mirror of https://github.com/llvm/torch-mlir
1126 lines
49 KiB
C++
1126 lines
49 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
// Also available under a BSD-style license. See LICENSE.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "torch-mlir/Conversion/TorchToLinalg/TorchToLinalg.h"
|
|
|
|
#include "../PassDetail.h"
|
|
#include "PopulatePatterns.h"
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
|
|
#include "mlir/Dialect/Linalg/IR/Linalg.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "torch-mlir/Conversion/TorchToLinalg/Utils.h"
|
|
#include "torch-mlir/Conversion/Utils/Utils.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchDialect.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
|
|
#include "torch-mlir/Dialect/Torch/Utils/TorchUpstream.h"
|
|
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::torch;
|
|
using namespace mlir::torch::Torch;
|
|
|
|
// Checks the validity of pooling parameters and stores them in the respective
|
|
// vector.
|
|
template <typename OpTy>
|
|
static LogicalResult
|
|
checkAndGetPoolingParameters(OpTy op, ConversionPatternRewriter &rewriter,
|
|
const TypeConverter *typeConverter, bool &ceilMode,
|
|
SmallVectorImpl<Value> &kernelSizeIntValues,
|
|
SmallVectorImpl<int64_t> &strideInts,
|
|
SmallVectorImpl<int64_t> &paddingInts) {
|
|
// Pattern match against the op's original operands, because otherwise we
|
|
// will get the lowered version of the operands which is harder to pattern
|
|
// match.
|
|
SmallVector<Value> kernelSizeTorchInt;
|
|
if (!getListConstructElements(op.getKernelSize(), kernelSizeTorchInt)) {
|
|
return rewriter.notifyMatchFailure(op,
|
|
"unimplemented: the kernel size is "
|
|
"not constructed from ListConstruct");
|
|
}
|
|
kernelSizeIntValues = getTypeConvertedValues(
|
|
rewriter, op.getLoc(), typeConverter, kernelSizeTorchInt);
|
|
|
|
if (!matchPattern(op.getStride(), m_TorchListOfConstantInts(strideInts)))
|
|
return rewriter.notifyMatchFailure(op, "only support constant int strides");
|
|
// If `stride` is not specified by the user, it is assigned the value of empty
|
|
// list during import. For such a case, the stride value is the kernel size.
|
|
// See:
|
|
// https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html#torch.nn.MaxPool2d
|
|
if (strideInts.empty()) {
|
|
if (!matchPattern(op.getKernelSize(),
|
|
m_TorchListOfConstantInts(strideInts))) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "if stride is the empty list, kernel_size must be a list of "
|
|
"constant ints");
|
|
}
|
|
}
|
|
|
|
if (!matchPattern(op.getPadding(), m_TorchListOfConstantInts(paddingInts)))
|
|
return rewriter.notifyMatchFailure(op,
|
|
"only support constant int paddings");
|
|
if (!matchPattern(op.getCeilMode(), m_TorchConstantBool(&ceilMode)))
|
|
return rewriter.notifyMatchFailure(op,
|
|
"only support constant bool ceil_mode");
|
|
return success();
|
|
}
|
|
|
|
static Value
|
|
computeOutputTensor(Operation *op, ConversionPatternRewriter &rewriter,
|
|
Value self, int64_t dimensionality, bool ceilMode,
|
|
SmallVectorImpl<int64_t> &strideInts,
|
|
SmallVectorImpl<int64_t> &paddingInts,
|
|
SmallVectorImpl<int64_t> &dilationInts,
|
|
SmallVectorImpl<Value> &kernelSizeIntValues,
|
|
SmallVectorImpl<Value> &outTensorShape, Value initValue) {
|
|
Type elementType = cast<RankedTensorType>(self.getType()).getElementType();
|
|
Location loc = op->getLoc();
|
|
|
|
Value N = getDimOp(rewriter, loc, self, 0);
|
|
Value C = getDimOp(rewriter, loc, self, 1);
|
|
|
|
SmallVector<Value> paddingIntValues =
|
|
getAsConstantIntValues(rewriter, loc, paddingInts);
|
|
SmallVector<Value> dilationIntValues =
|
|
getAsConstantIntValues(rewriter, loc, dilationInts);
|
|
SmallVector<Value> strideIntValues =
|
|
getAsConstantIntValues(rewriter, loc, strideInts);
|
|
|
|
// Get dimension size for each dimension and calculate output size
|
|
for (int64_t i = dimensionality - 1; i > -1; --i) {
|
|
Value dimSize = getDimOp(rewriter, loc, self, i + 2);
|
|
Value outDim = torch_to_linalg::getOutputDimForConvOps(
|
|
rewriter, loc, dimSize, paddingIntValues[i], dilationIntValues[i],
|
|
kernelSizeIntValues[i], strideIntValues[i], ceilMode);
|
|
outTensorShape.insert(outTensorShape.begin(), {outDim});
|
|
}
|
|
|
|
// Create output tensor initialized with smallest floating point value.
|
|
outTensorShape.insert(outTensorShape.begin(), {N, C});
|
|
return createInitTensor(rewriter, loc, outTensorShape, elementType,
|
|
initValue);
|
|
}
|
|
|
|
static Value padInputTensor(Operation *op, ConversionPatternRewriter &rewriter,
|
|
Value self, bool ceilMode, int64_t dimensionality,
|
|
SmallVectorImpl<int64_t> &strideInts,
|
|
SmallVectorImpl<int64_t> &paddingInts,
|
|
Value initValue) {
|
|
SmallVector<int64_t> lowPaddingIncludingNC = {0, 0};
|
|
SmallVector<int64_t> highPaddingIncludingNC = {0, 0};
|
|
|
|
unsigned selfRank = cast<RankedTensorType>(self.getType()).getRank();
|
|
unsigned paddingIntsSize = paddingInts.size();
|
|
|
|
if (paddingIntsSize == 2 * (selfRank - 2)) {
|
|
// This condition being true means that the `paddingInts` contain seperate
|
|
// values for low padding and high padding.
|
|
for (unsigned i = 0; i < paddingIntsSize / 2; i++)
|
|
lowPaddingIncludingNC.push_back(paddingInts[i]);
|
|
for (unsigned i = paddingIntsSize / 2; i < paddingIntsSize; i++)
|
|
highPaddingIncludingNC.push_back(paddingInts[i]);
|
|
} else {
|
|
lowPaddingIncludingNC.append(paddingInts);
|
|
highPaddingIncludingNC = lowPaddingIncludingNC;
|
|
}
|
|
|
|
if (ceilMode) {
|
|
for (int64_t i = 0; i < dimensionality; ++i) {
|
|
highPaddingIncludingNC[i + 2] += strideInts[i];
|
|
}
|
|
}
|
|
|
|
return torch_to_linalg::getPaddedTensor(op, rewriter, self,
|
|
lowPaddingIncludingNC,
|
|
highPaddingIncludingNC, initValue);
|
|
}
|
|
|
|
// Creates a pooling operation based on the type specified by `OpTy` and
|
|
// arguments passed.
|
|
template <typename OpTy>
|
|
static LogicalResult createPoolingOp(
|
|
Operation *op, ConversionPatternRewriter &rewriter, Value self,
|
|
bool supportNonFPInput, bool ceilMode, int64_t dimensionality,
|
|
SmallVectorImpl<Value> &kernelSizeIntValues,
|
|
SmallVectorImpl<int64_t> &strideInts, SmallVectorImpl<int64_t> &paddingInts,
|
|
SmallVectorImpl<int64_t> &dilationInts, Attribute initValueAttr,
|
|
SmallVectorImpl<Value> &outTensorShape, Value &paddedInput, Value &result) {
|
|
Location loc = op->getLoc();
|
|
Type elementType = cast<RankedTensorType>(self.getType()).getElementType();
|
|
if (!isa<mlir::FloatType>(elementType) && !supportNonFPInput)
|
|
return op->emitError("unimplemented: non-floating point type");
|
|
|
|
Value initValue =
|
|
rewriter.create<arith::ConstantOp>(loc, cast<TypedAttr>(initValueAttr));
|
|
|
|
paddedInput = padInputTensor(op, rewriter, self, ceilMode, dimensionality,
|
|
strideInts, paddingInts, initValue);
|
|
|
|
auto outTensorInitialized = computeOutputTensor(
|
|
op, rewriter, self, dimensionality, ceilMode, strideInts, paddingInts,
|
|
dilationInts, kernelSizeIntValues, outTensorShape, initValue);
|
|
|
|
auto stridesAttr = rewriter.getI64VectorAttr(strideInts);
|
|
auto dilationAttr = rewriter.getI64VectorAttr(dilationInts);
|
|
auto shape = castIntVectorToIndexVector(rewriter, loc, kernelSizeIntValues);
|
|
Value windowTensor = rewriter.create<tensor::EmptyOp>(
|
|
loc, getAsOpFoldResult(shape), elementType);
|
|
|
|
result = rewriter
|
|
.create<OpTy>(loc, outTensorInitialized.getType(),
|
|
ValueRange{paddedInput, windowTensor},
|
|
outTensorInitialized, stridesAttr, dilationAttr)
|
|
.getResult(0);
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
|
|
template <typename T> struct DimensionTraits {};
|
|
|
|
template <> struct DimensionTraits<AtenMaxPool2dOp> {
|
|
static constexpr int64_t Dim = 2;
|
|
// unused const variable warning suppression:
|
|
static_assert(Dim == Dim);
|
|
};
|
|
|
|
template <> struct DimensionTraits<AtenMaxPool3dOp> {
|
|
static constexpr int64_t Dim = 3;
|
|
// unused const variable warning suppression:
|
|
static_assert(Dim == Dim);
|
|
};
|
|
|
|
template <typename OpTy>
|
|
class ConvertAtenMaxPoolOp : public OpConversionPattern<OpTy> {
|
|
using OpConversionPattern<OpTy>::OpConversionPattern;
|
|
|
|
private:
|
|
static const int64_t Dim = DimensionTraits<OpTy>::Dim;
|
|
|
|
LogicalResult createPoolingMax3D(AtenMaxPool3dOp &op,
|
|
typename OpTy::Adaptor adaptor,
|
|
ConversionPatternRewriter &rewriter,
|
|
SmallVectorImpl<Value> &kernelSizeIntValues,
|
|
SmallVectorImpl<int64_t> &strideInts,
|
|
SmallVectorImpl<int64_t> &paddingInts,
|
|
SmallVectorImpl<int64_t> &dilationInts,
|
|
bool ceilMode) const {
|
|
SmallVector<Value, 5> outTensorShape;
|
|
Value self = adaptor.getSelf();
|
|
Type elementType = cast<RankedTensorType>(self.getType()).getElementType();
|
|
TypedAttr smallestFPValueAttr = rewriter.getFloatAttr(
|
|
elementType,
|
|
APFloat::getInf(cast<mlir::FloatType>(elementType).getFloatSemantics(),
|
|
/*Negative=*/true));
|
|
Value initValue =
|
|
rewriter.create<arith::ConstantOp>(op->getLoc(), smallestFPValueAttr);
|
|
|
|
Value paddedInput = padInputTensor(op, rewriter, self, ceilMode, 3,
|
|
strideInts, paddingInts, initValue);
|
|
|
|
auto outTensorInitialized = computeOutputTensor(
|
|
op, rewriter, self, 3, ceilMode, strideInts, paddingInts, dilationInts,
|
|
kernelSizeIntValues, outTensorShape, initValue);
|
|
|
|
auto shape =
|
|
castIntVectorToIndexVector(rewriter, op->getLoc(), kernelSizeIntValues);
|
|
Value windowTensor = rewriter.create<tensor::EmptyOp>(
|
|
op->getLoc(), getAsOpFoldResult(shape), elementType);
|
|
|
|
MLIRContext *context = rewriter.getContext();
|
|
|
|
auto mapInput = mlir::AffineMap::get(
|
|
8, 0,
|
|
{
|
|
rewriter.getAffineDimExpr(0), // n
|
|
rewriter.getAffineDimExpr(1), // c
|
|
// dim_d * stride_d + kernal_d * dilation_d
|
|
rewriter.getAffineDimExpr(2) *
|
|
getAffineConstantExpr(strideInts[0], context) +
|
|
rewriter.getAffineDimExpr(5) *
|
|
getAffineConstantExpr(dilationInts[0], context),
|
|
// dim_h * stride_h + kernal_h * dilation_h
|
|
rewriter.getAffineDimExpr(3) *
|
|
getAffineConstantExpr(strideInts[1], context) +
|
|
rewriter.getAffineDimExpr(6) *
|
|
getAffineConstantExpr(dilationInts[1], context),
|
|
// dim_w * stride_w + kernal_w * dilation_w
|
|
rewriter.getAffineDimExpr(4) *
|
|
getAffineConstantExpr(strideInts[2], context) +
|
|
rewriter.getAffineDimExpr(7) *
|
|
getAffineConstantExpr(dilationInts[2], context),
|
|
},
|
|
context);
|
|
auto mapKernel =
|
|
mlir::AffineMap::get(8, 0,
|
|
{
|
|
rewriter.getAffineDimExpr(5), // kd
|
|
rewriter.getAffineDimExpr(6), // kh
|
|
rewriter.getAffineDimExpr(7) // kw
|
|
},
|
|
context);
|
|
auto mapOutput = mlir::AffineMap::get(
|
|
8, 0,
|
|
{rewriter.getAffineDimExpr(0), rewriter.getAffineDimExpr(1),
|
|
rewriter.getAffineDimExpr(2), rewriter.getAffineDimExpr(3),
|
|
rewriter.getAffineDimExpr(4)},
|
|
context);
|
|
auto iteratorTypes =
|
|
SmallVector<utils::IteratorType>(5, utils::IteratorType::parallel);
|
|
iteratorTypes.append(3, utils::IteratorType::reduction);
|
|
SmallVector<AffineMap> indexingMaps = {mapInput, mapKernel, mapOutput};
|
|
Value poolingOp =
|
|
rewriter
|
|
.create<linalg::GenericOp>(
|
|
op->getLoc(),
|
|
/* result types */ outTensorInitialized.getType(),
|
|
/* operands */ ValueRange({paddedInput, windowTensor}),
|
|
/* outputs */ outTensorInitialized,
|
|
/*indexingMaps=*/indexingMaps,
|
|
/*iteratorTypes=*/iteratorTypes,
|
|
[&](OpBuilder &b, Location loc, ValueRange args) {
|
|
Value currentVal = args[0], accMaxValue = args[2];
|
|
Value max_result =
|
|
b.create<arith::MaximumFOp>(loc, currentVal, accMaxValue);
|
|
;
|
|
b.create<linalg::YieldOp>(loc, max_result);
|
|
})
|
|
.getResult(0);
|
|
Type newResultType = this->getTypeConverter()->convertType(op.getType());
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, newResultType, poolingOp);
|
|
return success();
|
|
}
|
|
|
|
public:
|
|
LogicalResult
|
|
matchAndRewrite(OpTy op, typename OpTy::Adaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
|
return failure();
|
|
|
|
const TypeConverter *typeConverter = this->getTypeConverter();
|
|
Value self = adaptor.getSelf();
|
|
int64_t selfRank = cast<RankedTensorType>(self.getType()).getRank();
|
|
|
|
if (selfRank != Dim + 2)
|
|
return rewriter.notifyMatchFailure(
|
|
op, "unimplemented: Does not support inputs with rank");
|
|
|
|
bool ceilMode;
|
|
SmallVector<Value, Dim> kernelSizeIntValues;
|
|
SmallVector<int64_t, Dim> strideInts, paddingInts, dilationInts;
|
|
if (!matchPattern(op.getDilation(),
|
|
m_TorchListOfConstantInts(dilationInts)))
|
|
return rewriter.notifyMatchFailure(op,
|
|
"only support constant int dilations");
|
|
|
|
if (failed(checkAndGetPoolingParameters<OpTy>(op, rewriter, typeConverter,
|
|
ceilMode, kernelSizeIntValues,
|
|
strideInts, paddingInts)))
|
|
return rewriter.notifyMatchFailure(op, "invalid pooling parameters");
|
|
|
|
Type elementType = cast<RankedTensorType>(self.getType()).getElementType();
|
|
|
|
if constexpr (Dim == 2) {
|
|
SmallVector<Value, 4> outTensorShape;
|
|
// `maxpool2d` contains the result of maxpool2d operation over the input.
|
|
Value maxPool2d, paddedInput;
|
|
TypedAttr smallestFPValueAttr = rewriter.getFloatAttr(
|
|
elementType,
|
|
APFloat::getInf(
|
|
cast<mlir::FloatType>(elementType).getFloatSemantics(),
|
|
/*Negative=*/true));
|
|
if (failed(createPoolingOp<linalg::PoolingNchwMaxOp>(
|
|
op, rewriter, self, /*supportNonFPInput=*/true, ceilMode,
|
|
/*dimensionality=*/2, kernelSizeIntValues, strideInts,
|
|
paddingInts, dilationInts, smallestFPValueAttr, outTensorShape,
|
|
paddedInput, maxPool2d)))
|
|
return rewriter.notifyMatchFailure(op, "unable to compute maxpool2d");
|
|
Type newResultType = this->getTypeConverter()->convertType(op.getType());
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, newResultType, maxPool2d);
|
|
return success();
|
|
} else {
|
|
return createPoolingMax3D(op, adaptor, rewriter, kernelSizeIntValues,
|
|
strideInts, paddingInts, dilationInts,
|
|
ceilMode);
|
|
}
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
// Returns the result of maxpool2d over the input tensor. And the corresponding
|
|
// indices of the input tensor for the values of the result tensor.
|
|
//
|
|
// The result of the maxpool2d operation is calculated using the helper function
|
|
// written above. For finding the indices, we follow the below method:
|
|
//
|
|
// Let's say the input tensor is a 4-d tensor. The maxpool2d and indices will
|
|
// also be a 4-d tensor. Then:
|
|
// for i in range(N):
|
|
// for j in range(C):
|
|
// for m in range(Hout):
|
|
// for n in range(Wout):
|
|
// for p in range(kH):
|
|
// for r in range(kW):
|
|
// indexH = m * stride[0] + p * dilation[0]
|
|
// indexW = n * stride[0] + r * dilation[0]
|
|
// if paddedInput[i, j, indexH, indexW] ==
|
|
// maxPool2d[i, j, m, n]:
|
|
// indices[i, j, m, n] = (indexH - padding[0]) * W +
|
|
// (indexW - padding[1])
|
|
//
|
|
class ConvertAtenMaxPool2dWithIndicesOp
|
|
: public OpConversionPattern<AtenMaxPool2dWithIndicesOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(AtenMaxPool2dWithIndicesOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
|
return failure();
|
|
Location loc = op->getLoc();
|
|
const TypeConverter *typeConverter = getTypeConverter();
|
|
Value self = adaptor.getSelf();
|
|
RankedTensorType selfType = cast<RankedTensorType>(self.getType());
|
|
Type elementType = selfType.getElementType();
|
|
RankedTensorType indicesRankedTensorType =
|
|
getTypeConverter()
|
|
->convertType(op->getResult(1).getType())
|
|
.cast<RankedTensorType>();
|
|
|
|
// TODO: Add support for 3D inputs.
|
|
if (selfType.getRank() == 3)
|
|
return rewriter.notifyMatchFailure(
|
|
op, "unimplemented: only support 4D input");
|
|
|
|
bool ceilMode;
|
|
SmallVector<Value, 2> kernelSizeIntValues;
|
|
SmallVector<int64_t, 2> strideInts, paddingInts, dilationInts;
|
|
if (!matchPattern(op.getDilation(),
|
|
m_TorchListOfConstantInts(dilationInts)))
|
|
return rewriter.notifyMatchFailure(op,
|
|
"only support constant int dilations");
|
|
if (failed(checkAndGetPoolingParameters<AtenMaxPool2dWithIndicesOp>(
|
|
op, rewriter, typeConverter, ceilMode, kernelSizeIntValues,
|
|
strideInts, paddingInts)))
|
|
return rewriter.notifyMatchFailure(op, "invalid pooling parameters");
|
|
|
|
// `maxpool2d` contains the result of maxpool2d operation over the input.
|
|
auto smallestFPValueAttr = rewriter.getFloatAttr(
|
|
elementType,
|
|
APFloat::getInf(cast<mlir::FloatType>(elementType).getFloatSemantics(),
|
|
/*Negative=*/true));
|
|
Value maxPool2d, paddedInput;
|
|
SmallVector<Value, 4> outTensorShape;
|
|
if (failed(createPoolingOp<linalg::PoolingNchwMaxOp>(
|
|
op, rewriter, self, /*supportNonFPInput=*/false, ceilMode,
|
|
/*dimensionality=*/2, kernelSizeIntValues, strideInts, paddingInts,
|
|
dilationInts, smallestFPValueAttr, outTensorShape, paddedInput,
|
|
maxPool2d)))
|
|
return rewriter.notifyMatchFailure(op, "unable to compute maxpool2d");
|
|
|
|
Value cstMinusOne =
|
|
rewriter.create<arith::ConstantOp>(loc, rewriter.getI64IntegerAttr(-1));
|
|
Value indicesTensor =
|
|
createInitTensor(rewriter, loc, outTensorShape,
|
|
indicesRankedTensorType.getElementType(), cstMinusOne);
|
|
|
|
SmallVector<Value> kernelSize =
|
|
castIntVectorToIndexVector(rewriter, loc, kernelSizeIntValues);
|
|
SmallVector<Value> padding =
|
|
getAsConstantIndexValues(rewriter, loc, paddingInts);
|
|
SmallVector<Value> dilation =
|
|
getAsConstantIndexValues(rewriter, loc, dilationInts);
|
|
SmallVector<Value> stride =
|
|
getAsConstantIndexValues(rewriter, loc, strideInts);
|
|
|
|
Value windowTensor = rewriter.create<tensor::EmptyOp>(
|
|
loc, getAsOpFoldResult(kernelSize),
|
|
indicesRankedTensorType.getElementType());
|
|
|
|
SmallVector<AffineExpr> inputExprs, outputExprs, kernelExprs;
|
|
for (unsigned i = 0; i < 4; i++) {
|
|
inputExprs.push_back(rewriter.getAffineDimExpr(i));
|
|
outputExprs.push_back(rewriter.getAffineDimExpr(i));
|
|
}
|
|
kernelExprs.push_back(rewriter.getAffineDimExpr(4));
|
|
kernelExprs.push_back(rewriter.getAffineDimExpr(5));
|
|
|
|
// Here we have six dimensions, each corresponding to N, C, Hout, Wout, kH,
|
|
// and kW, respectively, as described in the algorithm above.
|
|
SmallVector<AffineMap> indexingMaps = AffineMap::inferFromExprList(
|
|
{inputExprs, kernelExprs, outputExprs}, rewriter.getContext());
|
|
SmallVector<utils::IteratorType> iteratorTypes(
|
|
4, utils::IteratorType::parallel);
|
|
iteratorTypes.push_back(utils::IteratorType::reduction);
|
|
iteratorTypes.push_back(utils::IteratorType::reduction);
|
|
|
|
// Input format is : [N, C, H, W]
|
|
Value inputShapeW = getDimOp(rewriter, loc, self, 3);
|
|
|
|
Value indicesResult =
|
|
rewriter
|
|
.create<linalg::GenericOp>(
|
|
loc, /*resultTensorTypes=*/indicesTensor.getType(),
|
|
/*inputs=*/ValueRange({maxPool2d, windowTensor}),
|
|
/*outputs=*/indicesTensor,
|
|
/*indexingMaps=*/indexingMaps,
|
|
/*iteratorTypes=*/iteratorTypes,
|
|
[&](OpBuilder &b, Location loc, ValueRange args) {
|
|
Value maxVal = args[0], res = args[2];
|
|
|
|
Value i = b.create<linalg::IndexOp>(loc, 0);
|
|
Value j = b.create<linalg::IndexOp>(loc, 1);
|
|
Value m = b.create<linalg::IndexOp>(loc, 2);
|
|
Value n = b.create<linalg::IndexOp>(loc, 3);
|
|
Value p = b.create<linalg::IndexOp>(loc, 4);
|
|
Value r = b.create<linalg::IndexOp>(loc, 5);
|
|
|
|
Value mTimesStride =
|
|
b.create<arith::MulIOp>(loc, m, stride[0]);
|
|
Value pTimesDilation =
|
|
b.create<arith::MulIOp>(loc, p, dilation[0]);
|
|
Value indexH = b.create<arith::AddIOp>(loc, mTimesStride,
|
|
pTimesDilation);
|
|
Value nTimesStride =
|
|
b.create<arith::MulIOp>(loc, n, stride[1]);
|
|
Value rTimesDilation =
|
|
b.create<arith::MulIOp>(loc, r, dilation[1]);
|
|
Value indexW = b.create<arith::AddIOp>(loc, nTimesStride,
|
|
rTimesDilation);
|
|
Value input = b.create<tensor::ExtractOp>(
|
|
loc, paddedInput, ValueRange{i, j, indexH, indexW});
|
|
Value pred = b.create<arith::CmpFOp>(
|
|
loc, arith::CmpFPredicate::OEQ, input, maxVal);
|
|
|
|
Value indexHMinusPadding =
|
|
b.create<arith::SubIOp>(loc, indexH, padding[0]);
|
|
Value indexWMinusPadding =
|
|
b.create<arith::SubIOp>(loc, indexW, padding[1]);
|
|
Value outIndex = b.create<arith::MulIOp>(
|
|
loc, indexHMinusPadding, inputShapeW);
|
|
outIndex = b.create<arith::AddIOp>(loc, outIndex,
|
|
indexWMinusPadding);
|
|
Value result = b.create<arith::SelectOp>(
|
|
loc, pred, castIndexToInt64(b, loc, outIndex), res);
|
|
|
|
Value predInvalidIndex = b.create<arith::CmpIOp>(
|
|
loc, arith::CmpIPredicate::eq, res, cstMinusOne);
|
|
Value out = b.create<arith::SelectOp>(loc, predInvalidIndex,
|
|
result, res);
|
|
|
|
b.create<linalg::YieldOp>(loc, out);
|
|
})
|
|
.getResult(0);
|
|
|
|
Type maxPool2dResultType =
|
|
getTypeConverter()->convertType(op->getResult(0).getType());
|
|
Type indicesResultType =
|
|
getTypeConverter()->convertType(op->getResult(1).getType());
|
|
Value outMaxpool2d =
|
|
rewriter.create<tensor::CastOp>(loc, maxPool2dResultType, maxPool2d);
|
|
Value outIndices =
|
|
rewriter.create<tensor::CastOp>(loc, indicesResultType, indicesResult);
|
|
|
|
rewriter.replaceOp(op, {outMaxpool2d, outIndices});
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
template <typename OpTy, typename PoolingOpTy, int Dim>
|
|
class ConvertAtenAvgPoolOp : public OpConversionPattern<OpTy> {
|
|
public:
|
|
using OpConversionPattern<OpTy>::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(OpTy op, typename OpTy::Adaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
|
return failure();
|
|
|
|
Location loc = op->getLoc();
|
|
const TypeConverter *typeConverter = this->getTypeConverter();
|
|
Value self = adaptor.getSelf();
|
|
|
|
Type inputElementType =
|
|
cast<RankedTensorType>(self.getType()).getElementType();
|
|
Type resultType = typeConverter->convertType(op.getType());
|
|
Type resultElementType =
|
|
cast<RankedTensorType>(resultType).getElementType();
|
|
|
|
bool ceilMode;
|
|
SmallVector<Value, Dim> kernelSizeIntValues;
|
|
SmallVector<int64_t, Dim> strideInts, paddingInts, dilationInts(Dim, 1);
|
|
if (failed(checkAndGetPoolingParameters<OpTy>(op, rewriter, typeConverter,
|
|
ceilMode, kernelSizeIntValues,
|
|
strideInts, paddingInts)))
|
|
return rewriter.notifyMatchFailure(op, "invalid pooling parameters");
|
|
|
|
// TODO: Add support for count_include_pad equal to `False`.
|
|
bool countIncludePad;
|
|
if (!matchPattern(op.getCountIncludePad(),
|
|
m_TorchConstantBool(&countIncludePad)))
|
|
return rewriter.notifyMatchFailure(
|
|
op, "count_include_pad must be a constant");
|
|
|
|
// If the padding is zero then there is no padding to include.
|
|
if (!countIncludePad &&
|
|
!llvm::all_of(paddingInts, [](int64_t p) { return p == 0; })) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "unimplemented: count_include_pad is expected to be true");
|
|
}
|
|
|
|
// `sumPool` contains the result of sumpool operation over the input.
|
|
Value sumPool, paddedInput;
|
|
SmallVector<Value, Dim + 2> outTensorShape;
|
|
if (failed(createPoolingOp<PoolingOpTy>(
|
|
op, rewriter, self, /*supportNonFPInput=*/true, ceilMode,
|
|
/*dimensionality=*/Dim, kernelSizeIntValues, strideInts,
|
|
paddingInts, dilationInts, rewriter.getZeroAttr(inputElementType),
|
|
outTensorShape, paddedInput, sumPool)))
|
|
return rewriter.notifyMatchFailure(op, "unable to compute sumpool");
|
|
Value divisor;
|
|
if constexpr (std::is_same<OpTy, AtenAvgPool2dOp>()) {
|
|
Value kHtimeskW = rewriter.create<arith::MulIOp>(
|
|
loc, kernelSizeIntValues[0], kernelSizeIntValues[1]);
|
|
divisor = isa<Torch::NoneType>(op.getDivisorOverride().getType())
|
|
? kHtimeskW
|
|
: adaptor.getDivisorOverride();
|
|
} else {
|
|
divisor = kernelSizeIntValues[0];
|
|
}
|
|
divisor = convertScalarToDtype(rewriter, loc, divisor, resultElementType);
|
|
|
|
Value outputTensor = rewriter.create<tensor::EmptyOp>(
|
|
loc, getAsOpFoldResult(outTensorShape), resultElementType);
|
|
SmallVector<AffineMap> indexingMapsAvg(
|
|
2, rewriter.getMultiDimIdentityMap(Dim + 2));
|
|
SmallVector<utils::IteratorType> iteratorTypesAvg(
|
|
Dim + 2, utils::IteratorType::parallel);
|
|
Value avgPool =
|
|
rewriter
|
|
.create<linalg::GenericOp>(
|
|
loc, outputTensor.getType(), sumPool, outputTensor,
|
|
/*indexingMaps=*/indexingMapsAvg,
|
|
/*iteratorTypes=*/iteratorTypesAvg,
|
|
[&](OpBuilder &b, Location loc, ValueRange args) {
|
|
Value avg;
|
|
if (isa<mlir::IntegerType>(resultElementType))
|
|
avg = b.create<arith::DivSIOp>(loc, args[0], divisor);
|
|
else if (isa<mlir::FloatType>(resultElementType))
|
|
avg = b.create<arith::DivFOp>(loc, args[0], divisor);
|
|
b.create<linalg::YieldOp>(loc, avg);
|
|
})
|
|
.getResult(0);
|
|
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, avgPool);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
/*
|
|
This section is for lowering adaptive pooling ops, which cannot generally be
|
|
decomposed into typical pooling ops. Given an input tensor of rank (N,C,Hin) and
|
|
an output spatial size Hout, an element of the output tensor at position (n, c,
|
|
h) is computed as follows.
|
|
1. compute st(h) = (h*Hin)//Hout
|
|
2. compute en(h) = 1 + ((h+1)*Hin - 1)//Hout
|
|
3. apply the operation (max or avg) over input[n, c, st(h):en(h)]
|
|
This is problematic for linalg ops for a few reasons:
|
|
1. The access to the input tensor is not constantly strided
|
|
2. The size of the window itself is not contant: en(h) - st(h) can vary with
|
|
h! Although it is a bit like using a hammer to paint, our workaround is to use
|
|
tensor.extract to access the elements of the input tensor inside our linalg
|
|
generic op's payload.
|
|
*/
|
|
|
|
namespace {
|
|
|
|
class AdaptivePoolingHelper {
|
|
public:
|
|
AdaptivePoolingHelper(ConversionPatternRewriter &cpr, int64_t rnk,
|
|
int64_t nsp, Type elt)
|
|
: rewriter(cpr), rank(rnk), nonSpatial(nsp), elementType(elt) {}
|
|
|
|
// Variables that are used in various helper functions in the derived classes
|
|
// are stored as members of the base class (to reduce the number of arguments
|
|
// passed to helper functions).
|
|
ConversionPatternRewriter &rewriter;
|
|
const int64_t rank;
|
|
const int64_t nonSpatial;
|
|
Type elementType;
|
|
};
|
|
|
|
// The following two derived helper classes are used to store the differing
|
|
// logic between adaptive avg pooling and adaptive max pooling.
|
|
// 1. auxTensorSetup initializes a tensor for storing either indices (max) or
|
|
// kernel volumes (avg)
|
|
// 2. payloadCustomization customizes those features of the main linalg generic
|
|
// op that are not generically "AdaptivePooling". Specifically, for switching
|
|
// between sum/max and writing the code for computing the aux tensor elements.
|
|
// 3. customizedOpReplacement finishes the op replacement. In the adaptive avg
|
|
// case, it includes an additional generic op to divide the sum pool by the
|
|
// kernel volume.
|
|
// To access these helper functions in the conversion pattern, we
|
|
// have an AdaptivePoolingOpTraits class that stores the number of dimensions
|
|
// and aliases the associated helper class to a more generic name.
|
|
|
|
template <class OpTy>
|
|
class AdaptiveMaxPoolingHelper : public AdaptivePoolingHelper {
|
|
|
|
// This member variable is templated, so I've chosen not to make it part of
|
|
// the base class (to keep the base class non-templated).
|
|
const OpConversionPattern<OpTy> &opConversionPattern;
|
|
|
|
public:
|
|
// Constructor for AdaptiveMaxPoolingHelper. Just forwards all arguments
|
|
// (except the OpConversionPattern) to the base class constructor.
|
|
template <typename... Args>
|
|
AdaptiveMaxPoolingHelper(const OpConversionPattern<OpTy> &ocp, Args &&...args)
|
|
: AdaptivePoolingHelper(std::forward<Args>(args)...),
|
|
opConversionPattern(ocp) {}
|
|
|
|
LogicalResult auxTensorSetup(OpTy op, const SmallVector<Value> &outputSizes,
|
|
const SmallVector<Value> &outShapeIndexVector,
|
|
RankedTensorType &outputType,
|
|
RankedTensorType &auxTensorType, Value &buffVal,
|
|
Value &auxTensor,
|
|
SmallVector<AffineExpr> &auxTensorExprs) {
|
|
|
|
Location loc = op->getLoc();
|
|
const TypeConverter *typeConverter = opConversionPattern.getTypeConverter();
|
|
outputType = typeConverter->convertType(op.getResult0().getType())
|
|
.template cast<RankedTensorType>();
|
|
auxTensorType = typeConverter->convertType(op.getResult1().getType())
|
|
.template cast<RankedTensorType>();
|
|
Type auxTensorElementType = auxTensorType.getElementType();
|
|
auto smallestFPValueAttr = rewriter.getFloatAttr(
|
|
elementType,
|
|
APFloat::getInf(cast<mlir::FloatType>(elementType).getFloatSemantics(),
|
|
/*Negative=*/true));
|
|
buffVal = rewriter.create<arith::ConstantOp>(loc, elementType,
|
|
smallestFPValueAttr);
|
|
auxTensor = rewriter.create<tensor::EmptyOp>(
|
|
loc, getAsOpFoldResult(outputSizes), auxTensorElementType);
|
|
for (unsigned i = 0; i < rank; i++) {
|
|
auxTensorExprs.push_back(rewriter.getAffineDimExpr(i));
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult payloadCustomization(
|
|
OpBuilder &b, Location loc, const Value &inElt, const Value &res,
|
|
const Value &maxIndex, const SmallVector<Value> &inputElementIndices,
|
|
const SmallVector<Value> &inputSpatialSizes, const Value &indexOne,
|
|
const SmallVector<Value> &starts, const SmallVector<Value> &ends,
|
|
Value &out2, Value &auxOut) {
|
|
// compute max using select, since cond1 will be used for indices
|
|
Value cond1 =
|
|
b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::OGT, inElt, res);
|
|
out2 = b.create<arith::SelectOp>(loc, cond1, inElt, res);
|
|
// index in different dims (n x c x d x h x w)
|
|
// 1d: (iw)
|
|
// 2d: (ih*W + iw)
|
|
// 3d: (id*H*W + ih*W + iw)
|
|
Value currIndex = inputElementIndices[nonSpatial];
|
|
for (unsigned i = 0; i < rank - nonSpatial - 1; i++) {
|
|
Value prevTimesNewSize =
|
|
b.create<arith::MulIOp>(loc, currIndex, inputSpatialSizes[i + 1]);
|
|
currIndex = b.create<arith::AddIOp>(
|
|
loc, prevTimesNewSize, inputElementIndices[nonSpatial + i + 1]);
|
|
}
|
|
Value indexOut1Int = castIndexToInt64(b, loc, currIndex);
|
|
auxOut = b.create<arith::SelectOp>(loc, cond1, indexOut1Int, maxIndex);
|
|
return success();
|
|
}
|
|
|
|
LogicalResult
|
|
customizedOpReplacement(OpTy op, const RankedTensorType &outputType,
|
|
const RankedTensorType &auxTensorType,
|
|
const Value &adaptivePoolOutput,
|
|
const Value &auxTensorReturn,
|
|
const SmallVector<AffineExpr> &auxTensorExprs,
|
|
const SmallVector<AffineExpr> &outputExprs) {
|
|
Location loc = op->getLoc();
|
|
Value maxValues =
|
|
rewriter.create<tensor::CastOp>(loc, outputType, adaptivePoolOutput);
|
|
Value outputIndices =
|
|
rewriter.create<tensor::CastOp>(loc, auxTensorType, auxTensorReturn);
|
|
rewriter.replaceOp(op, {maxValues, outputIndices});
|
|
return success();
|
|
}
|
|
};
|
|
|
|
template <class OpTy>
|
|
class AdaptiveAvgPoolingHelper : public AdaptivePoolingHelper {
|
|
|
|
const OpConversionPattern<OpTy> &opConversionPattern;
|
|
|
|
public:
|
|
template <typename... Args>
|
|
AdaptiveAvgPoolingHelper(const OpConversionPattern<OpTy> &ocp, Args &&...args)
|
|
: AdaptivePoolingHelper(std::forward<Args>(args)...),
|
|
opConversionPattern(ocp) {}
|
|
|
|
LogicalResult auxTensorSetup(OpTy op, const SmallVector<Value> &outputSizes,
|
|
const SmallVector<Value> &outShapeIndexVector,
|
|
RankedTensorType &outputType,
|
|
RankedTensorType &auxTensorType, Value &buffVal,
|
|
Value &auxTensor,
|
|
SmallVector<AffineExpr> &auxTensorExprs) {
|
|
|
|
Location loc = op->getLoc();
|
|
const TypeConverter *typeConverter = opConversionPattern.getTypeConverter();
|
|
outputType = typeConverter->convertType(op.getResult().getType())
|
|
.template cast<RankedTensorType>();
|
|
buffVal = rewriter.create<arith::ConstantOp>(
|
|
loc, elementType, rewriter.getFloatAttr(elementType, 0));
|
|
auxTensor = rewriter.create<tensor::EmptyOp>(
|
|
loc, getAsOpFoldResult(outShapeIndexVector), elementType);
|
|
for (unsigned i = nonSpatial; i < rank; i++) {
|
|
auxTensorExprs.push_back(rewriter.getAffineDimExpr(i));
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult payloadCustomization(
|
|
OpBuilder &b, Location loc, const Value &inElt, const Value &res,
|
|
const Value &maxIndex, const SmallVector<Value> &inputElementIndices,
|
|
const SmallVector<Value> &inputSpatialSizes, const Value &indexOne,
|
|
const SmallVector<Value> &starts, const SmallVector<Value> &ends,
|
|
Value &out2, Value &auxOut) {
|
|
out2 = b.create<arith::AddFOp>(loc, inElt, res);
|
|
Value kernelVolume = indexOne;
|
|
for (unsigned i = 0; i < rank - nonSpatial; i++) {
|
|
Value currSize = b.create<arith::SubIOp>(loc, ends[i], starts[i]);
|
|
kernelVolume = b.create<arith::MulIOp>(loc, kernelVolume, currSize);
|
|
}
|
|
Value auxOutSI = castIndexToInt64(b, loc, kernelVolume);
|
|
auxOut = b.create<arith::SIToFPOp>(loc, elementType, auxOutSI);
|
|
return success();
|
|
}
|
|
|
|
LogicalResult
|
|
customizedOpReplacement(OpTy op, const RankedTensorType &outputType,
|
|
const RankedTensorType &auxTensorType,
|
|
const Value &adaptivePoolOutput,
|
|
const Value &auxTensorReturn,
|
|
const SmallVector<AffineExpr> &auxTensorExprs,
|
|
const SmallVector<AffineExpr> &outputExprs) {
|
|
|
|
Location loc = op->getLoc();
|
|
SmallVector<AffineMap> indexingMaps1 = AffineMap::inferFromExprList(
|
|
{auxTensorExprs, outputExprs}, op.getContext());
|
|
SmallVector<utils::IteratorType> iteratorTypes1(
|
|
rank, utils::IteratorType::parallel);
|
|
auto output = rewriter.create<linalg::GenericOp>(
|
|
loc, /*resultTensorTypes=*/adaptivePoolOutput.getType(),
|
|
/*inputs=*/auxTensorReturn,
|
|
/*outputs=*/adaptivePoolOutput,
|
|
/*indexingMaps=*/indexingMaps1,
|
|
/*iteratorTypes=*/iteratorTypes1,
|
|
[&](OpBuilder &b, Location loc, ValueRange args) {
|
|
Value q = b.create<arith::DivFOp>(loc, args[1], args[0]);
|
|
b.create<linalg::YieldOp>(loc, q);
|
|
});
|
|
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, outputType,
|
|
output.getResultTensors());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
// stores Dim = spatial dims and aliases helper class to a generic name
|
|
template <typename T> struct AdaptivePoolingOpTraits {};
|
|
|
|
template <> struct AdaptivePoolingOpTraits<AtenAdaptiveMaxPool1dOp> {
|
|
static constexpr int64_t Dim = 1;
|
|
using AdaptivePoolingHelper =
|
|
AdaptiveMaxPoolingHelper<AtenAdaptiveMaxPool1dOp>;
|
|
};
|
|
|
|
template <> struct AdaptivePoolingOpTraits<AtenAdaptiveMaxPool2dOp> {
|
|
static constexpr int64_t Dim = 2;
|
|
using AdaptivePoolingHelper =
|
|
AdaptiveMaxPoolingHelper<AtenAdaptiveMaxPool2dOp>;
|
|
};
|
|
|
|
template <> struct AdaptivePoolingOpTraits<AtenAdaptiveMaxPool3dOp> {
|
|
static constexpr int64_t Dim = 3;
|
|
using AdaptivePoolingHelper =
|
|
AdaptiveMaxPoolingHelper<AtenAdaptiveMaxPool3dOp>;
|
|
};
|
|
|
|
template <> struct AdaptivePoolingOpTraits<AtenAdaptiveAvgPool1dOp> {
|
|
static constexpr int64_t Dim = 1;
|
|
using AdaptivePoolingHelper =
|
|
AdaptiveAvgPoolingHelper<AtenAdaptiveAvgPool1dOp>;
|
|
};
|
|
|
|
template <> struct AdaptivePoolingOpTraits<AtenAdaptiveAvgPool2dOp> {
|
|
static constexpr int64_t Dim = 2;
|
|
using AdaptivePoolingHelper =
|
|
AdaptiveAvgPoolingHelper<AtenAdaptiveAvgPool2dOp>;
|
|
};
|
|
|
|
template <> struct AdaptivePoolingOpTraits<AtenAdaptiveAvgPool3dOp> {
|
|
static constexpr int64_t Dim = 3;
|
|
using AdaptivePoolingHelper =
|
|
AdaptiveAvgPoolingHelper<AtenAdaptiveAvgPool3dOp>;
|
|
};
|
|
|
|
template <> struct AdaptivePoolingOpTraits<Aten_AdaptiveAvgPool3dOp> {
|
|
static constexpr int64_t Dim = 3;
|
|
using AdaptivePoolingHelper =
|
|
AdaptiveAvgPoolingHelper<Aten_AdaptiveAvgPool3dOp>;
|
|
};
|
|
|
|
template <typename OpTy>
|
|
class ConvertAtenAdaptivePoolOp : public OpConversionPattern<OpTy> {
|
|
using OpConversionPattern<OpTy>::OpConversionPattern;
|
|
|
|
private:
|
|
static const int64_t Dim = AdaptivePoolingOpTraits<OpTy>::Dim;
|
|
|
|
public:
|
|
LogicalResult
|
|
matchAndRewrite(OpTy op, typename OpTy::Adaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Location loc = op->getLoc();
|
|
const TypeConverter *typeConverter = this->getTypeConverter();
|
|
|
|
Value input = adaptor.getSelf();
|
|
RankedTensorType inputType = cast<RankedTensorType>(input.getType());
|
|
const Type elementType = inputType.getElementType();
|
|
|
|
// get rank of input (same as rank of output)
|
|
const int64_t rank = inputType.getRank();
|
|
// get number of non-spatial dims
|
|
const int64_t nonSpatial = rank - Dim;
|
|
if (nonSpatial < 0) {
|
|
return rewriter.notifyMatchFailure(op,
|
|
"input has insufficient spatial dims");
|
|
}
|
|
|
|
typename AdaptivePoolingOpTraits<OpTy>::AdaptivePoolingHelper
|
|
adaptivePoolingHelper(*this, rewriter, rank, nonSpatial, elementType);
|
|
|
|
// get input and output spatial dimensions as index values
|
|
Value outputShape = op.getOutputSize();
|
|
SmallVector<Value> outShapeVector;
|
|
getListConstructElements(outputShape, outShapeVector);
|
|
outShapeVector =
|
|
getTypeConvertedValues(rewriter, loc, typeConverter, outShapeVector);
|
|
SmallVector<Value> inputSpatialSizes;
|
|
for (unsigned i = nonSpatial; i < rank; i++) {
|
|
inputSpatialSizes.push_back(getDimOp(rewriter, loc, input, i));
|
|
}
|
|
SmallVector<Value> outShapeIndexVector;
|
|
for (auto v : outShapeVector) {
|
|
outShapeIndexVector.push_back(castIntToIndex(rewriter, loc, v));
|
|
}
|
|
|
|
// make an iteration space of size kMax = 1 + ceildiv (hIn - 1) , hOut
|
|
Type boolType = rewriter.getI1Type();
|
|
SmallVector<Value> kIterSizeVector;
|
|
Value constantOne =
|
|
rewriter.create<arith::ConstantOp>(loc, rewriter.getIndexAttr(1));
|
|
for (int i = 0; i < rank - nonSpatial; i++) {
|
|
Value hInPlusOne = rewriter.create<arith::SubIOp>(
|
|
loc, inputSpatialSizes[i], constantOne);
|
|
Value kMaxMinusOne = rewriter.create<arith::CeilDivSIOp>(
|
|
loc, hInPlusOne, outShapeIndexVector[i]);
|
|
Value kMax =
|
|
rewriter.create<arith::AddIOp>(loc, constantOne, kMaxMinusOne);
|
|
kIterSizeVector.push_back(kMax);
|
|
}
|
|
Value kIter = rewriter.create<tensor::EmptyOp>(
|
|
loc, getAsOpFoldResult(kIterSizeVector), boolType);
|
|
|
|
// get output sizes used for initializing some tensors
|
|
SmallVector<Value> outputSizes;
|
|
for (unsigned i = 0; i < nonSpatial; i++) {
|
|
outputSizes.push_back(getDimOp(rewriter, loc, input, i));
|
|
}
|
|
for (unsigned i = 0; i < rank - nonSpatial; i++) {
|
|
outputSizes.push_back(outShapeIndexVector[i]);
|
|
}
|
|
|
|
// get outputType and initialize an auxTensor
|
|
// the auxTensor is customizable:
|
|
// avg pooling -> auxTensor = kernelVolumes
|
|
// max pooling -> auxTensor = indices
|
|
RankedTensorType outputType, auxTensorType;
|
|
Value buffVal, auxTensor;
|
|
SmallVector<AffineExpr> auxTensorExprs;
|
|
if (failed(adaptivePoolingHelper.auxTensorSetup(
|
|
op, outputSizes, outShapeIndexVector, outputType, auxTensorType,
|
|
buffVal, auxTensor, auxTensorExprs))) {
|
|
return rewriter.notifyMatchFailure(op, "failed auxTensor setup");
|
|
}
|
|
|
|
// initialize output tensor
|
|
Value initOutput =
|
|
createInitTensor(rewriter, loc, outputSizes, elementType, buffVal);
|
|
|
|
// pad the input with buffVal = 0 (avg) or -inf (max)
|
|
SmallVector<int64_t> lowPadding(rank, 0);
|
|
SmallVector<int64_t> highPadding(nonSpatial, 0);
|
|
for (int i = 0; i < rank - nonSpatial; i++) {
|
|
highPadding.push_back(1);
|
|
}
|
|
Value buffInput = torch_to_linalg::getPaddedTensor(
|
|
op, rewriter, input, lowPadding, highPadding, buffVal);
|
|
|
|
// setup indexing maps and iterator types for linalg generic op
|
|
// for example, with rank = 4 and nonSpatial = 2:
|
|
// kIter (d0,d1,d2,d3,d4,d5) -> (d4,d5)
|
|
// output (d0,d1,d2,d3,d4,d5) -> (d0,d1,d2,d3)
|
|
SmallVector<AffineExpr> kIterExprs, outputExprs;
|
|
// batch + channel + output spatial dims
|
|
for (unsigned i = 0; i < rank; i++) {
|
|
outputExprs.push_back(rewriter.getAffineDimExpr(i));
|
|
}
|
|
// kIter covers last rank-2 indices
|
|
for (unsigned i = rank; i < 2 * rank - nonSpatial; i++) {
|
|
kIterExprs.push_back(rewriter.getAffineDimExpr(i));
|
|
}
|
|
SmallVector<AffineMap> indexingMaps = AffineMap::inferFromExprList(
|
|
{kIterExprs, outputExprs, auxTensorExprs}, rewriter.getContext());
|
|
SmallVector<utils::IteratorType> iteratorTypes(
|
|
rank, utils::IteratorType::parallel);
|
|
for (unsigned i = 0; i < rank - nonSpatial; i++) {
|
|
iteratorTypes.push_back(utils::IteratorType::reduction);
|
|
}
|
|
Value indexOne = rewriter.create<arith::ConstantIndexOp>(loc, 1);
|
|
|
|
bool failedCustomization = false;
|
|
// adaptive pooling generic op
|
|
auto adaptivePool = rewriter.create<linalg::GenericOp>(
|
|
loc, /*resultTensorTypes=*/
|
|
TypeRange({initOutput.getType(), auxTensor.getType()}),
|
|
/*inputs=*/ValueRange({kIter}),
|
|
/*outputs=*/ValueRange({initOutput, auxTensor}),
|
|
/*indexingMaps=*/indexingMaps,
|
|
/*iteratorTypes=*/iteratorTypes,
|
|
[&](OpBuilder &b, Location loc, ValueRange args) {
|
|
Value res = args[1];
|
|
Value maxIndex = args[2];
|
|
SmallVector<Value> ind;
|
|
for (unsigned i = 0; i < 2 * rank - nonSpatial; i++) {
|
|
ind.push_back(b.create<linalg::IndexOp>(loc, i));
|
|
}
|
|
// compute start and end indices
|
|
// st = s1( s0(ind2 * Hin) // Hout )
|
|
SmallVector<Value> starts;
|
|
SmallVector<Value> ends;
|
|
for (unsigned i = nonSpatial; i < rank; i++) {
|
|
Value s0 = b.create<arith::MulIOp>(
|
|
loc, ind[i], inputSpatialSizes[i - nonSpatial]);
|
|
Value s1 = b.create<arith::FloorDivSIOp>(
|
|
loc, s0, outShapeIndexVector[i - nonSpatial]);
|
|
starts.push_back(s1);
|
|
// en = e4( 1 + e3( e2( e1( e0(ind2 + 1) * hIn ) - 1 ) // hOut ) )
|
|
Value e0 = b.create<arith::AddIOp>(loc, ind[i], indexOne);
|
|
Value e1 = b.create<arith::MulIOp>(
|
|
loc, e0, inputSpatialSizes[i - nonSpatial]);
|
|
Value e2 = b.create<arith::SubIOp>(loc, e1, indexOne);
|
|
Value e3 = b.create<arith::FloorDivSIOp>(
|
|
loc, e2, outShapeIndexVector[i - nonSpatial]);
|
|
Value e4 = b.create<arith::AddIOp>(loc, indexOne, e3);
|
|
ends.push_back(e4);
|
|
}
|
|
// extract input element
|
|
SmallVector<Value> inputElementIndices;
|
|
for (unsigned i = 0; i < nonSpatial; i++) {
|
|
inputElementIndices.push_back(ind[i]);
|
|
}
|
|
for (unsigned i = nonSpatial; i < rank; i++) {
|
|
inputElementIndices.push_back(b.create<arith::AddIOp>(
|
|
loc, starts[i - nonSpatial], ind[rank - nonSpatial + i]));
|
|
}
|
|
Value inElt = b.create<tensor::ExtractOp>(loc, elementType, buffInput,
|
|
inputElementIndices);
|
|
// check if we extracted at windex < end index
|
|
for (unsigned i = 0; i < rank - nonSpatial; i++) {
|
|
Value cond = b.create<arith::CmpIOp>(
|
|
loc, arith::CmpIPredicate(6),
|
|
inputElementIndices[i + nonSpatial], ends[i]);
|
|
// if out-of-bounds, replace the extracted element with buffVal
|
|
inElt = b.create<arith::SelectOp>(loc, cond, inElt, buffVal);
|
|
}
|
|
Value out2, auxOut;
|
|
// customize for max vs. avg:
|
|
if (failed(adaptivePoolingHelper.payloadCustomization(
|
|
b, loc, inElt, res, maxIndex, inputElementIndices,
|
|
inputSpatialSizes, indexOne, starts, ends, out2, auxOut))) {
|
|
failedCustomization = true;
|
|
}
|
|
b.create<linalg::YieldOp>(loc, ValueRange({out2, auxOut}));
|
|
});
|
|
|
|
if (failedCustomization) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "failed linalg generic payload customization.");
|
|
}
|
|
Value adaptivePoolOutput = adaptivePool.getResultTensors()[0];
|
|
Value auxTensorReturn = adaptivePool.getResultTensors()[1];
|
|
|
|
if (failed(adaptivePoolingHelper.customizedOpReplacement(
|
|
op, outputType, auxTensorType, adaptivePoolOutput, auxTensorReturn,
|
|
auxTensorExprs, outputExprs))) {
|
|
return rewriter.notifyMatchFailure(op, "failed customizedOpReplacement.");
|
|
}
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void mlir::torch::torch_to_linalg::populatePoolingPatternsAndLegality(
|
|
TypeConverter &typeConverter, RewritePatternSet &patterns,
|
|
ConversionTarget &target) {
|
|
MLIRContext *context = patterns.getContext();
|
|
target.addIllegalOp<AtenMaxPool2dOp>();
|
|
target.addIllegalOp<AtenMaxPool3dOp>();
|
|
patterns.add<ConvertAtenMaxPoolOp<AtenMaxPool2dOp>>(typeConverter, context);
|
|
patterns.add<ConvertAtenMaxPoolOp<AtenMaxPool3dOp>>(typeConverter, context);
|
|
|
|
target.addIllegalOp<AtenMaxPool2dWithIndicesOp>();
|
|
patterns.add<ConvertAtenMaxPool2dWithIndicesOp>(typeConverter, context);
|
|
target.addIllegalOp<AtenAvgPool1dOp, AtenAvgPool2dOp>();
|
|
patterns
|
|
.add<ConvertAtenAvgPoolOp<AtenAvgPool1dOp, linalg::PoolingNcwSumOp, 1>>(
|
|
typeConverter, context);
|
|
patterns
|
|
.add<ConvertAtenAvgPoolOp<AtenAvgPool2dOp, linalg::PoolingNchwSumOp, 2>>(
|
|
typeConverter, context);
|
|
target.addIllegalOp<AtenAdaptiveAvgPool1dOp, AtenAdaptiveAvgPool2dOp,
|
|
AtenAdaptiveAvgPool3dOp, Aten_AdaptiveAvgPool3dOp>();
|
|
patterns.add<ConvertAtenAdaptivePoolOp<AtenAdaptiveAvgPool1dOp>>(
|
|
typeConverter, context);
|
|
patterns.add<ConvertAtenAdaptivePoolOp<AtenAdaptiveAvgPool2dOp>>(
|
|
typeConverter, context);
|
|
patterns.add<ConvertAtenAdaptivePoolOp<AtenAdaptiveAvgPool3dOp>>(
|
|
typeConverter, context);
|
|
patterns.add<ConvertAtenAdaptivePoolOp<Aten_AdaptiveAvgPool3dOp>>(
|
|
typeConverter, context);
|
|
target.addIllegalOp<AtenAdaptiveMaxPool1dOp, AtenAdaptiveMaxPool2dOp,
|
|
AtenAdaptiveMaxPool3dOp>();
|
|
patterns.add<ConvertAtenAdaptivePoolOp<AtenAdaptiveMaxPool1dOp>>(
|
|
typeConverter, context);
|
|
patterns.add<ConvertAtenAdaptivePoolOp<AtenAdaptiveMaxPool2dOp>>(
|
|
typeConverter, context);
|
|
patterns.add<ConvertAtenAdaptivePoolOp<AtenAdaptiveMaxPool3dOp>>(
|
|
typeConverter, context);
|
|
}
|