mirror of https://github.com/llvm/torch-mlir
151 lines
5.0 KiB
C++
151 lines
5.0 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
// Also available under a BSD-style license. See LICENSE.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionOps.h"
|
|
|
|
#include "mlir/IR/BuiltinOps.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchTypes.h"
|
|
#include "llvm/ADT/StringMap.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::torch;
|
|
using namespace mlir::torch::TorchConversion;
|
|
using namespace mlir::torch;
|
|
|
|
static bool haveSameSizeAndElementType(TensorType lhs, TensorType rhs) {
|
|
if (lhs.hasRank() != rhs.hasRank())
|
|
return false;
|
|
bool sameSize = lhs.hasRank() ? lhs.getShape().equals(rhs.getShape()) : true;
|
|
bool sameElementType = false;
|
|
// Namely, it is worth mentioning that the backends can have different
|
|
// expectations for signedness when converting from and to the builtin MLIR
|
|
// types. Therefore, the verifier cannot expect the input and output types to
|
|
// match in their signedness.
|
|
if (isa<IntegerType>(lhs.getElementType()) &&
|
|
isa<IntegerType>(rhs.getElementType())) {
|
|
sameElementType = lhs.getElementType().getIntOrFloatBitWidth() ==
|
|
rhs.getElementType().getIntOrFloatBitWidth();
|
|
} else {
|
|
sameElementType = lhs.getElementType() == rhs.getElementType();
|
|
}
|
|
return sameElementType && sameSize;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ToBuiltinTensorOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult ToBuiltinTensorOp::verify() {
|
|
auto resultType = cast<TensorType>(getResult().getType());
|
|
auto operandType =
|
|
cast<Torch::ValueTensorType>(getOperand().getType()).toBuiltinTensor();
|
|
if (!haveSameSizeAndElementType(resultType, operandType)) {
|
|
return emitError()
|
|
<< "operand and result must have the same size and dtype";
|
|
}
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FromBuiltinTensorOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult FromBuiltinTensorOp::verify() {
|
|
auto resultType =
|
|
cast<Torch::ValueTensorType>(getResult().getType()).toBuiltinTensor();
|
|
auto operandType = cast<TensorType>(getOperand().getType());
|
|
if (!haveSameSizeAndElementType(resultType, operandType)) {
|
|
return emitError()
|
|
<< "operand and result must have the same size and dtype";
|
|
}
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FromI1Op
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult FromI1Op::fold(FoldAdaptor adaptor) {
|
|
auto attr = dyn_cast_or_null<mlir::BoolAttr>(adaptor.getOperand());
|
|
if (attr) {
|
|
return attr;
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ToI1Op
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult ToI1Op::fold(FoldAdaptor adaptor) {
|
|
auto attr = dyn_cast_or_null<mlir::BoolAttr>(adaptor.getOperand());
|
|
if (attr) {
|
|
return attr;
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FromI64Op
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult FromI64Op::fold(FoldAdaptor adaptor) {
|
|
auto attr = dyn_cast_or_null<mlir::IntegerAttr>(adaptor.getOperand());
|
|
if (attr) {
|
|
return attr;
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ToI64Op
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult ToI64Op::fold(FoldAdaptor adaptor) {
|
|
auto attr = dyn_cast_or_null<mlir::IntegerAttr>(adaptor.getOperand());
|
|
if (attr) {
|
|
return attr;
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ToF64Op
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult ToF64Op::fold(FoldAdaptor adaptor) {
|
|
auto attr = dyn_cast_or_null<mlir::FloatAttr>(adaptor.getOperand());
|
|
if (attr) {
|
|
return attr;
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FromF64Op
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult FromF64Op::fold(FoldAdaptor adaptor) {
|
|
auto attr = dyn_cast_or_null<mlir::FloatAttr>(adaptor.getOperand());
|
|
if (attr) {
|
|
return attr;
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
#define GET_OP_CLASSES
|
|
#include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionOps.cpp.inc"
|