
Value varDim =
rewriter.create<AtenVarDimOp>(op->getLoc(), op.getType(), self,
op.getDim(), op.getUnbiased(), op.getKeepdim());
rewriter.replaceOpWithNewOp<AtenSqrtOp>(op, op.getType(), varDim);
return success();
}
};
} // namespace
// Decompose aten.std.correction to sqrt(var.correction(x))
namespace {
class DecomposeAtenStdCorrectionOp
: public OpRewritePattern<AtenStdCorrectionOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenStdCorrectionOp op,
PatternRewriter &rewriter) const override {
Value self = op.getSelf();
BaseTensorType inputTensorType = self.getType().cast<BaseTensorType>();
if (!inputTensorType.hasDtype() ||
!inputTensorType.getDtype().isa<mlir::FloatType>()) {
return rewriter.notifyMatchFailure(
op,
"aten.std.correction expects input tensor of floating-point type");
}
Value varCorrection = rewriter.create<AtenVarCorrectionOp>(
op->getLoc(), op.getType(), self, op.getDim(), op.getCorrection(),
op.getKeepdim());
rewriter.replaceOpWithNewOp<AtenSqrtOp>(op, op.getType(), varCorrection);
return success();
}
};
} // namespace
// Hardsigmoid(x) = max(0, min(1, (x+3)/6))
namespace {
class DecomposeAtenHardsigmoidOp : public OpRewritePattern<AtenHardsigmoidOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenHardsigmoidOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value input = op.getSelf();
BaseTensorType inputType = input.getType().cast<BaseTensorType>();
auto resType = op.getType().cast<BaseTensorType>();
if (!resType.hasDtype()) {
return rewriter.notifyMatchFailure(op, "result should have dtype");
}
// outputTensor = (input + 3) / 6.
Value constantOne = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(1));
Value constantThree = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(3));
Value constantSix = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(6));
Value inputPlusThree = rewriter.create<AtenAddScalarOp>(
loc, inputType, input, constantThree, /*alpha=*/constantOne);
Value outputTensor = rewriter.create<AtenDivScalarOp>(
loc, inputType, inputPlusThree, constantSix);
// result = max(0, min(1, (input+3)/6))
Value constantZero = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(0));
Value oneTensor = createRank0Tensor(rewriter, loc, inputType, constantOne);
Value minResult =
rewriter.create<AtenMinimumOp>(loc, inputType, oneTensor, outputTensor);
Value zeroTensor =
createRank0Tensor(rewriter, loc, inputType, constantZero);
rewriter.replaceOpWithNewOp<AtenMaximumOp>(op, op.getType(), zeroTensor,
minResult);
return success();
}
};
} // namespace
namespace {
class DecomposeAtenHardtanhOp : public OpRewritePattern<AtenHardtanhOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenHardtanhOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value input = op.getSelf();
BaseTensorType inputType = input.getType().cast<BaseTensorType>();
auto resType = op.getType().cast<BaseTensorType>();
if (!resType.hasDtype()) {
return rewriter.notifyMatchFailure(op, "result should have dtype");
}
// result = min(maxVal, max(minVal, x))
Value minVal = createRank0Tensor(rewriter, loc, inputType, op.getMinVal());
Value maxResult =
rewriter.create<AtenMaximumOp>(loc, inputType, input, minVal);
Value maxVal = createRank0Tensor(rewriter, loc, inputType, op.getMaxVal());
rewriter.replaceOpWithNewOp<AtenMinimumOp>(op, op.getType(), maxVal,
maxResult);
return success();
}
};
} // namespace
namespace {
class DecomposeAtenRandLikeOp : public OpRewritePattern<AtenRandLikeOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenRandLikeOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value input = op.getSelf();
Type resultType = op.getType();
auto inputType = input.getType().cast<BaseTensorType>();
if (!inputType.hasDtype() || !inputType.getDtype().isa<mlir::FloatType>()) {
return rewriter.notifyMatchFailure(op,
"only support floating-point type");
}
// Create a uniform random op with low and high set to 0.0 and 1.0,
// respectively.
Value none = rewriter.create<ConstantNoneOp>(loc);
Value zero =
rewriter.create<ConstantFloatOp>(loc, rewriter.getF64FloatAttr(0.0));
Value one =
rewriter.create<ConstantFloatOp>(loc, rewriter.getF64FloatAttr(1.0));
Value emptyTensor = rewriter.create<AtenFullLikeOp>(
loc, resultType, input, zero, op.getDtype(), op.getLayout(), op.getDevice(),
op.getPinMemory(), op.getMemoryFormat());
rewriter.replaceOpWithNewOp<AtenUniformOp>(op, resultType, emptyTensor,
/*from=*/zero, /*to=*/one,
/*generator=*/none);
return success();
}
};
} // namespace
namespace {
// Bernoulli(x, p) = (randLike(float(x)) < p).cast(type(x)). Here,
// 1. p must be a float tensor.
// 2. The shape of p should be broadcastable to the shape of x.
// 3. Bernoulli(x, p) returns a tensor of the same type as that of x.
static LogicalResult decomposeBernoulliLikeOp(PatternRewriter &rewriter,
Operation *op, Location loc,
Value input, Value prob,
Value &output) {
auto inputType = input.getType().cast<BaseTensorType>();
auto probType = prob.getType().cast<BaseTensorType>();
// Both the `input` and `prob` must be ranked tensors.
if (!inputType.hasSizes() || !inputType.hasDtype() || !probType.hasSizes() ||
!probType.hasDtype()) {
return rewriter.notifyMatchFailure(
op, "can't decompose bernoulli like ops without sizes or dtype");
}
// The `prob` is expected to be a float type tensor.
if (!probType.getDtype().isa<mlir::FloatType>()) {
return rewriter.notifyMatchFailure(
op, "probabilities must be a float type tensor");
}
// Since the `aten.randLike` op expects float-type operand, create a
// float-type tensor with the same shape as that of the `input`.
Value floatTensor =
convertTensorToDtype(rewriter, loc, input, rewriter.getF64Type());
Value none = rewriter.create<ConstantNoneOp>(loc);
Value randomVal = rewriter.create<AtenRandLikeOp>(
loc, floatTensor.getType(), floatTensor, /*dtype=*/none, /*layout=*/none,
/*device=*/none, /*pinMemory=*/none, /*memoryFormat=*/none);
// Bernoulli(x, p) = randLike(float(x)) < p.
auto boolResType = inputType.getWithSizesAndDtype(inputType.getSizes(),
rewriter.getI1Type());
Value lessThanP =
rewriter.create<AtenLtTensorOp>(loc, boolResType, randomVal, prob);
// As the `output` is expected to be of the `input` type, convert the boolean
// tensor `lessThanP` to a `input` type tensor.
output = convertTensorToDtype(rewriter, loc, lessThanP, inputType.getDtype());
return success();
}
// aten.bernoulli(x) = randLike(x) < x. Here, the input x is a tensor
// containing probabilities to be used for drawing the binary random number.
class DecomposeAtenBernoulliOp : public OpRewritePattern<AtenBernoulliOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenBernoulliOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value input = op.getSelf();
if (!op.getGenerator().getType().isa<Torch::NoneType>())
return rewriter.notifyMatchFailure(
op, "The generator has to ben None because only global default "
"generator is supported");
Value output;
if (failed(
decomposeBernoulliLikeOp(rewriter, op, loc, input, input, output)))
return rewriter.notifyMatchFailure(
op, "decomposeBernoulliLikeOp failed to decompose the op");
rewriter.replaceOp(op, output);
return success();
}
};
// aten.bernoulli.float(x, p) = (randLike(float(x)) < tensor(p)).cast(type(x)).
// Since the input x can be an integer tensor, it's important to cast it to
// float type before passing it to the `aten.randLike` op.
template <typename BernoulliLikeOp>
class DecomposeAtenBernoulliLikeOp : public OpRewritePattern<BernoulliLikeOp> {
public:
using OpRewritePattern<BernoulliLikeOp>::OpRewritePattern;
LogicalResult matchAndRewrite(BernoulliLikeOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value input = op.getSelf();
Value p = op.getP();
if (!op.getGenerator().getType().template isa<Torch::NoneType>())
return rewriter.notifyMatchFailure(
op, "The generator has to ben None because only global default "
"generator is supported");
auto inputType = input.getType().cast<BaseTensorType>();
SmallVector<int64_t> empty;
Type tensorType = inputType.getWithSizesAndDtype(llvm::ArrayRef(empty),
rewriter.getF64Type());
Value prob = rewriter.create<PrimNumToTensorScalarOp>(loc, tensorType, p);
Value output;
if (failed(
decomposeBernoulliLikeOp(rewriter, op, loc, input, prob, output)))
return rewriter.notifyMatchFailure(
op, "decomposeBernoulliLikeOp failed to decompose the op");
rewriter.replaceOp(op, output);
return success();
}
};
// aten.bernoulli.Tensor(x, p) = (randLike(float(x)) < p).cast(type(x)).
// Since the input x can be an integer tensor, it's important to cast it to
// float type before passing it to the `aten.randLike` op.
class DecomposeAtenBernoulliTensorOp
: public OpRewritePattern<AtenBernoulliTensorOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenBernoulliTensorOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value input = op.getSelf();
Value prob = op.getP();
if (!op.getGenerator().getType().isa<Torch::NoneType>())
return rewriter.notifyMatchFailure(
op, "The generator has to ben None because only global default "
"generator is supported");
Value output;
if (failed(
decomposeBernoulliLikeOp(rewriter, op, loc, input, prob, output)))
return rewriter.notifyMatchFailure(
op, "decomposeBernoulliLikeOp failed to decompose the op");
rewriter.replaceOp(op, output);
return success();
}
};
} // namespace
namespace {
template <typename OpTy, typename T1T2Op>
class DecomposeAtenAddCLikeOp : public OpRewritePattern<OpTy> {
using OpRewritePattern<OpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(OpTy op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value input = op.getSelf();
Value tensor1 = op.getTensor1();
Value tensor2 = op.getTensor2();
Value value = op.getValue();
Value product =
rewriter.create<T1T2Op>(loc, op.getType(), tensor1, tensor2);
rewriter.replaceOpWithNewOp<AtenAddTensorOp>(op, op.getType(), input,
product, value);
return success();
}
};
class DecomposeAtenLayerNormOp : public OpRewritePattern<AtenLayerNormOp> {
using OpRewritePattern<AtenLayerNormOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AtenLayerNormOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
auto input = op.getInput().getType().cast<BaseTensorType>();
if (!input.hasSizes())
return rewriter.notifyMatchFailure(
op, "input tensor should have known sizes.");
int64_t inputRank = input.getSizes().size();
Value normalizedShape = op.getNormalizedShape();
SmallVector<Value> normalizedShapeSizesTorchInt;
getListConstructElements(normalizedShape, normalizedShapeSizesTorchInt);
int64_t axis = inputRank - normalizedShapeSizesTorchInt.size();
std::vector<int64_t> meanVarSizes(inputRank, 1);
for (int i = 0; i < axis; i++)
meanVarSizes[i] = input.getSizes()[i];
auto meanVarType = input.getWithSizesAndDtype(llvm::ArrayRef(meanVarSizes),
input.getOptionalDtype());
auto nativeLayerNorm = rewriter.create<AtenNativeLayerNormOp>(
loc, op.getType(), meanVarType, meanVarType, op.getInput(),
op.getNormalizedShape(), op.getWeight(), op.getBias(), op.getEps());
rewriter.replaceOp(op, nativeLayerNorm.getResult(0));
return success();
}
};
} // namespace
namespace {
class DecomposeAtenNativeLayerNormOp
: public OpRewritePattern<AtenNativeLayerNormOp> {
using OpRewritePattern<AtenNativeLayerNormOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AtenNativeLayerNormOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
auto context = op.getContext();
auto inputTy = op.getInput().getType().cast<BaseTensorType>();
if (!inputTy.hasSizes())
return rewriter.notifyMatchFailure(
op, "input tensor should have known sizes.");
int64_t inputRank = inputTy.getSizes().size();
Value normalizedShape = op.getNormalizedShape();
SmallVector<Value> normalizedShapeSizesTorchInt;
getListConstructElements(normalizedShape, normalizedShapeSizesTorchInt);
int64_t axis = inputRank - normalizedShapeSizesTorchInt.size();
auto reduceDimInts = llvm::to_vector<4>(llvm::seq<int64_t>(axis, inputRank));
auto reducedTy = op.getResult(1).getType();
auto sizeListType = ListType::get(IntType::get(context));
// build reduce dims
SmallVector<Value> reduceDimVals;
reduceDimVals.reserve(reduceDimInts.size());
std::transform(reduceDimInts.begin(), reduceDimInts.end(),
std::back_inserter(reduceDimVals), [&](int64_t d) {
return rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(d));
});
Value reduceDimList =
rewriter.create<PrimListConstructOp>(loc, sizeListType, reduceDimVals);
Value one = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(1));
Value cstTrue = rewriter.create<Torch::ConstantBoolOp>(loc, true);
Value none = rewriter.create<Torch::ConstantNoneOp>(loc);
// mean(x)
Value inputMean = rewriter.create<AtenMeanDimOp>(
loc, reducedTy, op.getInput(), reduceDimList, cstTrue, none);
// x - mean(x)
Value inputMeanExpanded =
rewriter.create<AtenExpandAsOp>(loc, inputTy, inputMean, op.getInput());
Value inputZeroMean = rewriter.create<AtenSubTensorOp>(
loc, inputTy, op.getInput(), inputMeanExpanded, one);
// var(x) = mean((x - mean(x))^2)
Value inputZeroMeanSquare = rewriter.create<AtenMulTensorOp>(
loc, inputTy, inputZeroMean, inputZeroMean);
Value inputVar = rewriter.create<AtenMeanDimOp>(
loc, reducedTy, inputZeroMeanSquare, reduceDimList, cstTrue, none);
// rsqrt(var(x) + eps)
Value inputVarPlusEps = rewriter.create<AtenAddScalarOp>(
loc, reducedTy, inputVar, op.getEps(), one);
Value inputRsqrtVar =
rewriter.create<AtenRsqrtOp>(loc, reducedTy, inputVarPlusEps);
// (x - mean(x)) * rsqrt(var(x) + eps)
Value inputRsqrtVarExpanded = rewriter.create<AtenExpandAsOp>(
loc, inputTy, inputRsqrtVar, op.getInput());
Value inputNormalized = rewriter.create<AtenMulTensorOp>(
loc, inputTy, inputZeroMean, inputRsqrtVarExpanded);
Value out = rewriter.create<TensorStaticInfoCastOp>(
loc, op.getResult(0).getType(), inputNormalized);
Value weight = op.getWeight();
Value bias = op.getBias();
if (!weight.getType().isa<Torch::NoneType>()) {
out = rewriter.create<AtenMulTensorOp>(loc, out.getType(), out, weight);
}
if (!bias.getType().isa<Torch::NoneType>()) {
out =
rewriter.create<AtenAddTensorOp>(loc, out.getType(), out, bias, one);
}
rewriter.replaceOp(op, {out, inputMean, inputRsqrtVar});
return success();
}
};
} // namespace
namespace {
// Decompose `aten.emptyLike` op into `aten.size` and `aten.empty` ops.
class DecomposeAtenEmptyLikeOp : public OpRewritePattern<AtenEmptyLikeOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenEmptyLikeOp op,
PatternRewriter &rewriter) const override {
auto sizeListType =
Torch::ListType::get(Torch::IntType::get(op.getContext()));
Value sizeList =
rewriter.create<AtenSizeOp>(op.getLoc(), sizeListType, op.getSelf());
rewriter.replaceOpWithNewOp<AtenEmptyMemoryFormatOp>(
op, op.getType(), sizeList, op.getDtype(), op.getLayout(), op.getDevice(),
op.getPinMemory(), op.getMemoryFormat());
return success();
}
};
} // namespace
namespace {
// The `aten.arange` op is converted to `aten.arange.startStep` op.
class DecomposeAtenArangeOp : public OpRewritePattern<AtenArangeOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenArangeOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
// The AtenArangeOp doesn't have a start and step value. Therefore we set
// them as default values 0 and 1, respectively.
Value start, step;
start = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(0));
step = rewriter.create<Torch::ConstantIntOp>(loc,
rewriter.getI64IntegerAttr(1));
rewriter.replaceOpWithNewOp<AtenArangeStartStepOp>(
op, op.getType(), start, op.getEnd(), step, op.getDtype(), op.getLayout(),
op.getDevice(), op.getPinMemory());
return success();
}
};
} // namespace
namespace {
// The `aten.arange.start` op is converted to `aten.arange.startStep` op.
class DecomposeAtenArangeStartOp : public OpRewritePattern<AtenArangeStartOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenArangeStartOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
// The AtenArangeStartOp doesn't have a step value. Therefore we set it as
// default value 1.
Value step;
step = rewriter.create<Torch::ConstantIntOp>(loc,
rewriter.getI64IntegerAttr(1));
rewriter.replaceOpWithNewOp<AtenArangeStartStepOp>(
op, op.getType(), op.getStart(), op.getEnd(), step, op.getDtype(), op.getLayout(),
op.getDevice(), op.getPinMemory());
return success();
}
};
} // namespace
namespace {
// Decompose constant tensor full like ops.
template <typename OpTy, int fillVal>
class DecomposeConstantTensorAllocLikeOp : public OpRewritePattern<OpTy> {
using OpRewritePattern<OpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(OpTy op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value constVal = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(fillVal));
rewriter.replaceOpWithNewOp<AtenFullLikeOp>(
op, op.getType(), op.getSelf(), constVal, op.getDtype(), op.getLayout(),
op.getDevice(), op.getPinMemory(), op.getMemoryFormat());
return success();
}
};
} // namespace
namespace {
class DecomposeAtenNativeBatchNormOp
: public OpRewritePattern<AtenNativeBatchNormOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenNativeBatchNormOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
MLIRContext *context = op.getContext();
Value input = op.getInput();
Value weight = op.getWeight();
Value bias = op.getBias();
Value runningMean = op.getRunningMean();
Value runningVar = op.getRunningVar();
Value eps = op.getEps();
// TODO: Add support for `training` mode.
bool training = false;
if (!matchPattern(op.getTraining(), m_TorchConstantBool(&training)) ||
training)
return rewriter.notifyMatchFailure(
op, "unimplemented: training mode is not supported");
// Rank of the input tensor must be greater than or equal to 2. The shape of
// the `input` is supposed to be (N, C, D?, H?, W?).
std::optional<unsigned> maybeInputRank = getTensorRank(input);
if (!maybeInputRank || *maybeInputRank < 2)
return rewriter.notifyMatchFailure(
op, "input must have rank greater than or equal to 2");
unsigned inputRank = *maybeInputRank;
// In the inference mode, the `runningMean` and `runningVar` must not be
// None.
if (runningMean.getType().isa<Torch::NoneType>() ||
runningVar.getType().isa<Torch::NoneType>())
return rewriter.notifyMatchFailure(
op, "running stats must not be None in inference mode");
// Rank of `runningMean` and `runningVar` must be exactly 1.
std::optional<unsigned> runningMeanRank = getTensorRank(runningMean);
std::optional<unsigned> runningVarRank = getTensorRank(runningVar);
if (!runningMeanRank || !runningVarRank || *runningMeanRank != 1 ||
*runningVarRank != 1)
return rewriter.notifyMatchFailure(
op, "expected runningMean and runningVar to be rank 1");
Value zero =
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(0));
Value one =
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(1));
Value numFeatures = rewriter.create<AtenSizeIntOp>(loc, input, /*dim=*/one);
// TODO: Add Runtime Asserts to check the shape of weight, bias,
// runningMean and runningVar to be (numFeatures).
// The `runningMean` and `runningVar` must be reshaped to (1, C, 1?, 1?, 1?)
// to make it broadcast-compatible with (N, C, D?, H?, W?).
// 1. runningMean = runningMean.view(1, C, 1?, 1?, 1?)
// 2. runningVar = runningVar.view(1, C, 1?, 1?, 1?)
SmallVector<Value> runningStatsShape(inputRank, one);
runningStatsShape[1] = numFeatures;
Value runningStatsSizeList = rewriter.create<PrimListConstructOp>(
loc, ListType::get(IntType::get(context)), runningStatsShape);
SmallVector<int64_t> runningStatsShapeInt(inputRank, 1);
runningStatsShapeInt[1] = runningMean.getType().cast<BaseTensorType>().getSizes()[0];
Type dtype = input.getType().cast<ValueTensorType>().getOptionalDtype();
Type reshapeType = ValueTensorType::get(
context, llvm::ArrayRef(runningStatsShapeInt), dtype);
runningMean = rewriter.create<AtenViewOp>(loc, reshapeType, runningMean,
runningStatsSizeList);
runningVar = rewriter.create<AtenViewOp>(loc, reshapeType, runningVar,
runningStatsSizeList);
// normalizedInput = (input - runningMean) / (sqrt(runningVar + eps)).
Value inputSubMean = rewriter.create<AtenSubTensorOp>(
loc, input.getType(), input, runningMean, /*alpha=*/one);
Value varEps = rewriter.create<AtenAddScalarOp>(
loc, runningVar.getType(), runningVar, eps, /*alpha=*/one);
Value invStd = rewriter.create<AtenRsqrtOp>(loc, varEps.getType(), varEps);
Value normalizedInput = rewriter.create<AtenMulTensorOp>(
loc, inputSubMean.getType(), inputSubMean, invStd);
// The `weight` and `bias` must be reshaped to (1, C, 1?, 1?, 1?) to make it
// broadcast-compatible with (N, C, D?, H?, W?).
// 1. weight = weight.view(1, C, 1?, 1?, 1?)
// 2. bias = bias.view(1, C, 1?, 1?, 1?)
// 3. output = normalizedInput * weight + bias
Value batchNormOutput = normalizedInput;
if (!weight.getType().isa<Torch::NoneType>()) {
// Rank of `weight` must be exactly 1.
std::optional<unsigned> weightRank = getTensorRank(weight);
if (!weightRank || *weightRank != 1)
return rewriter.notifyMatchFailure(op, "expected weight to be rank 1");
weight = rewriter.create<AtenViewOp>(loc, reshapeType, weight,
runningStatsSizeList);
batchNormOutput = rewriter.create<AtenMulTensorOp>(
loc, batchNormOutput.getType(), batchNormOutput, weight);
}
if (!bias.getType().isa<Torch::NoneType>()) {
// Rank of `bias` must be exactly 1.
std::optional<unsigned> biasRank = getTensorRank(bias);
if (!biasRank || *biasRank != 1)
return rewriter.notifyMatchFailure(op, "expected bias to be rank 1");
bias = rewriter.create<AtenViewOp>(loc, reshapeType, bias,
runningStatsSizeList);
batchNormOutput = rewriter.create<AtenAddTensorOp>(
loc, batchNormOutput.getType(), batchNormOutput, bias, /*alpha=*/one);
}
// The `mean` and `invstd` outputs are empty tensors in inference mode.
Value zeroList = rewriter.create<PrimListConstructOp>(
loc, Torch::ListType::get(zero.getType()), zero);
Value none = rewriter.create<ConstantNoneOp>(loc);
Value emptyMeanTensor = rewriter.create<AtenEmptyMemoryFormatOp>(
loc, op.getType(1), zeroList, /*dtype=*/none, /*layout=*/none,
/*device=*/none, /*pinMemory=*/none, /*memoryFormat=*/none);
Value emptyInvStdTensor = rewriter.create<AtenEmptyMemoryFormatOp>(
loc, op.getType(2), zeroList, /*dtype=*/none, /*layout=*/none,
/*device=*/none, /*pinMemory=*/none, /*memoryFormat=*/none);
rewriter.replaceOp(op,
{batchNormOutput, emptyMeanTensor, emptyInvStdTensor});
return success();
}
};
} // namespace
// Decompse `Aten_UnsafeViewOp` into `AtenViewOp`. UnsafeView() differs from
// view() in that the returned tensor isn't treated as a view for the purposes
// of automatic differentiation. It's only safe to use if the `self` tensor is
// temporary. For example, the viewed tensor here (a + b) is discarded
// immediately after viewing:
//
// res = UnsafeView(a + b, size);
//
// This is a hack because in-place operations on tensors treated like views
// can be much more expensive than the same operations on non-view tensors.
// Refer to
// https://github.com/pytorch/pytorch/blob/364055b2771ecf9b54f1d67a8bf44bb5496476d4/aten/src/ATen/native/TensorShape.cpp#L2072
namespace {
class DecomposeAten_UnsafeViewOp : public OpRewritePattern<Aten_UnsafeViewOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(Aten_UnsafeViewOp op,
PatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<AtenViewOp>(op, op.getType(), op.getSelf(),
op.getSize());
return success();
}
};
} // namespace
// In PyTorch, ReshapeAlias just uses an already computed stride.
// See
// https://github.com/pytorch/pytorch/blob/d8c31a819d4a65e732b5901e3b994e1869851f1a/aten/src/ATen/native/TensorShape.cpp#L1153
// Note that this is the same decomposition as in AOTAutograd
// https://github.com/pytorch/functorch/blob/a3042d94e616d4143813668b1372d9d4545be14e/functorch/Src/aotAutograd.py#L104
namespace {
class DecomposeAten_ReshapeAliasOp
: public OpRewritePattern<Aten_ReshapeAliasOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(Aten_ReshapeAliasOp op,
PatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<AtenViewOp>(op, op.getType(), op.getSelf(),
op.getSize());
return success();
}
};
} // namespace
namespace {
// Decompose constant tensor like ops.
template <typename OpTy, typename NewOpTy>
class DecomposeConstantTensorNewLikeOp : public OpRewritePattern<OpTy> {
using OpRewritePattern<OpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(OpTy op,
PatternRewriter &rewriter) const override {
Value dtype = op.getDtype();
if (dtype.getType().isa<Torch::NoneType>()) {
BaseTensorType tensorType =
op.getSelf().getType().template cast<BaseTensorType>();
if (!tensorType.hasDtype()) {
return rewriter.notifyMatchFailure(
op, "expected input tensor to have a dtype");
}
dtype =
getDtypeIntValueForType(rewriter, op.getLoc(), tensorType.getDtype());
}
rewriter.replaceOpWithNewOp<NewOpTy>(op, op.getType(), op.getSize(), dtype,
op.getLayout(), op.getDevice(),
op.getPinMemory());
return success();
}
};
} // namespace
namespace {
// Decompose `aten.full` op into `aten.broadcastTo`
class DecomposeAtenFullOp : public OpRewritePattern<AtenFullOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenFullOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
BaseTensorType outTy = op.getType().template cast<BaseTensorType>();
if (!outTy.hasDtype()) {
return rewriter.notifyMatchFailure(
op, "expected result type to have a dtype");
}
SmallVector<int64_t> empty;
auto dtype =
getTypeForTorchType(op.getContext(), op.getFillValue().getType());
Type tensorType = outTy.getWithSizesAndDtype(llvm::ArrayRef(empty), dtype);
Value fillVal = rewriter.create<PrimNumToTensorScalarOp>(loc, tensorType,
op.getFillValue());
fillVal = convertTensorToDtype(rewriter, loc, fillVal, outTy.getDtype());
rewriter.replaceOpWithNewOp<AtenBroadcastToOp>(op, op.getType(), fillVal,
op.getSize());
return success();
}
};
} // namespace
namespace {
// Decompose `aten.linear` op into `aten.matmul` and `aten.add` ops.
class DecomposeAtenLinearOp : public OpRewritePattern<AtenLinearOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenLinearOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value input = op.getInput();
Value weight = op.getWeight();
Value bias = op.getBias();
BaseTensorType inputType = input.getType().cast<BaseTensorType>();
if (!inputType.hasSizes() || inputType.getSizes().size() < 2)
return rewriter.notifyMatchFailure(
op, "expected input to be rank 2 or greater");
BaseTensorType weightType = weight.getType().cast<BaseTensorType>();
// `weight` must be a rank 2 matrix.
if (!weightType.hasSizes() || weightType.getSizes().size() != 2)
return rewriter.notifyMatchFailure(op, "expected weight to be a rank 2");
SmallVector<int64_t> transposeShape =
llvm::to_vector(llvm::reverse(weightType.getSizes()));
Type transposeType = weightType.getWithSizesAndDtype(
llvm::ArrayRef(transposeShape), weightType.getOptionalDtype());
Value transposeWeight =
rewriter.create<AtenTOp>(loc, transposeType, weight);
Value matmul = rewriter.create<AtenMatmulOp>(loc, op.getType(), input,
transposeWeight);
if (bias.getType().isa<Torch::NoneType>()) {
rewriter.replaceOp(op, matmul);
return success();
}
BaseTensorType biasType = bias.getType().cast<BaseTensorType>();
if (!biasType.hasSizes() || biasType.getSizes().size() != 1)
return rewriter.notifyMatchFailure(op, "expected bias to be rank 1");
Value alpha =
rewriter.create<ConstantFloatOp>(loc, rewriter.getF64FloatAttr(1));
rewriter.replaceOpWithNewOp<AtenAddTensorOp>(op, op.getType(), matmul,
op.getBias(), alpha);
return success();
}
};
} // namespace
namespace {
// Decompose `aten.mish` op into `aten.tanh` and `aten.softplus` ops.
// Mish(x) = x * Tanh(Softplus(x))
class DecomposeAtenMishOp : public OpRewritePattern<AtenMishOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenMishOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value input = op.getSelf();
Type type = op.getType();
auto inputType = input.getType().cast<BaseTensorType>();
if (!inputType.hasDtype())
return rewriter.notifyMatchFailure(op, "Dtype not present");
Type dType = inputType.getDtype();
// Form default Value tensors for `beta` and `threshold` operands
// of `aten.softplus` op.
Value beta = getConstantWithGivenDtypeAndValue(rewriter, loc, 1.0, dType);
Value threshold =
getConstantWithGivenDtypeAndValue(rewriter, loc, 20.0, dType);
Value softplusOp =
rewriter.create<AtenSoftplusOp>(loc, type, input, beta, threshold);
Value tanhOp = rewriter.create<AtenTanhOp>(loc, type, softplusOp);
rewriter.replaceOpWithNewOp<AtenMulTensorOp>(op, type, input, tanhOp);
return success();
}
};
} // namespace
namespace {
// Decompose `aten.fullLike` op into `aten.emptyLike` and `aten.fill` ops.
class DecomposeAtenFullLikeOp : public OpRewritePattern<AtenFullLikeOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenFullLikeOp op,
PatternRewriter &rewriter) const override {
BaseTensorType outTy = op.getType().template cast<BaseTensorType>();
if (!outTy.hasDtype()) {
return rewriter.notifyMatchFailure(
op, "expected result type to have a dtype");
}
SmallVector<int64_t> empty;
auto dtype =
getTypeForTorchType(op.getContext(), op.getFillValue().getType());
Type tensorType = outTy.getWithSizesAndDtype(llvm::ArrayRef(empty), dtype);
Value fillVal = rewriter.create<PrimNumToTensorScalarOp>(
op.getLoc(), tensorType, op.getFillValue());
fillVal =
convertTensorToDtype(rewriter, op.getLoc(), fillVal, outTy.getDtype());
rewriter.replaceOpWithNewOp<AtenExpandAsOp>(op, op.getType(), fillVal,
op.getSelf());
return success();
}
};
} // namespace
namespace {
// Decompose `aten.new_full` op into `aten.full` op.
class DecomposeAtenNewFullOp : public OpRewritePattern<AtenNewFullOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenNewFullOp op,
PatternRewriter &rewriter) const override {
Value dtype = op.getDtype();
if (dtype.getType().isa<Torch::NoneType>()) {
BaseTensorType tensorType = op.getSelf().getType().cast<BaseTensorType>();
if (!tensorType.hasDtype()) {
return rewriter.notifyMatchFailure(
op, "expected input tensor to have a dtype");
}
dtype =
getDtypeIntValueForType(rewriter, op.getLoc(), tensorType.getDtype());
}
rewriter.replaceOpWithNewOp<AtenFullOp>(
op, op.getType(), op.getSize(), op.getFillValue(), dtype, op.getLayout(), op.getDevice(),
op.getPinMemory());
return success();
}
};
} // namespace
namespace {
// Decompose `aten.indexPut` op into `valsem.aten.indexPutImpl` op.
class DecomposeAtenIndexPutOp : public OpRewritePattern<AtenIndexPutOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenIndexPutOp op,
PatternRewriter &rewriter) const override {
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(op.getLoc(), false);
rewriter.replaceOpWithNewOp<Aten_IndexPutImplOp>(
op, op.getType(), op.getSelf(), op.getIndices(), op.getValues(), op.getAccumulate(),
/*unsafe=*/cstFalse);
return success();
}
};
} // namespace
namespace {
class DecomposeAtenExpandAsOp : public OpRewritePattern<AtenExpandAsOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenExpandAsOp op,
PatternRewriter &rewriter) const override {
auto sizeListType =
Torch::ListType::get(Torch::IntType::get(op.getContext()));
Value sizeList =
rewriter.create<AtenSizeOp>(op.getLoc(), sizeListType, op.getOther());
rewriter.replaceOpWithNewOp<AtenBroadcastToOp>(op, op.getType(), op.getSelf(),
sizeList);
return success();
}
};
} // namespace
namespace {
// Decompose `aten.ToCopy` op into `valsem.aten.copy` op.
class DecomposeAten_ToCopyOp : public OpRewritePattern<Aten_ToCopyOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(Aten_ToCopyOp op,
PatternRewriter &rewriter) const override {
auto resultType = op.getType().cast<BaseTensorType>();
if (!resultType.hasDtype()) {
return rewriter.notifyMatchFailure(
op, "expected result type to have a dtype");
}
Type resultDtype = resultType.getDtype();
Value zero = getConstantWithGivenDtypeAndValue(rewriter, op.getLoc(), 0.0,
resultDtype);
Value emptyTensor = rewriter.create<AtenFullLikeOp>(
op.getLoc(), op.getType(), op.getSelf(), zero, op.getDtype(), op.getLayout(),
op.getDevice(), op.getPinMemory(), op.getMemoryFormat());
rewriter.replaceOpWithNewOp<AtenCopyOp>(op, op.getType(), emptyTensor,
op.getSelf(), op.getNonBlocking());
return success();
}
};
} // namespace
namespace {
// Decompose `aten.copy` op into `aten.to.dtype` and `aten.expand_as`.
class DecomposeAtenCopyOp : public OpRewritePattern<AtenCopyOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenCopyOp op,
PatternRewriter &rewriter) const override {
auto resultType = op.getType().cast<BaseTensorType>();
if (!resultType.hasDtype()) {
return rewriter.notifyMatchFailure(
op, "expected result type to have a dtype");
}
auto srcTy = op.getSrc().getType().cast<BaseTensorType>();
if (!srcTy.hasSizes() || !srcTy.hasDtype()) {
return rewriter.notifyMatchFailure(
op, "expected src type to have a known rank and dtype");
}
Type resultDtype = resultType.getDtype();
Value srcToDtype =
convertTensorToDtype(rewriter, op.getLoc(), op.getSrc(), resultDtype);
rewriter.replaceOpWithNewOp<AtenExpandAsOp>(op, op.getType(), srcToDtype,
op.getSelf());
return success();
}
};
} // namespace
namespace {
// Decompose `aten.newEmpty` op into `aten.empty.memoryFormat` op.
class DecomposeAtenNewEmptyOp : public OpRewritePattern<AtenNewEmptyOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenNewEmptyOp op,
PatternRewriter &rewriter) const override {
Value noneVal = rewriter.create<ConstantNoneOp>(op.getLoc());
Value dtype = op.getDtype();
if (dtype.getType().isa<Torch::NoneType>()) {
BaseTensorType tensorType = op.getSelf().getType().cast<BaseTensorType>();
if (!tensorType.hasDtype()) {
return rewriter.notifyMatchFailure(
op, "expected input tensor to have a dtype");
}
dtype =
getDtypeIntValueForType(rewriter, op.getLoc(), tensorType.getDtype());
}
rewriter.replaceOpWithNewOp<AtenEmptyMemoryFormatOp>(
op, op.getType(), op.getSize(), dtype, op.getLayout(), op.getDevice(),
op.getPinMemory(), /*memoryFormat=*/noneVal);
return success();
}
};
} // namespace
namespace {
// Decompose `aten.indexPut.hackedTwin` op into `valsem.aten.indexPutImpl`
// op.
class DecomposeAtenIndexPutHackedTwinOp
: public OpRewritePattern<AtenIndexPutHackedTwinOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenIndexPutHackedTwinOp op,
PatternRewriter &rewriter) const override {
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(op.getLoc(), false);
rewriter.replaceOpWithNewOp<Aten_IndexPutImplOp>(
op, op.getType(), op.getSelf(), op.getIndices(), op.getValues(), op.getAccumulate(),
/*unsafe=*/cstFalse);
return success();
}
};
} // namespace
namespace {
// Decompose `aten._unsafe_indexPut.hackedTwin` op into `aten._index_put_impl`
// op.
class DecomposeAten_UnsafeIndexPutHackedTwinOp
: public OpRewritePattern<Aten_UnsafeIndexPutHackedTwinOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(Aten_UnsafeIndexPutHackedTwinOp op,
PatternRewriter &rewriter) const override {
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(op.getLoc(), false);
rewriter.replaceOpWithNewOp<Aten_IndexPutImplOp>(
op, op.getType(), op.getSelf(), op.getIndices(), op.getValues(),
op.getAccumulate(),
/*unsafe=*/cstFalse);
return success();
}
};
} // namespace
namespace {
// Decompose `aten.pad` op into `aten.constantPadNd` op.
class DecomposeAtenPadOp : public OpRewritePattern<AtenPadOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenPadOp op,
PatternRewriter &rewriter) const override {
Value value = op.getValue();
if (value.getType().isa<Torch::OptionalType>())
return rewriter.notifyMatchFailure(op, "optional type not supported");
if (value.getType().isa<Torch::NoneType>())
value = rewriter.create<Torch::ConstantFloatOp>(
op.getLoc(), rewriter.getF64FloatAttr(0));
rewriter.replaceOpWithNewOp<AtenConstantPadNdOp>(
op, op.getType(), op.getSelf(), op.getPad(), value);
return success();
}
};
} // namespace
namespace {
// Decompose `aten.to.dtypeLayout` op into `aten.to.dtype` op.
class DecomposeAtenToDtypeLayoutOp
: public OpRewritePattern<AtenToDtypeLayoutOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenToDtypeLayoutOp op,
PatternRewriter &rewriter) const override {
// TODO: Add support for pinMemory arg equal to `True`.
if (!op.getPinMemory().getType().isa<Torch::NoneType>()) {
bool pinMemory;
if (!matchPattern(op.getPinMemory(), m_TorchConstantBool(&pinMemory)))
return rewriter.notifyMatchFailure(
op, "unimplemented: pinMemory must be a constant");
else if (pinMemory)
return rewriter.notifyMatchFailure(
op, "unimplemented: pinMemory is expected to be false");
}
// TODO: Add support for device arg other than cpu.
if (!op.getDevice().getType().isa<Torch::NoneType>()) {
std::string device;
if (!matchPattern(op.getDevice(), m_TorchConstantDevice(device)))
return rewriter.notifyMatchFailure(
op, "unimplemented: device must be a constant str");
else if (device != "cpu")
return rewriter.notifyMatchFailure(
op, "unimplemented: device is expected to be cpu");
}
// TODO: Add support for non-strided layout.
// torch.layout is by default strided i.e. 0.
if (!op.getLayout().getType().isa<Torch::NoneType>()) {
int64_t tensorLayout;
if (!matchPattern(op.getLayout(), m_TorchConstantInt(&tensorLayout)))
return rewriter.notifyMatchFailure(
op, "unimplemented: layout must be a constant");
else if (tensorLayout != torch_upstream::Layout::Strided)
return rewriter.notifyMatchFailure(
op, "unimplemented: layout is expected to be strided");
}
rewriter.replaceOpWithNewOp<AtenToDtypeOp>(op, op.getType(), op.getSelf(),
op.getDtype(), op.getNonBlocking(),
op.getCopy(), op.getMemoryFormat());
return success();
}
};
} // namespace
namespace {
// Decompose `aten.to.device` op into `aten.to.dtype` op.
class DecomposeAtenToDeviceOp : public OpRewritePattern<AtenToDeviceOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenToDeviceOp op,
PatternRewriter &rewriter) const override {
// Device information isn't relevant to torch-mlir, so we can drop that info
// here.
rewriter.replaceOpWithNewOp<AtenToDtypeOp>(op, op.getType(), op.getSelf(),
op.getDtype(), op.getNonBlocking(),
op.getCopy(), op.getMemoryFormat());
return success();
}
};
} // namespace
namespace {
// Decompose `aten.adaptive_avg_pool1d` op into `aten.avg_pool1d` op.
// The logic of this decomposition is totally same with
// the DecomposeAtenAdaptiveAvgPool2dOp, that means currently only following two
// cases are supported:
// 1. inputSize = outputSize
// 2. outputSize = 1
class DecomposeAtenAdaptiveAvgPool1dOp
: public OpRewritePattern<AtenAdaptiveAvgPool1dOp> {
using OpRewritePattern<AtenAdaptiveAvgPool1dOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AtenAdaptiveAvgPool1dOp op,
PatternRewriter &rewriter) const override {
Location loc = op->getLoc();
MLIRContext *context = op.getContext();
Value input = op.getSelf();
std::optional<unsigned> maybeRank = getTensorRank(input);
if (!maybeRank) {
return rewriter.notifyMatchFailure(op, "expected input to have a rank");
}
unsigned rank = *maybeRank;
Value sizeDim = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(rank - 1));
Value inputSize = rewriter.create<AtenSizeIntOp>(loc, input, sizeDim);
Value outputShape = op.getOutputSize();
SmallVector<Value> outputShapeSizesTorchInt;
getListConstructElements(outputShape, outputShapeSizesTorchInt);
Value outputSize = outputShapeSizesTorchInt[0];
Value constantOne = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(1));
Value constantZero = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(0));
Value constantFalse = rewriter.create<Torch::ConstantBoolOp>(loc, false);
Value constantTrue = rewriter.create<Torch::ConstantBoolOp>(loc, true);
int64_t outputSizeInt;
if (!matchPattern(outputSize, m_TorchConstantInt(&outputSizeInt))) {
return rewriter.notifyMatchFailure(
op, "the output size of adaptive_pool_1d must be a constant int");
}
SmallVector<Value, 1> kernelSize;
if (outputSizeInt == 1) {
BaseTensorType inputTensorType = input.getType().cast<BaseTensorType>();
ArrayRef<int64_t> inputShape = inputTensorType.getSizes();
kernelSize.push_back(
inputShape[rank - 1] == kUnknownSize
? inputSize
: rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(inputShape[rank - 1])));
} else {
if (!isAssumingStrictSymbolicShapes(rewriter)) {
Value cond = rewriter.create<AtenEqIntOp>(loc, inputSize, outputSize);
rewriter.create<RuntimeAssertOp>(
loc, cond,
"unimplemented: only support cases where input and output size are "
"equal for non-unit output size");
}
kernelSize.push_back(constantOne);
}
Value kernelSizeList = rewriter.create<PrimListConstructOp>(
loc, Torch::ListType::get(Torch::IntType::get(context)), kernelSize);
Value strideList = rewriter.create<PrimListConstructOp>(
loc, Torch::ListType::get(Torch::IntType::get(context)),
ValueRange{constantOne});
Value paddingSizeList = rewriter.create<PrimListConstructOp>(
loc, Torch::ListType::get(Torch::IntType::get(context)),
ValueRange{constantZero});
rewriter.replaceOpWithNewOp<AtenAvgPool1dOp>(
op, op.getType(), input, kernelSizeList, strideList, paddingSizeList,
/*ceil_mode=*/constantFalse, /*count_include_pad=*/constantTrue);
return success();
}
};
} // namespace
namespace {
// Decompose `aten.adaptiveAvgPool2d` op into `aten.avgPool2d` op.
//
// For AdaptiveAvgPool2d op, when the input size is an integer multiple of
// output size the kernelSize, stride and padding is calculated as follows:
// strideH = inH // outH
// strideW = inH // outH
// kernelH = inH - [(outH - 1) * strideH]
// kernelW = inW - [(outW - 1) * strideW]
// paddingH = 0, paddingW = 0
//
// For the special case, when the output size is one for all dimensions,
// the kernel size is same as the input size.
class DecomposeAtenAdaptiveAvgPool2dOp
: public OpRewritePattern<AtenAdaptiveAvgPool2dOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenAdaptiveAvgPool2dOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
MLIRContext *context = op.getContext();
Value input = op.getSelf();
std::optional<unsigned> maybeRank = getTensorRank(input);
if (!maybeRank) {
return rewriter.notifyMatchFailure(op, "expected input to have a rank");
}
unsigned rank = *maybeRank;
SmallVector<Value, 2> inputHW;
Value dimH = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(rank - 2));
inputHW.push_back(
/*inH=*/rewriter.create<AtenSizeIntOp>(loc, input, dimH));
Value dimW = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(rank - 1));
inputHW.push_back(
/*inW=*/rewriter.create<AtenSizeIntOp>(loc, input, dimW));
Value outputShape = op.getOutputSize();
SmallVector<Value> outputShapeSizesTorchInt;
getListConstructElements(outputShape, outputShapeSizesTorchInt);
// TODO: Add support for cases other than:
// 1.) inH == outH and inW == outW.
// 2.) outH == outW == 1
bool unitOutputSize = true;
for (Value outShape : outputShapeSizesTorchInt) {
int64_t outShapeInt;
if (!matchPattern(outShape, m_TorchConstantInt(&outShapeInt))) {
return rewriter.notifyMatchFailure(
op, "output size is expected to be a constant");
}
if (outShapeInt != 1) {
unitOutputSize = false;
break;
}
}
Value constantOne = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(1));
Value constantZero = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(0));
Value constantFalse = rewriter.create<Torch::ConstantBoolOp>(loc, false);
Value constantTrue = rewriter.create<Torch::ConstantBoolOp>(loc, true);
Value constantNone = rewriter.create<Torch::ConstantNoneOp>(loc);
SmallVector<Value, 2> kernelSize;
for (unsigned i = 0; i < inputHW.size(); i++) {
if (unitOutputSize) {
BaseTensorType inputTensorType = input.getType().cast<BaseTensorType>();
ArrayRef<int64_t> inputShape = inputTensorType.getSizes();
kernelSize.push_back(inputShape[rank - 2 + i] == kUnknownSize
? inputHW[i]
: rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(
inputShape[rank - 2 + i])));
} else {
if (!isAssumingStrictSymbolicShapes(rewriter)) {
Value cond = rewriter.create<AtenEqIntOp>(
loc, inputHW[i], outputShapeSizesTorchInt[i]);
rewriter.create<RuntimeAssertOp>(loc, cond,
"unimplemented: only support cases "
"where input and output size are "
"equal for non-unit output size");
}
Value outMinusOne = rewriter.create<AtenSubIntOp>(
loc, outputShapeSizesTorchInt[i], constantOne);
kernelSize.push_back(
rewriter.create<AtenSubIntOp>(loc, inputHW[i], outMinusOne));
}
}
Value kernelSizeList = rewriter.create<PrimListConstructOp>(
loc, Torch::ListType::get(Torch::IntType::get(context)), kernelSize);
// Currently we only support cases where input size is equal to the output
// size or unit output size. For the former case, stride is always equal to
// one and for the latter the stride value doesn't matter, since the kernel
// size is same as the input size. Therfore, keeping the stride as one for
// the latter case as well for the ease of implementation.
Value strideList = rewriter.create<PrimListConstructOp>(
loc, Torch::ListType::get(Torch::IntType::get(context)),
ValueRange{constantOne, constantOne});
Value paddingSizeList = rewriter.create<PrimListConstructOp>(
loc, Torch::ListType::get(Torch::IntType::get(context)),
ValueRange{constantZero, constantZero});
rewriter.replaceOpWithNewOp<AtenAvgPool2dOp>(
op, op.getType(), input, kernelSizeList, strideList, paddingSizeList,
/*ceilMode=*/constantFalse, /*countIncludePad=*/constantTrue,
/*divisorOverride=*/constantNone);
return success();
}
};
} // namespace
namespace {
// Decompose `aten.clampMin` op into `aten.clamp` op.
class DecomposeAtenClampMinOp : public OpRewritePattern<AtenClampMinOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenClampMinOp op,
PatternRewriter &rewriter) const override {
Value constantNone = rewriter.create<Torch::ConstantNoneOp>(op.getLoc());
rewriter.replaceOpWithNewOp<AtenClampOp>(op, op.getType(), op.getSelf(),
op.getMin(), /*max=*/constantNone);
return success();
}
};
} // namespace
namespace {
// Decompose `aten.clampMax` op into `aten.clamp` op.
class DecomposeAtenClampMaxOp : public OpRewritePattern<AtenClampMaxOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenClampMaxOp op,
PatternRewriter &rewriter) const override {
Value constantNone = rewriter.create<Torch::ConstantNoneOp>(op.getLoc());
rewriter.replaceOpWithNewOp<AtenClampOp>(op, op.getType(), op.getSelf(),
/*min=*/constantNone, op.getMax());
return success();
}
};
} // namespace
namespace {
// Decompose `aten.baddbmm` op into `aten.bmm`, `aten.mul.Scalar`, and
// `aten.add.Tensor` op.
class DecomposeAtenBaddbmmOp : public OpRewritePattern<AtenBaddbmmOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenBaddbmmOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value bmm =
rewriter.create<AtenBmmOp>(loc, op.getType(), op.getBatch1(), op.getBatch2());
Value alphaTimesBmm =
rewriter.create<AtenMulScalarOp>(loc, op.getType(), bmm, op.getAlpha());
Value input = op.getSelf();
BaseTensorType inputType = input.getType().cast<BaseTensorType>();
BaseTensorType resultType =
op->getResult(0).getType().cast<BaseTensorType>();
if (inputType.hasDtype() && resultType.hasDtype() &&
inputType.getDtype() != resultType.getDtype()) {
input = convertTensorToDtype(rewriter, loc, input, resultType.getDtype());
}
rewriter.replaceOpWithNewOp<AtenAddTensorOp>(
op, op.getType(), alphaTimesBmm, op.getSelf(), op.getBeta());
return success();
}
};
} // namespace
namespace {
// Decompose `aten.floorDivide` op into `aten.div.TensorMode` op.
class DecomposeAtenFloorDivideOp : public OpRewritePattern<AtenFloorDivideOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenFloorDivideOp op,
PatternRewriter &rewriter) const override {
// https://pytorch.org/docs/stable/generated/torch.floorDivide.html
// PyTorch aten.floorDivide is a misnomer because it actually rounds
// the quotient towards zero instead of taking its floor.
Value cstStrFloor =
rewriter.create<Torch::ConstantStrOp>(op.getLoc(), "trunc");
rewriter.replaceOpWithNewOp<AtenDivTensorModeOp>(
op, op.getType(), op.getSelf(), op.getOther(),
/*roundingMode=*/cstStrFloor);
return success();
}
};
} // namespace
namespace {
// Decompose `aten.numpyT` op into `aten.permute` op.
class DecomposeAtenNumpyTOp : public OpRewritePattern<AtenNumpyTOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenNumpyTOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value self = op.getSelf();
std::optional<unsigned> maybeInputRank = getTensorRank(self);
if (!maybeInputRank) {
return rewriter.notifyMatchFailure(op, "expected input to have a rank");
}
unsigned inputRank = *maybeInputRank;
SmallVector<Value> dimListElements;
SmallVector<int> dimListInts(llvm::reverse(
llvm::iota_range<int>(0, inputRank, /*inclusive=*/false)));
for (int dimListInt : dimListInts) {
dimListElements.push_back(rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(dimListInt)));
}
Value dimList = rewriter.create<PrimListConstructOp>(
loc, Torch::ListType::get(Torch::IntType::get(op->getContext())),
dimListElements);
rewriter.replaceOpWithNewOp<AtenPermuteOp>(op, op.getType(), self, dimList);
return success();
}
};
} // namespace
template <typename OpTy>
static LogicalResult calculateVariance(OpTy op, PatternRewriter &rewriter,
bool unbiased, double correction) {
Location loc = op.getLoc();
Value self = op.getSelf();
Value dimList = op.getDim();
Value keepDim = op.getKeepdim();
BaseTensorType inputTensorTy = self.getType().cast<BaseTensorType>();
Type outputType = op.getType();
BaseTensorType outputTensorType = outputType.cast<BaseTensorType>();
if (!outputTensorType.hasDtype()) {
return rewriter.notifyMatchFailure(op,
"expected result type to have a dtype");
}
Type newOutputType = outputTensorType.getWithSizesAndDtype(
outputTensorType.getSizes(), rewriter.getF64Type());
if (!inputTensorTy.hasDtype() ||
!inputTensorTy.getDtype().isa<mlir::FloatType>()) {
return rewriter.notifyMatchFailure(
op, "support floating-point type input only");
}
// Upcasting the input tensor to `F64` dtype for higher precision during the
// computation of the result.
if (inputTensorTy.getDtype().getIntOrFloatBitWidth() != 64) {
self = convertTensorToDtype(rewriter, loc, self, rewriter.getF64Type());
inputTensorTy = self.getType().cast<BaseTensorType>();
}
std::optional<unsigned> maybeInputRank = getTensorRank(self);
if (!maybeInputRank) {
return rewriter.notifyMatchFailure(op, "expected input to have a rank");
}
unsigned inputRank = *maybeInputRank;
SmallVector<Value> dimListElements;
bool isNoneOrEmpty = true;
if (!dimList.getType().template isa<Torch::NoneType>()) {
if (!getListConstructElements(dimList, dimListElements))
return rewriter.notifyMatchFailure(
op, "expect dimList to be constructed from list construct");
if (!dimListElements.empty() || inputRank == 0)
isNoneOrEmpty = false;
}
if (isNoneOrEmpty) {
for (unsigned i = 0; i < inputRank; i++)
dimListElements.push_back(rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(i)));
dimList = rewriter.create<PrimListConstructOp>(
loc, Torch::ListType::get(Torch::IntType::get(op.getContext())),
dimListElements);
}
Type meanDimResultType = inputTensorTy;
for (unsigned i = 0; i < dimListElements.size(); i++)
meanDimResultType = computeReductionType(
rewriter, op, meanDimResultType.cast<BaseTensorType>(),
dimListElements[i],
/*keepDim=*/true);
Value constantNone = rewriter.create<ConstantNoneOp>(loc);
Value constantTrue = rewriter.create<ConstantBoolOp>(loc, true);
Value meanAlongDims = rewriter.create<AtenMeanDimOp>(
loc, meanDimResultType, self, dimList, /*keepDim=*/constantTrue,
/*dtype=*/constantNone);
Value subMean =
createTensorSub(rewriter, loc, inputTensorTy, self, meanAlongDims);
Value square = rewriter.create<AtenSquareOp>(loc, inputTensorTy, subMean);
if (!unbiased) {
Value result = rewriter.create<AtenMeanDimOp>(
loc, newOutputType, square, dimList, keepDim, /*dtype=*/constantNone);
result = convertTensorToDtype(rewriter, loc, result,
outputTensorType.getDtype());
rewriter.replaceOp(op, result);
return success();
}
// Divide the square sum by productDimSize - correction.
Value squareSum = rewriter.create<AtenSumDimIntListOp>(
loc, newOutputType, square, dimList, keepDim, /*dtype=*/constantNone);
// `productDimSize` is product of sizes of dimensions to be reduced.
Value constantOne =
rewriter.create<Torch::ConstantIntOp>(loc, rewriter.getI64IntegerAttr(1));
Value productDimSize = constantOne;
for (Value dim : dimListElements) {
Value dimSize = rewriter.create<AtenSizeIntOp>(loc, self, dim);
productDimSize =
rewriter.create<AtenMulIntOp>(loc, productDimSize, dimSize);
}
productDimSize = rewriter.create<AtenFloatScalarOp>(loc, productDimSize);
constantOne = rewriter.create<Torch::ConstantFloatOp>(
loc, rewriter.getF64FloatAttr(1.0));
Value cstCorrection = rewriter.create<Torch::ConstantFloatOp>(
loc, rewriter.getF64FloatAttr(correction));
// The `correction` value should be less than or equal to `productDimSize +
// 1`.
if (!isAssumingStrictSymbolicShapes(rewriter)) {
Value productDimSizePlusOne = rewriter.create<AtenAddOp>(
loc, productDimSize.getType(), productDimSize, constantOne);
Value cond = rewriter.create<AtenGeFloatOp>(loc, productDimSizePlusOne,
cstCorrection);
rewriter.create<RuntimeAssertOp>(
loc, cond,
"correction value should be less than or equal to productDimSize + 1");
}
Value productDimSizeSubCorrection =
rewriter.create<AtenSubFloatOp>(loc, productDimSize, cstCorrection);
Value result = rewriter.create<AtenDivScalarOp>(loc, newOutputType, squareSum,
productDimSizeSubCorrection);
result =
convertTensorToDtype(rewriter, loc, result, outputTensorType.getDtype());
rewriter.replaceOp(op, result);
return success();
}
// Decompose aten.var(x, dims) into:
// sub = aten.sub(x, aten.mean(x, dims))
// square = aten.square(sub)
// For Unbiased case:
// out = aten.sum(square, dims) / (productDimSize-1)
// For Biased case:
// out = aten.mean(square, dims)
namespace {
class DecomposeAtenVarDimOp : public OpRewritePattern<AtenVarDimOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenVarDimOp op,
PatternRewriter &rewriter) const override {
bool unbiased;
if (!matchPattern(op.getUnbiased(), m_TorchConstantBool(&unbiased))) {
return rewriter.notifyMatchFailure(
op, "Only support constant unbiased for aten.var");
}
double correction = unbiased ? 1.0 : 0.0;
if (failed(calculateVariance<AtenVarDimOp>(op, rewriter, unbiased,
correction)))
return rewriter.notifyMatchFailure(op, "invalid variance parameters");
return success();
}
};
} // namespace
// Decompose aten.var(x, dims) into:
// sub = aten.sub(x, aten.mean(x, dims))
// square = aten.square(sub)
// out = aten.sum(square, dims) / (productDimSize - correction)
namespace {
class DecomposeAtenVarCorrectionOp
: public OpRewritePattern<AtenVarCorrectionOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenVarCorrectionOp op,
PatternRewriter &rewriter) const override {
int64_t correctionValInt;
double correctionValFloat = 1.0;
if (!op.getCorrection().getType().isa<Torch::NoneType>()) {
if (op.getCorrection().getType().isa<Torch::FloatType>()) {
if (!matchPattern(op.getCorrection(),
m_TorchConstantFloat(&correctionValFloat)))
return rewriter.notifyMatchFailure(
op, "Only support constant int or float correction value for "
"aten.var");
} else if (op.getCorrection().getType().isa<Torch::IntType>()) {
if (!matchPattern(op.getCorrection(),
m_TorchConstantInt(&correctionValInt)))
return rewriter.notifyMatchFailure(
op, "Only support constant int or float correction value for "
"aten.var");
correctionValFloat = (double)correctionValInt;
} else {
return rewriter.notifyMatchFailure(
op, "unimplemented: correction value should be only constant int "
"or float for aten.var");
}
}
bool unbiased = correctionValFloat == 0.0 ? false : true;
if (failed(calculateVariance<AtenVarCorrectionOp>(op, rewriter, unbiased,
correctionValFloat)))
return rewriter.notifyMatchFailure(op, "invalid variance parameters");
return success();
}
};
} // namespace
namespace {
// Decompose the `aten.selectScatter` operation into `aten.sliceScatter` op.
class DecomposeAtenSelectScatterOp
: public OpRewritePattern<AtenSelectScatterOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenSelectScatterOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value start = op.getIndex();
Value dim = op.getDim();
Value self = op.getSelf();
Value src = op.getSrc();
Value one =
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(1));
Value startPlusOne =
rewriter.create<AtenAddIntOp>(loc, one.getType(), start, one);
auto unsqueezedInfo = unsqueezeTensor(rewriter, op, src, dim);
if (failed(unsqueezedInfo)) {
return rewriter.notifyMatchFailure(op,
"cannot generate unsqueeze tensor op");
}
src = *unsqueezedInfo;
rewriter.replaceOpWithNewOp<AtenSliceScatterOp>(
op, op.getSelf().getType(), self, src, dim, start, startPlusOne,
/*step=*/one);
return success();
}
};
} // namespace
namespace {
class DecomposeAten_EmbeddingBagOp
: public OpRewritePattern<Aten_EmbeddingBagOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(Aten_EmbeddingBagOp op,
PatternRewriter &rewriter) const override {
Value weight = op.getWeight();
Value indices = op.getIndices();
Value offsets = op.getOffsets();
Value scaleGradByFreq = op.getScaleGradByFreq();
Value mode = op.getMode();
Value sparse = op.getSparse();
Value perSampleWeights = op.getPerSampleWeights();
Value includeLastOffset = op.getIncludeLastOffset();
Value paddingIdx = op.getPaddingIdx();
auto resultType0 = op->getResult(0).getType();
auto resultType1 = op->getResult(1).getType();
auto resultType2 = op->getResult(2).getType();
auto resultType3 = op->getResult(3).getType();
mlir::TypeRange returnTypes{resultType0, resultType1, resultType2,
resultType3};
rewriter.replaceOpWithNewOp<AtenEmbeddingBagPaddingIdxOp>(
op, returnTypes, weight, indices, offsets, scaleGradByFreq, mode,
sparse, perSampleWeights, includeLastOffset, paddingIdx);
return success();
}
};
} // namespace
namespace {
// Decompose `aten.liftFreshCopy` op into `aten.clone` op.
class DecomposeAtenLiftFreshCopyOp
: public OpRewritePattern<AtenLiftFreshCopyOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenLiftFreshCopyOp op,
PatternRewriter &rewriter) const override {
Value constantNone = rewriter.create<ConstantNoneOp>(op.getLoc());
rewriter.replaceOpWithNewOp<AtenCloneOp>(op, op.getType(), op.getSelf(),
/*memoryFormat=*/constantNone);
return success();
}
};
} // namespace
namespace {
class DecomposeAtenMseLossOp : public OpRewritePattern<AtenMseLossOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenMseLossOp op,
PatternRewriter &rewriter) const override {
// The `reduction` arg would have only three valid values.
// 0 means no reduction.
// 1 means mean reduction.
// 2 means sum reduction.
int64_t reductionType;
if (!matchPattern(op.getReduction(), m_TorchConstantInt(&reductionType)))
return rewriter.notifyMatchFailure(
op, "Expected a constant integer value for reduction");
Location loc = op.getLoc();
BaseTensorType resultType = op.getType().cast<BaseTensorType>();
BaseTensorType inputType = op.getSelf().getType().cast<BaseTensorType>();
if (!inputType.hasSizes())
return rewriter.notifyMatchFailure(
op, "Expected the input tensor to have sizes");
BaseTensorType subType =
inputType
.getWithSizesAndDtype(llvm::ArrayRef(inputType.getSizes()),
resultType.getOptionalDtype())
.cast<BaseTensorType>();
Value sub = createTensorSub(rewriter, loc, subType, op.getSelf(), op.getTarget());
Value result = rewriter.create<AtenSquareOp>(loc, subType, sub);
if (reductionType == torch_upstream::Reduction::None) {
rewriter.replaceOp(op, result);
return success();
}
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(loc, false);
Value cstNone = rewriter.create<Torch::ConstantNoneOp>(loc);
if (reductionType == torch_upstream::Reduction::Mean)
result = rewriter.create<AtenMeanDimOp>(loc, resultType, result,
/*dim=*/cstNone,
/*keepdim=*/cstFalse,
/*dtype=*/cstNone);
else
result = rewriter.create<AtenSumDimIntListOp>(
loc, resultType, result, /*dim=*/cstNone, /*keepdim=*/cstFalse,
/*dtype=*/cstNone);
rewriter.replaceOp(op, result);
return success();
}
};
} // namespace
namespace {
// Decompose `aten.norm.ScalarOpt_dim` op to `aten.linalg_vector_norm` op
class DecomposeAtenNormScalarOptDimOp
: public OpRewritePattern<AtenNormScalarOptDimOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenNormScalarOptDimOp op,
PatternRewriter &rewriter) const override {
Location loc = op->getLoc();
Value none = rewriter.create<Torch::ConstantNoneOp>(loc);
Value ord = op.getP();
if (ord.getType().isa<Torch::NoneType>()) {
ord = rewriter.create<Torch::ConstantFloatOp>(
loc, rewriter.getF64FloatAttr(2.0));
}
rewriter.replaceOpWithNewOp<AtenLinalgVectorNormOp>(
op, op.getType(), op.getSelf(), ord, op.getDim(), op.getKeepdim(),
/*dtype=*/none);
return success();
}
};
} // namespace
namespace {
class DecomposeAtenRandintLowOp : public OpRewritePattern<AtenRandintLowOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenRandintLowOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Type resultType = op.getType();
BaseTensorType resultTensorType = resultType.cast<BaseTensorType>();
if (!resultTensorType.hasDtype()) {
return rewriter.notifyMatchFailure(
op, "expected result type to have a dtype");
}
int64_t cstLow, cstHigh;
if (!matchPattern(op.getLow(), m_TorchConstantInt(&cstLow)))
return rewriter.notifyMatchFailure(
op, "unimplemented: low must be a constant integer");
if (!matchPattern(op.getHigh(), m_TorchConstantInt(&cstHigh)))
return rewriter.notifyMatchFailure(
op, "unimplemented: high must be a constant integer");
Value none = rewriter.create<ConstantNoneOp>(loc);
Value cstFalse = rewriter.create<ConstantBoolOp>(loc, false);
Value low = rewriter.create<Torch::ConstantFloatOp>(
loc, rewriter.getF64FloatAttr((double)cstLow));
Value high = rewriter.create<Torch::ConstantFloatOp>(
loc, rewriter.getF64FloatAttr((double)cstHigh));
BaseTensorType floatResultType =
resultTensorType
.getWithSizesAndDtype(resultTensorType.getSizes(),
rewriter.getF32Type())
.cast<BaseTensorType>();
Value emptyTensor = rewriter.create<AtenEmptyMemoryFormatOp>(
loc, floatResultType, op.getSize(), /*dtype=*/none, /*layout=*/op.getLayout(),
/*device=*/op.getDevice(), /*pinMemory=*/op.getPinMemory(),
/*memoryFormat=*/none);
Value result =
rewriter.create<AtenUniformOp>(loc, floatResultType, emptyTensor,
/*from=*/low,
/*to=*/high,
/*generator=*/none);
rewriter.replaceOpWithNewOp<AtenToDtypeOp>(
op, resultType, result,
getDtypeIntValueForType(rewriter, loc, resultTensorType.getDtype()),
/*nonBlocking=*/cstFalse, /*copy=*/cstFalse, /*memoryFormat=*/none);
return success();
}
};
} // namespace
namespace {
class DecomposeAtenRandintOp : public OpRewritePattern<AtenRandintOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenRandintOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Type resultType = op.getType();
Value low = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(0));
rewriter.replaceOpWithNewOp<AtenRandintLowOp>(
op, resultType, low, op.getHigh(), op.getSize(), op.getDtype(), op.getLayout(),
op.getDevice(), op.getPinMemory());
return success();
}
};
} // namespace
namespace {
// Decompose `aten.varMean.correction` op into `aten.var.correction` and
// `aten.mean.dim` op.
class DecomposeAtenVarMeanCorrectionOp
: public OpRewritePattern<AtenVarMeanCorrectionOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenVarMeanCorrectionOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value noneVal = rewriter.create<ConstantNoneOp>(loc);
Value var = rewriter.create<AtenVarCorrectionOp>(
loc, op.getType(0), op.getSelf(), op.getDim(), op.getCorrection(), op.getKeepdim());
Value mean =
rewriter.create<AtenMeanDimOp>(loc, op.getType(0), op.getSelf(), op.getDim(),
op.getKeepdim(), /*dtype=*/noneVal);
rewriter.replaceOp(op, {var, mean});
return success();
}
};
} // namespace
namespace {
// Decompose `prims.convertElementType` op into `aten.to.dtype` op.
class DecomposePrimsConvertElementTypeOp
: public OpRewritePattern<PrimsConvertElementTypeOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(PrimsConvertElementTypeOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(loc, false);
Value cstNone = rewriter.create<Torch::ConstantNoneOp>(loc);
rewriter.replaceOpWithNewOp<AtenToDtypeOp>(
op, op.getType(), op.getA(), op.getDtype(), /*nonBlocking=*/cstFalse,
/*copy=*/cstFalse, /*memoryFormat=*/cstNone);
return success();
}
};
} // namespace
namespace {
// Decompose `prims.var` op into `aten.var.correction` op.
class DecomposePrimsVarOp : public OpRewritePattern<PrimsVarOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(PrimsVarOp op,
PatternRewriter &rewriter) const override {
if (!op.getOutputDtype().getType().isa<Torch::NoneType>())
return rewriter.notifyMatchFailure(
op, "Unimplemented non-None dtype for prims::var op");
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(op.getLoc(), false);
rewriter.replaceOpWithNewOp<AtenVarCorrectionOp>(
op, op.getType(), op.getInp(), op.getDims(), op.getCorrection(),
/*keepdim=*/cstFalse);
return success();
}
};
} // namespace
namespace {
// Decompose `prims.sqrt` op into `aten.sqrt` op.
class DecomposePrimsSqrtOp : public OpRewritePattern<PrimsSqrtOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(PrimsSqrtOp op,
PatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<AtenSqrtOp>(op, op.getType(), op.getSelf());
return success();
}
};
} // namespace
namespace {
// The op is decomposed using the Box-Muller transform.
// Refer: https://en.wikipedia.org/wiki/Box-Muller_transform
class DecomposeAtenRandnGeneratorOp
: public OpRewritePattern<AtenRandnGeneratorOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenRandnGeneratorOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
auto resultType = op.getType().cast<BaseTensorType>();
if (!resultType.hasDtype()) {
return rewriter.notifyMatchFailure(
op, "expected result type to have a dtype");
}
Value dtype = getDtypeIntValueForType(rewriter, loc, resultType.getDtype());
Value none = rewriter.create<ConstantNoneOp>(loc);
Value low = rewriter.create<Torch::ConstantFloatOp>(
loc, rewriter.getF64FloatAttr((double)0.0));
Value high = rewriter.create<Torch::ConstantFloatOp>(
loc, rewriter.getF64FloatAttr((double)1.0));
Value cstMinusTwo = rewriter.create<Torch::ConstantFloatOp>(
loc, rewriter.getF64FloatAttr((double)-2.0));
Value cstTwoPie = rewriter.create<Torch::ConstantFloatOp>(
loc, rewriter.getF64FloatAttr((double)(2.0 * 3.14159)));
Value emptyTensorA = rewriter.create<AtenEmptyMemoryFormatOp>(
loc, resultType, op.getSize(), /*dtype=*/dtype,
/*layout=*/op.getLayout(),
/*device=*/op.getDevice(), /*pin_memory=*/op.getPinMemory(),
/*memory_format=*/none);
Value emptyTensorB = rewriter.create<AtenEmptyMemoryFormatOp>(
loc, resultType, op.getSize(), /*dtype=*/dtype,
/*layout=*/op.getLayout(),
/*device=*/op.getDevice(), /*pin_memory=*/op.getPinMemory(),
/*memory_format=*/none);
Value uOne = rewriter.create<AtenUniformOp>(loc, resultType, emptyTensorA,
/*from=*/low,
/*to=*/high,
/*generator=*/op.getGenerator());
Value uTwo = rewriter.create<AtenUniformOp>(loc, resultType, emptyTensorB,
/*from=*/low,
/*to=*/high,
/*generator=*/op.getGenerator());
Value logUOne = rewriter.create<AtenLogOp>(loc, resultType, uOne);
Value minusTwoLogUOne =
rewriter.create<AtenMulScalarOp>(loc, resultType, logUOne, cstMinusTwo);
Value r = rewriter.create<AtenSqrtOp>(loc, resultType, minusTwoLogUOne);
Value theta =
rewriter.create<AtenMulScalarOp>(loc, resultType, uTwo, cstTwoPie);
Value cosTheta = rewriter.create<AtenCosOp>(loc, resultType, theta);
rewriter.replaceOpWithNewOp<AtenMulTensorOp>(op, op.getType(), r, cosTheta);
return success();
}
};
} // namespace
namespace {
// Decompose `aten.randn` op into `aten.randn.generator` op.
class DecomposeAtenRandnOp : public OpRewritePattern<AtenRandnOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenRandnOp op,
PatternRewriter &rewriter) const override {
Value none = rewriter.create<Torch::ConstantNoneOp>(op.getLoc());
rewriter.replaceOpWithNewOp<AtenRandnGeneratorOp>(
op, op.getType(), op.getSize(), /*generator=*/none, op.getDtype(),
op.getLayout(), op.getDevice(), op.getPinMemory());
return success();
}
};
} // namespace
namespace {
// Decompose `aten.randn_like` op into `aten.randn.generator` op.
class DecomposeAtenRandnLikeOp : public OpRewritePattern<AtenRandnLikeOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenRandnLikeOp op,
PatternRewriter &rewriter) const override {
// Only `none`, `contiguous` and `preserve` memory_format is supported.
if (!op.getMemoryFormat().getType().isa<Torch::NoneType>()) {
int64_t memoryFormat;
if (!matchPattern(op.getMemoryFormat(),
m_TorchConstantInt(&memoryFormat)))
return rewriter.notifyMatchFailure(
op, "unimplemented: the memory format should be specified in "
"an integer constant");
if (memoryFormat != torch_upstream::MemoryFormat::Contiguous &&
memoryFormat != torch_upstream::MemoryFormat::Preserve)
return rewriter.notifyMatchFailure(
op, "unimplemented: only none, contiguous and preserve "
"memory_format is supported");
}
Value none = rewriter.create<Torch::ConstantNoneOp>(op.getLoc());
auto sizeListType =
Torch::ListType::get(Torch::IntType::get(op.getContext()));
Value sizeList =
rewriter.create<AtenSizeOp>(op.getLoc(), sizeListType, op.getSelf());
rewriter.replaceOpWithNewOp<AtenRandnGeneratorOp>(
op, op.getType(), sizeList, /*generator=*/none, op.getDtype(),
op.getLayout(), op.getDevice(), op.getPinMemory());
return success();
}
};
} // namespace
namespace {
class DecomposeAtenRandOp : public OpRewritePattern<AtenRandOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenRandOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
auto resultType = op.getType().cast<BaseTensorType>();
if (!resultType.hasDtype()) {
return rewriter.notifyMatchFailure(
op, "expected result type to have a dtype");
}
Value noneVal = rewriter.create<Torch::ConstantNoneOp>(loc);
Value low = rewriter.create<Torch::ConstantFloatOp>(
loc, rewriter.getF64FloatAttr((double)0.0));
Value high = rewriter.create<Torch::ConstantFloatOp>(
loc, rewriter.getF64FloatAttr((double)1.0));
Value emptyTensor = rewriter.create<AtenEmptyMemoryFormatOp>(
loc, resultType, op.getSize(), /*dtype=*/op.getDtype(),
/*layout=*/op.getLayout(),
/*device=*/op.getDevice(), /*pin_memory=*/op.getPinMemory(),
/*memory_format=*/noneVal);
rewriter.replaceOpWithNewOp<AtenUniformOp>(op, resultType, emptyTensor,
/*from=*/low,
/*to=*/high,
/*generator=*/noneVal);
return success();
}
};
} // namespace
namespace {
class DecomposeAtenVarMeanOp : public OpRewritePattern<AtenVarMeanOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenVarMeanOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value falseVal = rewriter.create<ConstantBoolOp>(loc, false);
Value noneVal = rewriter.create<ConstantNoneOp>(loc);
Value var = rewriter.create<AtenVarDimOp>(loc, op.getType(0), op.getSelf(),
/*dim=*/noneVal, op.getUnbiased(),
/*keepdim=*/falseVal);
Value mean = rewriter.create<AtenMeanOp>(loc, op.getType(0), op.getSelf(),
/*dtype=*/noneVal);
rewriter.replaceOp(op, {var, mean});
return success();
}
};
} // namespace
namespace {
class DecomposeAtenNewEmptyStridedOp
: public OpRewritePattern<AtenNewEmptyStridedOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenNewEmptyStridedOp op,
PatternRewriter &rewriter) const override {
SmallVector<int64_t> sizeListInts, strideListInts;
if (!matchPattern(op.getSize(), m_TorchListOfConstantInts(sizeListInts)))
return rewriter.notifyMatchFailure(
op, "all size list elements must be constant ints");
if (!matchPattern(op.getStride(),
m_TorchListOfConstantInts(strideListInts)))
return rewriter.notifyMatchFailure(
op, "all stride list elements must be constant ints");
// We only support the cases with default stride values.
// For ex: aten.new_empty_strided(self, size=[2, 3, 4], stride=[12, 4, 1])
// Here the stride[0] == size[1] * size[2], stride[1] == size[2], and
// stride[2] == 1.
bool isDefaultStride = true;
for (unsigned i = 0; i < strideListInts.size(); i++) {
int64_t defaultStride = 1;
for (unsigned j = i + 1; j < sizeListInts.size(); j++)
defaultStride *= sizeListInts[j];
if (defaultStride != strideListInts[i]) {
isDefaultStride = false;
break;
}
}
if (!isDefaultStride)
return rewriter.notifyMatchFailure(
op, "only default strides supported for new_empty_strided op");
rewriter.replaceOpWithNewOp<AtenNewEmptyOp>(
op, op.getType(), op.getSelf(), op.getSize(), op.getDtype(),
op.getLayout(), op.getDevice(), op.getPinMemory());
return success();
}
};
} // namespace
namespace {
class DecomposeAtenEmptyStridedOp
: public OpRewritePattern<AtenEmptyStridedOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenEmptyStridedOp op,
PatternRewriter &rewriter) const override {
SmallVector<int64_t> sizeListInts, strideListInts;
if (!matchPattern(op.getSize(), m_TorchListOfConstantInts(sizeListInts)))
return rewriter.notifyMatchFailure(
op, "all size list elements must be constant ints");
if (!matchPattern(op.getStride(),
m_TorchListOfConstantInts(strideListInts)))
return rewriter.notifyMatchFailure(
op, "all stride list elements must be constant ints");
// We only support the cases with default stride values.
// For ex: aten.new_empty_strided(self, size=[2, 3, 4], stride=[12, 4, 1])
// Here the stride[0] == size[1] * size[2], stride[1] == size[2], and
// stride[2] == 1.
bool isDefaultStride = true;
for (unsigned i = 0; i < strideListInts.size(); i++) {
int64_t defaultStride = 1;
for (unsigned j = i + 1; j < sizeListInts.size(); j++)
defaultStride *= sizeListInts[j];
if (defaultStride != strideListInts[i]) {
isDefaultStride = false;
break;
}
}
if (!isDefaultStride)
return rewriter.notifyMatchFailure(
op, "only default strides supported for new_empty_strided op");
Value noneVal = rewriter.create<ConstantNoneOp>(op.getLoc());
rewriter.replaceOpWithNewOp<AtenEmptyMemoryFormatOp>(
op, op.getType(), op.getSize(), op.getDtype(), op.getLayout(), op.getDevice(),
op.getPinMemory(), /*memoryFormat=*/noneVal);
return success();
}
};
} // namespace
namespace {
class DecomposePrimsSqueezeOp : public OpRewritePattern<PrimsSqueezeOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(PrimsSqueezeOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value input = op.getA();
SmallVector<int64_t> dimensions;
if (!matchPattern(op.getDimensions(),
m_TorchListOfConstantInts(dimensions)))
return rewriter.notifyMatchFailure(
op, "all dimensions must be constant ints");
std::sort(dimensions.begin(), dimensions.end());
std::reverse(dimensions.begin(), dimensions.end());
if (dimensions.size() == 0) {
rewriter.replaceOp(op, input);
return success();
}
Value result = input;
for (unsigned i = 0; i < dimensions.size(); i++) {
auto squeezeTensorInfo =
squeezeTensor(rewriter, op, loc, dimensions[i], result);
if (failed(squeezeTensorInfo)) {
return rewriter.notifyMatchFailure(op,
"cannot generate unsqueeze tensor");
}
result = *squeezeTensorInfo;
}
rewriter.replaceOp(op, result);
return success();
}
};
} // namespace
namespace {
class DecomposeAtenMovedimIntOp : public OpRewritePattern<AtenMovedimIntOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenMovedimIntOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value input = op.getSelf();
std::optional<unsigned> maybeInputRank = getTensorRank(input);
if (!maybeInputRank) {
return rewriter.notifyMatchFailure(
op, "expected input tensor to have a rank");
}
unsigned inputRank = *maybeInputRank;
if (inputRank <= 1) {
rewriter.replaceOp(op, input);
return success();
}
int64_t srcDimInt, dstDimInt;
if (matchPattern(op.getSource(), m_TorchConstantInt(&srcDimInt))) {
srcDimInt = toPositiveDim(srcDimInt, inputRank);
if (!isValidDim(srcDimInt, inputRank))
return rewriter.notifyMatchFailure(op, "source is not a valid dim");
} else {
return rewriter.notifyMatchFailure(op, "source is not a constant int");
}
if (matchPattern(op.getDestination(), m_TorchConstantInt(&dstDimInt))) {
dstDimInt = toPositiveDim(dstDimInt, inputRank);
if (!isValidDim(dstDimInt, inputRank))
return rewriter.notifyMatchFailure(op,
"destination is not a valid dim");
} else {
return rewriter.notifyMatchFailure(op,
"destination is not a constant int");
}
SmallVector<int64_t> dimsOrder =
computeDimsOrderForMoveDim(srcDimInt, dstDimInt, inputRank);
SmallVector<Value> cstDimsOrder;
for (int64_t dim : dimsOrder)
cstDimsOrder.push_back(rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(dim)));
Value permuteDimsOrder = rewriter.create<PrimListConstructOp>(
loc, Torch::ListType::get(Torch::IntType::get(op->getContext())),
cstDimsOrder);
rewriter.replaceOpWithNewOp<AtenPermuteOp>(op, op.getType(), input,
permuteDimsOrder);
return success();
}
};
} // namespace
namespace {
class DecomposeAtenCrossEntropyLossOp
: public OpRewritePattern<AtenCrossEntropyLossOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenCrossEntropyLossOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value self = op.getSelf();
Value target = op.getTarget();
std::optional<unsigned> maybeRank = getTensorRank(self);
if (!maybeRank)
return rewriter.notifyMatchFailure(
op, "Unimplemented: unranked input tensor");
unsigned selfRank = maybeRank.value();
maybeRank = getTensorRank(target);
if (!maybeRank)
return rewriter.notifyMatchFailure(
op, "Unimplemented: unranked target tensor");
unsigned targetRank = maybeRank.value();
// When the input is 2-d i.e. of the form [minibatch, C] and target is 1-d
// of the form [minibatch] the cross entropy loss decomposes to the
// combination of softmax and nll loss as follows:
// cross_entropy_loss = NLLLoss(LogSoftmax(input, dim=1), target)
// Currently, we only support the above-mentioned case.
if (selfRank != 2 || targetRank != 1) {
return rewriter.notifyMatchFailure(
op,
"unimplemented: only support cases with 2-d input and 1-d target");
}
// TODO: Add support for label_smoothing value other than 0.0 (default
// value).
double labelSmoothing;
if (!matchPattern(op.getLabelSmoothing(),
m_TorchConstantFloat(&labelSmoothing))) {
return rewriter.notifyMatchFailure(
op, "Only support constant float label_smoothing value");
} else if (labelSmoothing != 0.0) {
return rewriter.notifyMatchFailure(op,
"unimplemented: only support default "
"value of 0.0 for label_smoothing");
}
Value noneVal = rewriter.create<ConstantNoneOp>(loc);
Value dim = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(1));
Value logSoftmax = rewriter.create<AtenLogSoftmaxIntOp>(
loc, self.getType(), self, dim, /*dtype=*/noneVal);
Value nllLoss =
rewriter
.create<AtenNllLossForwardOp>(
loc, op.getType(), target.getType(), logSoftmax, target,
op.getWeight(), op.getReduction(), op.getIgnoreIndex())
->getResult(0);
rewriter.replaceOp(op, nllLoss);
return success();
}
};
} // namespace
namespace {
class DecomposeAtenOneHotOp : public OpRewritePattern<AtenOneHotOp> {
using OpRewritePattern<AtenOneHotOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AtenOneHotOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
auto context = op.getContext();
Value input = op.getSelf();
auto inputType = input.getType().cast<BaseTensorType>();
if (!inputType.hasSizes())
return rewriter.notifyMatchFailure(
op, "input tensor should have known sizes.");
int64_t inputRank = inputType.getSizes().size();
int64_t numClasses;
if (!matchPattern(op.getNumClasses(), m_TorchConstantInt(&numClasses)))
return rewriter.notifyMatchFailure(
op, "unimplemented: num_classes must be constant");
Value none = rewriter.create<ConstantNoneOp>(loc);
// arange tensor
auto si64Type = IntegerType::get(context, 64, IntegerType::Signed);
auto arangeType =
ValueTensorType::get(context, llvm::ArrayRef(numClasses), si64Type);
Value arangeTensor = rewriter.create<AtenArangeOp>(
loc, arangeType, op.getNumClasses(), /*dtype=*/none, /*layout=*/none,
/*device=*/none, /*pin_memory=*/none);
// unsqueeze input
llvm::SmallVector<int64_t> unsqueezeShape(inputType.getSizes());
unsqueezeShape.push_back(1);
auto unsqueezeType =
ValueTensorType::get(context, unsqueezeShape, si64Type);
Value unsqueezeTensor = rewriter.create<AtenUnsqueezeOp>(
loc, unsqueezeType, input,
rewriter.create<ConstantIntOp>(loc,
rewriter.getI64IntegerAttr(inputRank)));
// compare
auto eqType = ValueTensorType::get(
context, op.getType().cast<BaseTensorType>().getSizes(),
IntegerType::get(context, 1));
Value eqTensor = rewriter.create<AtenEqTensorOp>(
loc, eqType, unsqueezeTensor, arangeTensor);
// convert to si64
Value result = convertTensorToDtype(rewriter, loc, eqTensor, si64Type);
rewriter.replaceOp(op, result);
return success();
}
};
} // namespace
namespace {
// Decompose `aten.var_mean.dim` op into `aten.var.dim` and
// `aten.mean.dim` op.
class DecomposeAtenVarMeanDimOp : public OpRewritePattern<AtenVarMeanDimOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenVarMeanDimOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value noneVal = rewriter.create<ConstantNoneOp>(loc);
Value var = rewriter.create<AtenVarDimOp>(loc, op.getType(0), op.getSelf(),
op.getDim(), op.getUnbiased(),
op.getKeepdim());
Value mean = rewriter.create<AtenMeanDimOp>(
loc, op.getType(0), op.getSelf(), op.getDim(), op.getKeepdim(),
/*dtype=*/noneVal);
rewriter.replaceOp(op, {var, mean});
return success();
}
};
} // namespace
namespace {
// decompose aten.scalar_tensor to prim.NumToTensor.Scalar and
// aten.to.dtype_layout
class DecomposeAtenScalarTensor : public OpRewritePattern<AtenScalarTensorOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenScalarTensorOp op,
PatternRewriter &rewriter) const override {
auto resultTy = op.getResult().getType().cast<BaseTensorType>();
auto scalarTy = getBuiltInTypeForTorchScalar(op.getS().getType());
Value numToTensor = rewriter.create<PrimNumToTensorScalarOp>(
op.getLoc(),
resultTy.getWithSizesAndDtype(resultTy.getOptionalSizes(), scalarTy),
op.getS());
Value cstNone = rewriter.create<ConstantNoneOp>(op.getLoc());
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(op.getLoc(), false);
Value dtype =
getDtypeIntValueForType(rewriter, op.getLoc(), resultTy.getDtype());
Value toDTypeLayout = rewriter.create<AtenToDtypeLayoutOp>(
op.getLoc(), op.getType(), numToTensor, dtype, op.getLayout(),
op.getDevice(), op.getPinMemory(), /*non_blocking=*/cstFalse,
/*copy=*/cstFalse, /*memory_format=*/cstNone);
rewriter.replaceOp(op, toDTypeLayout);
return success();
}
};
} // namespace
namespace {
// Decompose `aten.topk` op into `aten.sort` and `aten.slice.Tensor` op.
class DecomposeAtenTopkOp : public OpRewritePattern<AtenTopkOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenTopkOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
auto context = op.getContext();
bool sorted;
if (!matchPattern(op.getSorted(), m_TorchConstantBool(&sorted)))
return rewriter.notifyMatchFailure(
op, "Expected a constant boolean value for sorted");
if (!sorted)
return rewriter.notifyMatchFailure(
op, "unimplemented: sorted value arg must be set to True");
Value self = op.getSelf();
Value dim = op.getDim();
auto selfType = self.getType().cast<BaseTensorType>();
auto sortIndicesType = selfType.getWithSizesAndDtype(
selfType.getOptionalSizes(),
IntegerType::get(context, 64, IntegerType::Signed));
auto sortOpResult = rewriter.create<AtenSortOp>(
loc, self.getType(), sortIndicesType, self, dim,
/*descending=*/op.getLargest());
Value start = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(0));
Value step = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(1));
Value resultValue = rewriter.create<AtenSliceTensorOp>(
loc, op->getResultTypes()[0], sortOpResult->getResult(0), dim, start,
/*end=*/op.getK(), step);
Value resultIndices = rewriter.create<AtenSliceTensorOp>(
loc, op->getResultTypes()[1], sortOpResult->getResult(1), dim, start,
/*end=*/op.getK(), step);
rewriter.replaceOp(op, {resultValue, resultIndices});
return success();
}
};
} // namespace
namespace {
// Decompose `aten.scatter.value` op into `aten.scatter.src` op.
class DecomposeAtenScatterValueOp
: public OpRewritePattern<AtenScatterValueOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenScatterValueOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
MLIRContext *context = op.getContext();
Value self = op.getSelf();
Value index = op.getIndex();
std::optional<unsigned> maybeIndexRank = getTensorRank(index);
if (!maybeIndexRank) {
return rewriter.notifyMatchFailure(
op, "expected index tensor to have a rank");
}
unsigned indexRank = *maybeIndexRank;
SmallVector<Value> sizes;
for (int64_t i = 0; i < indexRank; ++i) {
Value dim =
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(i));
sizes.push_back(rewriter.create<AtenSizeIntOp>(loc, index, /*dim=*/dim));
}
Value sizeList = rewriter.create<PrimListConstructOp>(
loc, ListType::get(IntType::get(context)), sizes);
auto selfType = self.getType().cast<BaseTensorType>();
auto indexType = index.getType().cast<BaseTensorType>();
BaseTensorType srcType =
selfType
.getWithSizesAndDtype(indexType.getOptionalSizes(),
selfType.getOptionalDtype())
.cast<BaseTensorType>();
Value src =
createInitTensor(rewriter, loc, srcType, op.getValue(), sizeList);
rewriter.replaceOpWithNewOp<AtenScatterSrcOp>(op, op.getType(), self,
op.getDim(), index, src);
return success();
}
};
} // namespace
namespace {
// Decompose `aten.sign` op into comparisons and aten.where.
class DecomposeAtenSignOp : public OpRewritePattern<AtenSignOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenSignOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
auto outType = op.getType().dyn_cast<BaseTensorType>();
if (!outType)
return rewriter.notifyMatchFailure(
op, "Only tensor types input are currently supported");
auto zero =
rewriter.create<ConstantFloatOp>(loc, rewriter.getF64FloatAttr(0.0));
auto one =
rewriter.create<ConstantFloatOp>(loc, rewriter.getF64FloatAttr(1.0));
auto minusOne =
rewriter.create<ConstantFloatOp>(loc, rewriter.getF64FloatAttr(-1.0));
auto compTy = outType.getWithSizesAndDtype(outType.getOptionalSizes(),
rewriter.getI1Type());
auto greater =
rewriter.create<AtenGtScalarOp>(loc, compTy, op.getSelf(), zero);
auto greaterEqual =
rewriter.create<AtenGeScalarOp>(loc, compTy, op.getSelf(), zero);
// Pseudo code:
// if (in >= 0)
// if (in > 0)
// return 1
// else
// return 0
// else
// return -1
auto selectGreater =
rewriter.create<AtenWhereScalarOp>(loc, outType, greater, one, zero);
rewriter.replaceOpWithNewOp<AtenWhereScalarOtherOp>(op, outType, greaterEqual,
selectGreater, minusOne);
return success();
}
};
} // namespace
namespace {
// Unconditionally decompose `torch.type_as` into `prim.dtype` +
// `torch.to.dtype`.
class DecomposeAtenTypeAsOp : public OpRewritePattern<AtenTypeAsOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenTypeAsOp op,
PatternRewriter &rewriter) const override {
auto input = op.getSelf();
auto other = op.getOther();
Location loc = op.getLoc();
Value targetDtype = rewriter.create<Torch::PrimDtypeOp>(loc, other);
Value nonBlocking = rewriter.create<Torch::ConstantBoolOp>(loc, false);
Value copy = rewriter.create<Torch::ConstantBoolOp>(loc, false);
Value memoryFormat = rewriter.create<Torch::ConstantNoneOp>(loc);
rewriter.replaceOpWithNewOp<Torch::AtenToDtypeOp>(
op, op.getType(), input, targetDtype, nonBlocking, copy, memoryFormat);
return success();
}
};
} // namespace
// AtenIndexTensorOp
namespace {
// The goal of this pattern is to eliminate none index in aten.Index.Tensor's
// `indices` param for the ease of various backend. The detailed steps are:
// 1. reorder input tensor so that the non-none index appears at adjacent
// positions.
// 2. manually generate index tensor with some ops like iota, to replace the
// none index in `indices`
// 3. replace the old aten.Index.Tensor with a new
// aten.Index.Tensor_hacked_twin.
class DecomposeAtenIndexTensorOp : public OpRewritePattern<AtenIndexTensorOp> {
public:
using OpRewritePattern::OpRewritePattern;
// TODO: It might be better to use aten.view op instead of mulitple
// aten.unsqueeze. But currently, torch-to-linalg pass has limited support for
// view on dynamic shapes, such as [?] -> [?,1,1,1]. Using aten.view op will
// cause relevant e2e tests fail.
static FailureOr<Value>
unsqueezeTensorAtTrailingDim(Operation *op, PatternRewriter &rewriter,
Value input, int count) {
Location loc = op->getLoc();
Value constMinusOne = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(-1));
Value result = input;
while (count--) {
auto unsqzTensorInfo =
unsqueezeTensor(rewriter, op, result, /*dim=*/constMinusOne);
if (failed(unsqzTensorInfo)) {
return failure();
}
result = *unsqzTensorInfo;
}
return result;
}
static Value createIndexToReplaceNone(Operation *op,
PatternRewriter &rewriter, Value input,
int dimInt, int64_t dimSize) {
Location loc = op->getLoc();
MLIRContext *context = op->getContext();
Value none = rewriter.create<Torch::ConstantNoneOp>(loc);
auto int64Dtype = getDtypeIntValueForType(
rewriter, loc,
rewriter.getIntegerType(/*width=*/64, /*isSigned=*/true));
auto resultType = ValueTensorType::get(
context, {dimSize},
rewriter.getIntegerType(/*width=*/64, /*isSigned=*/true));
auto dim = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(dimInt));
auto end = rewriter.create<Torch::AtenSizeIntOp>(loc, input, dim);
auto v = rewriter.create<Torch::AtenArangeOp>(
loc, resultType, /*end=*/end, /*dtype=*/int64Dtype, /*layout=*/none,
/*device=*/none, /*pin_memory=*/none);
return v;
}
LogicalResult matchAndRewrite(AtenIndexTensorOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
MLIRContext *context = op.getContext();
SmallVector<Value> indices;
if (!getListConstructElements(op.getIndices(), indices))
return rewriter.notifyMatchFailure(op,
"failed to get elements of `indices`");
auto input = op.getSelf();
auto inputType = input.getType().cast<BaseTensorType>();
if (!inputType.hasSizes()) {
return rewriter.notifyMatchFailure(
op, "only input with shape information is supported");
}
auto inputSizes = inputType.getSizes();
int64_t inputRank = inputSizes.size();
auto outputType = op.getType().cast<BaseTensorType>();
if (!outputType.hasSizes()) {
return rewriter.notifyMatchFailure(
op, "only output with shape information is supported");
}
auto outputRank = outputType.getSizes().size();
auto isTensor = [](Value v) {
return v.getType().isa<Torch::BaseTensorType>();
};
// directly replace aten.Index.Tensor with aten.index.Tensor_hacked_twin
if (llvm::all_of(indices, isTensor)) {
if (indices.size() == 0) {
return rewriter.notifyMatchFailure(
op, "the indices is empty, it should be folded as a nop");
}
// By default, we regard the first index type as the list element type.
auto indexElemType = indices[0]
.getType()
.template cast<BaseTensorType>()
.getWithSizesAndDtype(std::nullopt, nullptr);
auto newIndex = rewriter.create<PrimListConstructOp>(
loc, Torch::ListType::get(indexElemType), indices);
rewriter.replaceOpWithNewOp<AtenIndexTensorHackedTwinOp>(op, op.getType(),
input, newIndex);
return success();
}
SmallVector<bool> indexUsed =
llvm::to_vector(llvm::map_range(indices, isTensor));
for (int64_t i = indices.size(); i < inputRank; ++i)
indexUsed.emplace_back(false);
bool indexIsConsecutive = true;
int64_t firstUsedIndex = -1;
for (size_t i = 0; i < indices.size(); ++i) {
if (indexUsed[i] && firstUsedIndex == -1) {
firstUsedIndex = i;
} else if (indexUsed[i] && !indexUsed[i - 1]) {
indexIsConsecutive = false;
break;
}
}
// use aten.permute to reorder the input
Value newInput;
// `dims` stores the mapping from new index to the old index of input
// tensor.
SmallVector<int64_t> dims;
if (!indexIsConsecutive) {
SmallVector<Value> dimValues;
SmallVector<int64_t> permutedSizes;
for (int i = 0; i < inputRank; i++) {
if (indexUsed[i]) {
dims.emplace_back(i);
dimValues.emplace_back(rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(i)));
permutedSizes.emplace_back(inputSizes[i]);
}
}
for (int i = 0; i < inputRank; i++) {
if (!indexUsed[i]) {
dims.emplace_back(i);
dimValues.emplace_back(rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(i)));
permutedSizes.emplace_back(inputSizes[i]);
}
}
auto dimValueList = rewriter.create<Torch::PrimListConstructOp>(
loc, Torch::ListType::get(Torch::IntType::get(context)), dimValues);
newInput = rewriter.create<Torch::AtenPermuteOp>(
loc,
inputType.getWithSizesAndDtype(permutedSizes,
inputType.getOptionalDtype()),
input, dimValueList);
} else {
newInput = input;
for (int i = 0; i < inputRank; i++) {
dims.emplace_back(i);
}
}
// manually generate new indices.
SmallVector<Value> listElements(inputRank);
int64_t trailingDimCnt = 0;
int64_t i;
// handle trailing none index.
for (i = inputRank - 1; i >= 0; --i) {
int64_t oldI = dims[i];
if (indexUsed[oldI])
break;
Value v =
createIndexToReplaceNone(op, rewriter, newInput, i, inputSizes[oldI]);
auto vInfo =
unsqueezeTensorAtTrailingDim(op, rewriter, v, trailingDimCnt);
if (failed(vInfo)) {
return rewriter.notifyMatchFailure(op, "failed to unsqueeze tensor");
}
listElements[i] = *vInfo;
trailingDimCnt++;
}
// handle non-none index in between.
for (; i >= 0; --i) {
int64_t oldI = dims[i];
if (!indexUsed[oldI])
break;
auto vInfo = unsqueezeTensorAtTrailingDim(op, rewriter, indices[oldI],
trailingDimCnt);
if (failed(vInfo)) {
return rewriter.notifyMatchFailure(op, "failed to unsqueeze tensor");
}
listElements[i] = *vInfo;
}
// handle possible leading none dimensions.
for (; i >= 0; --i) {
int64_t oldI = dims[i];
if (indexUsed[oldI]) {
return rewriter.notifyMatchFailure(
op, "the indices are still unconsecutive after reordering input "
"tensor");
}
Value v =
createIndexToReplaceNone(op, rewriter, newInput, i, inputSizes[oldI]);
auto vInfo =
unsqueezeTensorAtTrailingDim(op, rewriter, v, outputRank - 1 - i);
if (failed(vInfo)) {
return rewriter.notifyMatchFailure(op, "failed to unsqueeze tensor");
}
listElements[i] = *vInfo;
}
auto listElemType = ValueTensorType::get(context, std::nullopt, nullptr);
auto newIndexList = rewriter.create<Torch::PrimListConstructOp>(
loc, Torch::ListType::get(listElemType), listElements);
rewriter.replaceOpWithNewOp<Torch::AtenIndexTensorHackedTwinOp>(
op, op.getType(), newInput, newIndexList);
return success();
}
};
} // namespace
namespace {
// Unconditionally decompose `aten.tile` into `aten.repeat`.
class DecomposeAtenTileOp : public OpRewritePattern<AtenTileOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenTileOp op,
PatternRewriter &rewriter) const override {
auto input = op.getSelf();
auto repeats = op.getDims();
SmallVector<Value> dimsElements;
if (!getListConstructElements(repeats, dimsElements)) {
return rewriter.notifyMatchFailure(
op, "failed to get elements of `dims` param");
}
auto dimsSize = dimsElements.size();
auto inputType = input.getType().cast<BaseTensorType>();
if (!inputType.hasSizes()) {
return rewriter.notifyMatchFailure(
op, "only support input tensor with shape information");
}
auto inputRank = inputType.getSizes().size();
if (dimsSize < inputRank) {
auto constantOne = rewriter.create<Torch::ConstantIntOp>(
op.getLoc(), rewriter.getI64IntegerAttr(1));
for (auto i = dimsSize; i < inputRank; ++i) {
dimsElements.insert(dimsElements.begin(), constantOne);
}
repeats = rewriter.create<Torch::PrimListConstructOp>(
op.getLoc(),
Torch::ListType::get(Torch::IntType::get(op.getContext())),
dimsElements);
}
rewriter.replaceOpWithNewOp<Torch::AtenRepeatOp>(op, op.getType(), input,
repeats);
return success();
}
};
} // namespace
namespace {
class DecomposeComplexOpsPass
: public DecomposeComplexOpsBase<DecomposeComplexOpsPass> {
private:
llvm::StringSet<> legalOpsSet;
template <typename DecomposePattern>
void addPatternIfTargetOpIsIllegal(RewritePatternSet &patterns) {
MLIRContext *context = &getContext();
std::optional<OperationName> opName =
DecomposePattern(context).getRootKind();
// Because the `DecomposeComplexOpsPass` uses a greedy algorithm
// to apply patterns, only patterns that we for sure know we want to run
// must be added. This restricts the set of patterns allowed in this file to
// patterns that apply to a single op. In other words, patterns that match
// on `Operation *` are not allowed, since there is no way of telling if
// that pattern will match on an op in the `legalOpsSet` or not.
assert(opName && "All decomposition patterns must target a single op");
if (!legalOpsSet.contains(opName->getStringRef().ltrim(kTorchOpPrefix)))
patterns.add<DecomposePattern>(context);
}
public:
DecomposeComplexOpsPass() = default;
DecomposeComplexOpsPass(ArrayRef<std::string> legalOps) {
this->legalOps = legalOps;
}
void runOnOperation() override {
MLIRContext *context = &getContext();
RewritePatternSet patterns(context);
// The strings in the `legalOps` ArrayRef don't exist during the call to the
// constructor `DecomposeComplexOpsPass`, so the creation of the
// `legalOpsSet` must be delayed to when `runOnOperation` gets called.
legalOpsSet.clear();
legalOpsSet.insert(legalOps.begin(), legalOps.end());
addPatternIfTargetOpIsIllegal<DecomposeAtenSoftmaxIntOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAten_SoftmaxOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAten_LogSoftmaxOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenLogSoftmaxIntOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenEmptyLikeOp>(patterns);
addPatternIfTargetOpIsIllegal<
DecomposeConstantTensorAllocLikeOp<AtenOnesLikeOp, 1>>(patterns);
addPatternIfTargetOpIsIllegal<
DecomposeConstantTensorAllocLikeOp<AtenZerosLikeOp, 0>>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenStackOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenRollOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenRepeatOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenExpandOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenFlattenUsingIntsOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenWhereScalarOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenWhereScalarOtherOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenWhereScalarSelfOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenMaskedFillScalarOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenSizeOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenReshapeOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAten_SoftmaxBackwardDataOp>(
patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenTanhBackwardOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenAddmmOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenMeanOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenMeanDimOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenSelectIntOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenMatmulOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenMvOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenTOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAten_LogSoftmaxBackwardDataOp>(
patterns);
addPatternIfTargetOpIsIllegal<
DecomposeAtenAddCLikeOp<AtenAddcmulOp, AtenMulTensorOp>>(patterns);
addPatternIfTargetOpIsIllegal<
DecomposeAtenAddCLikeOp<AtenAddcdivOp, AtenDivTensorOp>>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenLayerNormOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenNativeLayerNormOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenNativeBatchNormOp>(patterns);
addPatternIfTargetOpIsIllegal<
DecomposeAten_ConvolutionLikeOp<Aten_ConvolutionOp>>(patterns);
addPatternIfTargetOpIsIllegal<
DecomposeAten_ConvolutionLikeOp<Aten_ConvolutionDeprecatedOp>>(
patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenConvolutionBackwardOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenConv2dOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenConvTranspose2dOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenArangeOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenArangeStartOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenArgMaxOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenSquareOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenVarOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenStdOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAten_UnsafeViewOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAten_ReshapeAliasOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenBernoulliOp>(patterns);
addPatternIfTargetOpIsIllegal<
DecomposeAtenBernoulliLikeOp<ValsemVariantAtenBernoulliFloatOp>>(
patterns);
addPatternIfTargetOpIsIllegal<
DecomposeAtenBernoulliLikeOp<AtenBernoulliPOp>>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenBernoulliTensorOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenZeroOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenIsnanOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenRandLikeOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenHardsigmoidOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenRelu6Op>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenHardswishOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenSoftplusOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenSiluOp>(patterns);
addPatternIfTargetOpIsIllegal<
DecomposeConstantTensorNewLikeOp<AtenNewZerosOp, AtenZerosOp>>(
patterns);
addPatternIfTargetOpIsIllegal<
DecomposeConstantTensorNewLikeOp<AtenNewOnesOp, AtenOnesOp>>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenHardtanhOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenFullOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenLinearOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenMishOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenFullLikeOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenNewFullOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenIndexPutOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenExpandAsOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAten_ToCopyOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenCopyOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenDropoutOp>(patterns);
addPatternIfTargetOpIsIllegal<DeomposeAtenNativeDropoutOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenNewEmptyOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenIndexPutHackedTwinOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAten_UnsafeIndexPutHackedTwinOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenPadOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenToDtypeLayoutOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenToDeviceOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenAdaptiveAvgPool1dOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenAdaptiveAvgPool2dOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenClampMinOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenClampMaxOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenBaddbmmOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenFloorDivideOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenNumpyTOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenSelectScatterOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenVarDimOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenAmaxOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenVarCorrectionOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenStdDimOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenStdCorrectionOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenNarrowOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenNarrowTensorOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAten_EmbeddingBagOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenLiftFreshCopyOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenMseLossOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenNormScalarOptDimOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenRandintOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenRandintLowOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenVarMeanCorrectionOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposePrimsConvertElementTypeOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposePrimsVarOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposePrimsSqrtOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenRandOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenRandnOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenRandnGeneratorOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenRandnLikeOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenVarMeanOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenEluOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenLeakyReluOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenLeakyReluBackwardOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenNewEmptyStridedOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenEmptyStridedOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenBucketizeTensorOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposePrimsSqueezeOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenMovedimIntOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenOneHotOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenCrossEntropyLossOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenVarMeanDimOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenTopkOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenScalarTensor>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenScatterValueOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenSignOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenTypeAsOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenTileOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenIndexTensorOp>(patterns);
GreedyRewriteConfig config;
config.useTopDownTraversal = true;
config.maxIterations = GreedyRewriteConfig::kNoLimit;
if (failed(applyPatternsAndFoldGreedily(getOperation(), std::move(patterns),
config))) {
return signalPassFailure();
}
}
};
} // namespace
std::unique_ptr<OperationPass<func::FuncOp>>
mlir::torch::Torch::createDecomposeComplexOpsPass(
ArrayRef<std::string> legalOps) {
return std::make_unique<DecomposeComplexOpsPass>(legalOps);
}