torch-mlir/lib/Dialect/Torch/IR/TorchOps.cpp

479 lines
19 KiB
C++

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "npcomp/Dialect/Torch/IR/TorchOps.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "npcomp/Dialect/Basicpy/IR/BasicpyDialect.h"
#include "npcomp/Dialect/Basicpy/IR/BasicpyOps.h"
#include "llvm/ADT/StringMap.h"
using namespace mlir;
using namespace mlir::NPCOMP;
using namespace mlir::NPCOMP::Torch;
//===----------------------------------------------------------------------===//
// Utilities
//===----------------------------------------------------------------------===//
Value mlir::NPCOMP::Torch::copyTensorToType(OpBuilder &builder, Location loc,
BaseTensorType newType,
Value tensor) {
auto originalType = tensor.getType().cast<BaseTensorType>();
// Adjust the static information in the type to match between the original and
// new types.
if (!originalType.hasSameSizesAndDtype(newType)) {
tensor = builder.create<TensorStaticInfoCastOp>(
loc, originalType.getWithSizesAndDtypeFrom(newType), tensor);
}
// If both the original and new types already have value semantics, a copy is
// pointless.
if (originalType.isa<ValueTensorType>() && newType.isa<ValueTensorType>())
return tensor;
return builder.create<CopyTensorOp>(loc, newType, tensor);
}
//===----------------------------------------------------------------------===//
// MethodOp
//===----------------------------------------------------------------------===//
LogicalResult MethodOp::verifySymbolUses(SymbolTableCollection &symbolTable) {
auto func = symbolTable.lookupNearestSymbolFrom<FuncOp>(*this, function());
if (!func)
return emitError() << "'@" << function()
<< "' does not reference a valid function";
if (func.getVisibility() != SymbolTable::Visibility::Private)
return emitError() << "'@" << function()
<< "' must reference a private function";
if (func.isDeclaration())
return emitError() << "'@" << function()
<< "' must reference a function that is defined (not "
"merely declared)";
auto expectedReceiverArgType = NnModuleType::get(
getContext(), getOperation()->getParentOfType<ClassTypeOp>().getName());
if (func.getType().getNumInputs() == 0 ||
func.getType().getInput(0) != expectedReceiverArgType) {
return emitError() << "the referenced function '" << function()
<< "' must have a first argument of type "
<< expectedReceiverArgType;
}
return success();
}
//===----------------------------------------------------------------------===//
// NnModuleOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(NnModuleOp op) {
for (Operation &child : *op.getBody())
if (!isa<SlotOp, NnModuleTerminatorOp>(&child))
return child.emitOpError() << "is not allowed inside 'torch.nn_module'";
return success();
}
// PyTorch has a well-developed notion of subtyping.
//
// This is a restricted subset of it.
//
// TODO: Flesh this out.
// TODO: Decide / properly model the distinction between PEP 483 / Python
// subtyping vs "more static information".
bool isValidSubtype(Type subtype, Type type) {
if (subtype == type)
return true;
if (auto optional = type.dyn_cast<OptionalType>())
return subtype == optional.getContainedType() ||
subtype.isa<Torch::NoneType>();
// TODO: This is not subtyping according to PEP 483. See description
// of NonValueTensorType.
if (subtype.isa<NonValueTensorType>() && type.isa<NonValueTensorType>() &&
type ==
NonValueTensorType::getWithLeastStaticInformation(type.getContext()))
return true;
return false;
}
LogicalResult NnModuleOp::verifySymbolUses(SymbolTableCollection &symbolTable) {
auto classType =
symbolTable.lookupNearestSymbolFrom<ClassTypeOp>(*this, getClassName());
if (!classType)
return emitError() << "'" << getClassName()
<< "' does not reference a valid class type";
auto attrs = llvm::to_vector<6>(getBody()->getOps<SlotOp>());
auto attrDefs = llvm::to_vector<6>(classType.getBody()->getOps<AttrOp>());
if (attrs.size() != attrDefs.size())
return emitError() << "number of 'torch.slot's in a 'torch.nn_module' must "
"match number of 'torch.attr's in "
"the corresponding 'torch.class_type'";
for (int i = 0, e = attrs.size(); i != e; i++) {
SlotOp attr = attrs[i];
AttrOp attrDef = attrDefs[i];
if (!isValidSubtype(attr.value().getType(), attrDef.type()) ||
attr.name() != attrDef.name()) {
return attr.emitOpError()
.append("is expected to match type and name of '",
attrDef.getOperation(), "'")
.attachNote(attrDef.getLoc())
.append("see torch.attr at corresponding index ", i, " here");
}
}
return success();
}
//===----------------------------------------------------------------------===//
// PrimListConstructOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(PrimListConstructOp op) {
auto resultType = op.getResult().getType();
auto resultElementType = resultType.dyn_cast<ListType>().getContainedType();
auto matchResultElementType = [&](Type type) {
return type.getTypeID() == resultElementType.getTypeID();
};
if (llvm::all_of(op->getOperandTypes(), matchResultElementType))
return success();
else return failure();
}
//===----------------------------------------------------------------------===//
// ClassTypeOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(ClassTypeOp op) {
llvm::StringMap<Operation *> namesToOps;
for (Operation &child : op.getBody()->without_terminator()) {
if (!isa<AttrOp, MethodOp>(&child))
return child.emitOpError() << "is not allowed inside `torch.class_type`";
StringRef name;
if (auto attr = dyn_cast<AttrOp>(child))
name = attr.name();
else
name = cast<MethodOp>(child).name();
auto itAndWasInserted = namesToOps.insert({name, &child});
auto it = itAndWasInserted.first;
bool wasInserted = itAndWasInserted.second;
if (!wasInserted) {
auto diag = op.emitOpError().append(
"has duplicate attr/method with name '", name, "'");
diag.attachNote(it->second->getLoc())
.append("see first conflicting attr/method here");
diag.attachNote(child.getLoc())
.append("see second conflicting attr/method here");
return failure();
}
}
return success();
}
//===----------------------------------------------------------------------===//
// PrimLoopOp
//===----------------------------------------------------------------------===//
OperandRange PrimLoopOp::getSuccessorEntryOperands(unsigned index) {
assert(index == 0);
return iterArgsInit();
}
void PrimLoopOp::getSuccessorRegions(
Optional<unsigned> index, ArrayRef<Attribute> operands,
SmallVectorImpl<RegionSuccessor> &regions) {
(void)operands;
if (!index.hasValue()) {
regions.emplace_back(&region(), region().getArguments().slice(1));
return;
}
assert(*index == 0);
regions.emplace_back(&region(), region().getArguments().slice(1));
regions.emplace_back(getResults());
}
//===----------------------------------------------------------------------===//
// DerefineOp
//===----------------------------------------------------------------------===//
bool DerefineOp::areCastCompatible(mlir::TypeRange inputs,
mlir::TypeRange outputs) {
return isValidSubtype(inputs[0], outputs[0]);
}
void DerefineOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](DerefineOp op, PatternRewriter &rewriter) {
// TODO: Extend RefineTypes for this case and delete this canonicalization,
// since we don't want control flow or calls to randomly block this fold
// (this canonicalization pattern makes the compiler brittle to control flow
// and calls).
bool allAllowRefinement =
llvm::all_of(op.getResult().getUsers(), allowsTypeRefinement);
if (!allAllowRefinement)
return failure();
rewriter.replaceOp(op, op.getOperand());
return success();
});
}
//===----------------------------------------------------------------------===//
// Aten__Is__Op
//===----------------------------------------------------------------------===//
OpFoldResult Aten__Is__Op::fold(ArrayRef<Attribute> operands) {
auto lhsType = self().getType();
auto rhsType = obj().getType();
// If either type is a NoneType, make it be the lhsType.
if (rhsType.isa<Torch::NoneType>())
std::swap(lhsType, rhsType);
// TODO: Implement and use subtype infra for this.
// If neither type is a subtype of the other, then the result is false.
if (lhsType.isa<Torch::NoneType>() && !rhsType.isa<Torch::OptionalType>())
return IntegerAttr::get(IntegerType::get(getContext(), 1), 0);
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenLenTOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenDimOp::fold(ArrayRef<Attribute> operands) {
if (auto tensorType = getOperand().getType().dyn_cast<BaseTensorType>()) {
if (tensorType.hasSizes())
return IntegerAttr::get(IntegerType::get(getContext(), 64),
tensorType.getSizes().size());
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenLenTOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenLenTOp::fold(ArrayRef<Attribute> operands) {
// `len([1,1,1])` -> `3`
if (auto listConstruct = getOperand().getDefiningOp<Torch::PrimListConstructOp>()) {
return IntegerAttr::get(IntegerType::get(getContext(), 64),
listConstruct.getNumOperands());
}
return nullptr;
}
void AtenLenTOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
// `len(t.size())` -> `t.ndim`
patterns.add(+[](AtenLenTOp op, PatternRewriter &rewriter) {
auto size = op.getOperand().getDefiningOp<AtenSizeOp>();
if (!size)
return rewriter.notifyMatchFailure(op, "operand not AtenSizeOp");
// TODO: Normalize all the torch scalar integer types to consistently use
// a `!torch.int` type so that this op and others can automatically infer
// their type. An additional benefit is that there's already enough of a
// semantic gap between Python ints (which tend to be arbitrary precision)
// and Torch/et-al ints (fixed bit depth, usually 64), it would be nice to
// preserve the fact that we are working on a !torch.int and not just a
// thing that was prematurely pinned to an `i64`.
rewriter.replaceOpWithNewOp<AtenDimOp>(op, rewriter.getI64Type(),
size.getOperand());
return success();
});
}
//===----------------------------------------------------------------------===//
// AtenSizeOp
//===----------------------------------------------------------------------===//
void AtenSizeOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](AtenSizeOp op, PatternRewriter &rewriter) {
auto type = op.getOperand().getType().dyn_cast<BaseTensorType>();
if (!type || !type.areAllSizesKnown())
return rewriter.notifyMatchFailure(op, "all sizes not known");
SmallVector<Value> listElements;
for (int64_t size : type.getSizes()) {
listElements.push_back(rewriter.create<::mlir::ConstantOp>(
op->getLoc(), rewriter.getI64IntegerAttr(size)));
}
rewriter.replaceOpWithNewOp<Torch::PrimListConstructOp>(
op, Torch::ListType::get(rewriter.getI64Type()), listElements);
return success();
});
// One-off pattern to erase if dead.
// TODO: Use the effects infra to express the semantics of this op and enable
// a centralized "erase if dead" canonicalization.
// Specifically, we need to mark the op as only MemoryEffects::Allocate
// so that `mlir::wouldOpBeTriviallyDead` does the right thing.
patterns.add(+[](AtenSizeOp op, PatternRewriter &rewriter) {
if (!op.use_empty())
return failure();
rewriter.eraseOp(op);
return failure();
});
}
//===----------------------------------------------------------------------===//
// TensorOp
//===----------------------------------------------------------------------===//
LogicalResult
TensorOp::inferReturnTypes(MLIRContext *context, Optional<Location> location,
ValueRange operands, DictionaryAttr attributes,
RegionRange regions,
SmallVectorImpl<Type> &inferredReturnTypes) {
auto attr = attributes.get("value").dyn_cast_or_null<ElementsAttr>();
if (!attr)
return failure();
auto tensorType = attr.getType().cast<RankedTensorType>();
inferredReturnTypes.push_back(NonValueTensorType::getFromShaped(tensorType));
return success();
}
static bool areSizesAndDtypesCompatible(BaseTensorType a, BaseTensorType b) {
if (a.hasSizes() && b.hasSizes()) {
if (failed(verifyCompatibleShape(a.getSizes(), b.getSizes())))
return false;
}
if (a.hasDtype() && b.hasDtype()) {
if (a.getDtype() != b.getDtype())
return false;
}
return true;
}
bool TensorOp::isCompatibleReturnTypes(TypeRange inferred, TypeRange actual) {
if (!actual[0].isa<BaseTensorType>())
return false;
return areSizesAndDtypesCompatible(inferred[0].cast<BaseTensorType>(),
actual[0].cast<BaseTensorType>());
}
//----------------------------------------------------------------------------//
// TensorStaticInfoCast
//----------------------------------------------------------------------------//
bool TensorStaticInfoCastOp::areCastCompatible(mlir::TypeRange inputs,
mlir::TypeRange outputs) {
return areSizesAndDtypesCompatible(inputs[0].cast<BaseTensorType>(),
outputs[0].cast<BaseTensorType>());
}
//===----------------------------------------------------------------------===//
// CopyTensorOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(CopyTensorOp op) {
auto resultType = op.getResult().getType().cast<BaseTensorType>();
auto operandType = op.getOperand().getType().cast<BaseTensorType>();
if (!resultType.hasSameSizesAndDtype(operandType)) {
return op.emitError()
<< "operand and result must have same sizes and dtype";
}
return success();
}
OpFoldResult CopyTensorOp::fold(ArrayRef<Attribute> operands) {
// A copy between value semantic tensors is a no-op.
if (getType().isa<ValueTensorType>() &&
getOperand().getType().isa<ValueTensorType>()) {
return getOperand();
}
return nullptr;
}
void CopyTensorOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
// y = torch.copy.tensor(hasOneUse@torch.copy.tensor(x)) -> x
// Only safe when `y` and `x` have value semantics.
patterns.add(+[](CopyTensorOp op, PatternRewriter &rewriter) {
auto otherCopy = op.getOperand().getDefiningOp<CopyTensorOp>();
if (!otherCopy)
return failure();
if (otherCopy.getOperand().getType().isa<ValueTensorType>() &&
op.getResult().getType().isa<ValueTensorType>() &&
op.getOperand().hasOneUse()) {
rewriter.replaceOp(op, {otherCopy.getOperand()});
// TODO: Implement MemoryEffectOpInterface to handle the value/non-value
// cases precisely. In this case, we specifically know that `otherCopy`
// is dead so eagerly clean it up.
rewriter.eraseOp(otherCopy);
return success();
}
return failure();
});
}
//===----------------------------------------------------------------------===//
// ToBuiltinTensorOp
//===----------------------------------------------------------------------===//
LogicalResult ToBuiltinTensorOp::inferReturnTypes(
MLIRContext *context, Optional<Location> location, ValueRange operands,
DictionaryAttr attributes, RegionRange regions,
SmallVectorImpl<Type> &inferredReturnTypes) {
auto resultType =
operands[0].getType().cast<ValueTensorType>().toBuiltinTensor();
if (!resultType)
return failure();
inferredReturnTypes.push_back(resultType);
return success();
}
//===----------------------------------------------------------------------===//
// FromBuiltinTensorOp
//===----------------------------------------------------------------------===//
LogicalResult FromBuiltinTensorOp::inferReturnTypes(
MLIRContext *context, Optional<Location> location, ValueRange operands,
DictionaryAttr attributes, RegionRange regions,
SmallVectorImpl<Type> &inferredReturnTypes) {
inferredReturnTypes.push_back(
ValueTensorType::getFromShaped(operands[0].getType().cast<TensorType>()));
return success();
}
//===----------------------------------------------------------------------===//
// ConstantNoneOp
//===----------------------------------------------------------------------===//
OpFoldResult ConstantNoneOp::fold(ArrayRef<Attribute> operands) {
return TypeAttr::get(Torch::NoneType::get(getContext()));
}
//===----------------------------------------------------------------------===//
// Aten__Getitem__TOp
//===----------------------------------------------------------------------===//
void Aten__Getitem__TOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](Aten__Getitem__TOp op, PatternRewriter &rewriter) {
auto torchList = op.getOperand(0);
if(!torchList.hasOneUse())
return failure();
auto listConstruct = torchList.getDefiningOp<Torch::PrimListConstructOp>();
if (!listConstruct)
return failure();
APInt indexAP;
if (!matchPattern(op.getOperand(1), m_ConstantInt(&indexAP)))
return failure();
auto index = indexAP.getSExtValue();
rewriter.replaceOp(op, {listConstruct.getOperand(index)});
return success();
});
}
#define GET_OP_CLASSES
#include "npcomp/Dialect/Torch/IR/TorchOps.cpp.inc"