torch-mlir/lib/Conversion/TorchOnnxToTorch/DefaultDomainQtoZ.cpp

4722 lines
214 KiB
C++

//===------------------------------------------------------------*- C++ -*-===//
//
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#include "torch-mlir/Conversion/TorchOnnxToTorch/Patterns.h"
#include "torch-mlir/Conversion/TorchOnnxToTorch/Utils.h"
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
using namespace mlir;
using namespace mlir::torch;
using namespace mlir::torch::onnx_c;
// Simple rewrites for the default domain.
// See: https://onnx.ai/onnx/operators/
// For operators that are effectively version invariant, we register with
// sinceVersion==1. We interpret this to include the following spec
// diffs that are irrelevant to this level of lowering:
// * Supported element types.
// * Limited broadcasting to full broadcasting support.
//
// There are a lot of spec revisions that basically generalized elementwise
// to be more normal and a direct translation vs a special case. This
// results in a lot of ONNX test cases that all reduce to the exact same
// thing here, so we simplify.
// utilities
namespace {
// In case the ReduceSum Op was not the first operation performed on the data,
// we provide the original operand through storeResult, which will be modified
// if the result will be passed onto another operation, and will be used for
// noop_with_empty_axes handling before that.
LogicalResult reducedSumImpl(OpBinder binder,
ConversionPatternRewriter &rewriter, Value data,
Torch::ValueTensorType resultType,
Value &storeResult, int64_t keepDims,
int64_t noop_with_empty_axes,
bool isIntermediateOp) {
SmallVector<Value> axesList;
Value axesVal;
if (!binder.tensorOperandAtIndex(axesVal, 1)) {
auto inputType = dyn_cast<Torch::ValueTensorType>(data.getType());
if (!inputType.hasSizes() || !resultType.hasSizes()) {
return rewriter.notifyMatchFailure(
binder.op, "unimplemented: expected input and result to have shapes");
}
if (inputType.areAllSizesKnown() && resultType.areAllSizesKnown()) {
SmallVector<int64_t> inputShape{inputType.getSizes()};
SmallVector<int64_t> resultShape{resultType.getSizes()};
// if the shapes are equal, none of the dims is reduced
if (llvm::equal(inputShape, resultShape)) {
// simply fill in the op and return
rewriter.replaceOp(binder.op, data);
return success();
}
if (areAllElementsDistinct(inputShape)) {
// The check for the input shape elements to be distinct is added
// for the cases like:
// Input: [3, 2, 2] -> Output: [3, 2]
// For the above case, from the input and output shape it can't be
// inferred whether the dim:1 is reduced or dim:2. To avoid these
// type of cases, the check has been placed.
SmallVector<int64_t> reduceDims;
unsigned resultShapeCounter = 0;
for (unsigned i = 0; i < inputShape.size(); i++) {
if (resultShapeCounter < resultShape.size() &&
inputShape[i] == resultShape[resultShapeCounter]) {
resultShapeCounter++;
} else {
reduceDims.push_back(i);
if (resultShapeCounter < resultShape.size() &&
resultShape[resultShapeCounter] == 1)
resultShapeCounter++;
}
}
for (auto i : reduceDims) {
axesList.push_back(rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(i)));
}
}
}
if (axesList.empty()) {
Torch::BaseTensorType axesType =
cast<Torch::BaseTensorType>(axesVal.getType());
auto axesTy = dyn_cast<Torch::ValueTensorType>(axesVal.getType());
auto axesShape = axesTy.getSizes();
if (axesShape.size() != 1 || axesShape[0] == Torch::kUnknownSize)
return failure();
Value zero = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getI64IntegerAttr(0));
SmallVector<int64_t> selectSizes{1};
auto selType = rewriter.getType<Torch::ValueTensorType>(
selectSizes, axesType.getOptionalDtype());
int64_t numAxes = axesShape[0];
for (int64_t i = 0; i < numAxes; ++i) {
Value iv = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getI64IntegerAttr(i));
Value extract = rewriter.create<Torch::AtenSelectIntOp>(
binder.getLoc(), selType, axesVal, zero, iv);
Value dim = rewriter.create<Torch::AtenItemOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(), extract);
axesList.push_back(dim);
}
}
}
SmallVector<int64_t> axesInts;
if (!binder.s64IntegerArrayAttr(axesInts, "axes", {})) {
for (int64_t i = 0, s = axesInts.size(); i < s; ++i) {
Value iv = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getI64IntegerAttr(axesInts[i]));
axesList.push_back(iv);
}
}
// Do not include absolute value in the noop
if (axesList.empty() && noop_with_empty_axes) {
rewriter.replaceOp(binder.op, storeResult);
return success();
}
Value dimValueList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
axesList);
Value keepDimBool =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), keepDims);
Value dType = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
// If we are using the ReducedSum as an intermediate op to be passed into
// another operation, we might not want to replace the Op. So we create a new
// Op and store the result in a variable.
if (!isIntermediateOp) {
rewriter.replaceOpWithNewOp<Torch::AtenSumDimIntListOp>(
binder.op, resultType, data, dimValueList, keepDimBool,
/*dtype=*/dType);
} else {
storeResult = rewriter.create<Torch::AtenSumDimIntListOp>(
binder.getLoc(), resultType, data, dimValueList, keepDimBool,
/*dtype=*/dType);
}
return success();
}
Value getValueList(OpBinder binder, ConversionPatternRewriter &rewriter,
Value operand) {
SmallVector<Value> itemList;
auto sizes = dyn_cast<Torch::ValueTensorType>(operand.getType()).getSizes();
Torch::BaseTensorType operandType =
cast<Torch::BaseTensorType>(operand.getType());
SmallVector<int64_t> selectSizes;
selectSizes.push_back(1);
Type selectResultType = operandType.getWithSizesAndDtype(
llvm::ArrayRef(selectSizes), operandType.getOptionalDtype());
auto extract = [&rewriter, &binder](Value x, Value v) {
auto xTy = cast<Torch::ValueTensorType>(x.getType());
Type extractTy = rewriter.getType<Torch::FloatType>();
if (isa<IntegerType>(xTy.getDtype()))
extractTy = rewriter.getType<Torch::IntType>();
return rewriter.create<Torch::AtenItemOp>(binder.getLoc(), extractTy, v);
};
Value zero = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0));
MLIRContext *context = binder.op->getContext();
for (int i = 2; i < sizes[0]; i++) {
Value selectIndex = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), i));
Value ext = rewriter.create<Torch::AtenSelectIntOp>(
binder.getLoc(), selectResultType, operand, zero, selectIndex);
Value item = extract(operand, ext);
itemList.push_back(item);
}
auto xTy = cast<Torch::ValueTensorType>(operand.getType());
Value ValueList;
if (isa<IntegerType>(xTy.getDtype())) {
ValueList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(), Torch::ListType::get(Torch::IntType::get(context)),
itemList);
} else {
ValueList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(), Torch::ListType::get(Torch::FloatType::get(context)),
itemList);
}
return ValueList;
}
} // namespace
void mlir::torch::onnx_c::populateDefaultDomainQtoZ(
OnnxCustomOpConversionPattern &patterns) {
patterns.onOp(
"QuantizeLinear", 1,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
llvm::SmallVector<Value> operands;
if (binder.tensorOperands(operands, 3) ||
binder.tensorResultType(resultType))
return failure();
auto loc = binder.getLoc();
Value operand = operands[0];
Value scale = operands[1];
Value zeropoint = operands[2];
auto scaleTy = dyn_cast<Torch::ValueTensorType>(scale.getType());
if (!scaleTy || !scaleTy.hasSizes())
return rewriter.notifyMatchFailure(binder.op, "requires known rank");
if (!resultType.hasDtype())
return rewriter.notifyMatchFailure(binder.op,
"requires known result dtype");
auto resultETy = resultType.getDtype();
bool rank0 = scaleTy.getSizes().size() == 0;
bool length1 =
scaleTy.getSizes().size() == 1 && scaleTy.getSizes()[0] == 1;
if (!rank0 && !length1)
return rewriter.notifyMatchFailure(binder.op,
"unimplemented: non-scalar scale");
auto qTensorTy = getQTorchTypeFromTorchIntType(resultType);
if (!qTensorTy) {
return rewriter.notifyMatchFailure(binder.op,
"unsupported result dtype");
}
auto torchqTy = Torch::getScalarTypeForType(qTensorTy.getDtype());
Value tyConst = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64),
static_cast<int64_t>(torchqTy)));
scale = rewriter.create<Torch::AtenItemOp>(
loc, rewriter.getType<Torch::FloatType>(), scale);
bool fpResult = isa<mlir::FloatType>(resultETy);
Type zeropointTy = rewriter.getType<Torch::IntType>();
if (fpResult)
zeropointTy = rewriter.getType<Torch::FloatType>();
zeropoint =
rewriter.create<Torch::AtenItemOp>(loc, zeropointTy, zeropoint);
if (fpResult) {
Value none = rewriter.create<Torch::ConstantNoneOp>(loc);
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(loc, false);
Value one = rewriter.create<Torch::ConstantFloatOp>(
loc, rewriter.getF64FloatAttr(1.0));
Value div = rewriter.create<Torch::AtenDivScalarOp>(
loc, operand.getType(), operand, scale);
Value add = rewriter.create<Torch::AtenAddScalarOp>(
loc, operand.getType(), div, zeropoint, one);
rewriter.replaceOpWithNewOp<Torch::AtenToDtypeOp>(
binder.op, resultType, add, tyConst,
/*non_blocking=*/cstFalse, /*copy=*/cstFalse,
/*memory_format=*/none);
return success();
}
auto quantize = rewriter.create<Torch::AtenQuantizePerTensorOp>(
loc, qTensorTy, operand, scale, zeropoint, tyConst);
rewriter.replaceOpWithNewOp<Torch::AtenIntReprOp>(binder.op, resultType,
quantize);
return success();
});
patterns.onOp(
"QLinearConv", 1,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
llvm::SmallVector<Value> operands;
if ((binder.tensorOperands(operands, 8) &&
binder.tensorOperands(operands, 9)) ||
binder.tensorResultType(resultType))
return failure();
Value a = operands[0];
Value aScale = operands[1];
Value aZp = operands[2];
Value b = operands[3];
Value bScale = operands[4];
Value bZp = operands[5];
Value cScale = operands[6];
Value cZp = operands[7];
Value c = operands.size() == 9 ? operands[8] : nullptr;
auto check = [](Value v) {
auto vTy = cast<Torch::ValueTensorType>(v.getType());
return llvm::all_of(vTy.getSizes(), [](int64_t d) { return d == 1; });
};
if (!check(aScale) || !check(aZp) || !check(bScale) || !check(bZp) ||
!check(cScale) || !check(cScale))
return rewriter.notifyMatchFailure(
binder.op, "not supported for non per-tensor quantization");
auto extract = [&rewriter, &binder](Value v) {
auto vTy = cast<Torch::ValueTensorType>(v.getType());
Type extractTy = rewriter.getType<Torch::FloatType>();
if (isa<IntegerType>(vTy.getDtype()))
extractTy = rewriter.getType<Torch::IntType>();
return rewriter.create<Torch::AtenItemOp>(binder.getLoc(), extractTy,
v);
};
aZp = extract(aZp);
bZp = extract(bZp);
cZp = extract(cZp);
aScale = extract(aScale);
bScale = extract(bScale);
cScale = extract(cScale);
auto make = [&rewriter, &binder](Value v, Value scale,
Value zp) -> Value {
auto ty = cast<Torch::ValueTensorType>(v.getType());
auto newTy = getQTorchTypeFromTorchIntType(ty);
return rewriter.create<Torch::Aten_MakePerTensorQuantizedTensorOp>(
binder.getLoc(), newTy, v, scale, zp);
};
a = make(a, aScale, aZp);
b = make(b, bScale, bZp);
auto cTy = rewriter.getType<Torch::ValueTensorType>(
resultType.getOptionalSizes(),
rewriter.getIntegerType(32, /*issigned=*/true));
// TODO(suderman): insert convolution operator.
llvm::SmallVector<Value> newOperands = {a, b};
if (c)
newOperands.push_back(c);
cTy = rewriter.getType<Torch::ValueTensorType>(
resultType.getOptionalSizes(),
rewriter.getType<Torch::QInt32Type>());
llvm::SmallVector<NamedAttribute> newAttributes;
newAttributes.push_back(
rewriter.getNamedAttr("name", rewriter.getStringAttr("onnx.Conv")));
for (auto namedAttr : binder.op->getAttrDictionary()) {
if (namedAttr.getName().getValue().compare("name") == 0)
continue;
llvm::errs() << namedAttr.getName() << "\n";
newAttributes.push_back(namedAttr);
}
c = rewriter
.create<Torch::OperatorOp>(binder.getLoc(), cTy, newOperands,
newAttributes,
binder.op->getRegions().size())
.getResult(0);
Value outScale = rewriter.create<Torch::AtenMulFloatOp>(
binder.getLoc(), rewriter.getType<Torch::FloatType>(), aScale,
bScale);
Value outZp = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0));
c = rewriter.create<Torch::Aten_MakePerTensorQuantizedTensorOp>(
binder.getLoc(), cTy, c, outScale, outZp);
cTy = rewriter.getType<Torch::ValueTensorType>(
resultType.getOptionalSizes(), rewriter.getF32Type());
c = rewriter.create<Torch::AtenDequantizeSelfOp>(binder.getLoc(), cTy,
c);
cTy = getQTorchTypeFromTorchIntType(resultType);
Value dtyVal = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(
rewriter.getIntegerType(64),
static_cast<int64_t>(
Torch::getScalarTypeForType(cTy.getDtype()))));
c = rewriter.create<Torch::AtenQuantizePerTensorOp>(
binder.getLoc(), cTy, c, cScale, cZp, dtyVal);
rewriter.replaceOpWithNewOp<Torch::AtenIntReprOp>(binder.op, resultType,
c);
return success();
});
patterns.onOp(
"QLinearMatMul", 1,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
llvm::SmallVector<Value> operands;
if (binder.tensorOperands(operands, 8) ||
binder.tensorResultType(resultType))
return failure();
Value a = operands[0];
Value aScale = operands[1];
Value aZp = operands[2];
Value b = operands[3];
Value bScale = operands[4];
Value bZp = operands[5];
Value cScale = operands[6];
Value cZp = operands[7];
auto check = [](Value v) {
auto vTy = cast<Torch::ValueTensorType>(v.getType());
for (auto dim : vTy.getSizes())
if (dim != 1)
return false;
return true;
};
if (!check(aScale) || !check(aZp) || !check(bScale) || !check(bZp) ||
!check(cScale) || !check(cScale))
return rewriter.notifyMatchFailure(
binder.op, "not supported for non per-tensor quantization");
Value emptyList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
rewriter.getType<Torch::ListType>(
rewriter.getType<Torch::IntType>()),
ValueRange{});
auto extract = [&rewriter, &binder, &emptyList](Value v) {
auto vTy = cast<Torch::ValueTensorType>(v.getType());
if (!vTy.getSizes().empty()) {
vTy = rewriter.getType<Torch::ValueTensorType>(
ArrayRef<int64_t>({}), vTy.getOptionalDtype());
v = rewriter.create<Torch::AtenReshapeOp>(binder.getLoc(), vTy, v,
emptyList);
}
Type extractTy = rewriter.getType<Torch::FloatType>();
if (isa<IntegerType>(vTy.getDtype()))
extractTy = rewriter.getType<Torch::IntType>();
return rewriter.create<Torch::AtenItemOp>(binder.getLoc(), extractTy,
v);
};
aZp = extract(aZp);
bZp = extract(bZp);
cZp = extract(cZp);
aScale = extract(aScale);
bScale = extract(bScale);
cScale = extract(cScale);
auto make = [&rewriter, &binder](Value v, Value scale,
Value zp) -> Value {
auto ty = cast<Torch::ValueTensorType>(v.getType());
auto newTy = getQTorchTypeFromTorchIntType(ty);
return rewriter.create<Torch::Aten_MakePerTensorQuantizedTensorOp>(
binder.getLoc(), newTy, v, scale, zp);
};
a = make(a, aScale, aZp);
b = make(b, bScale, bZp);
auto cTy = rewriter.getType<Torch::ValueTensorType>(
resultType.getOptionalSizes(),
rewriter.getIntegerType(32, /*issigned=*/true));
Value c;
if (cTy.getSizes().size() == 2) {
c = rewriter.create<Torch::AtenMmOp>(binder.getLoc(), cTy, a, b);
} else {
c = rewriter.create<Torch::AtenBmmOp>(binder.getLoc(), cTy, a, b);
}
cTy = rewriter.getType<Torch::ValueTensorType>(
resultType.getOptionalSizes(),
rewriter.getType<Torch::QInt32Type>());
Value mmScale = rewriter.create<Torch::AtenMulFloatOp>(
binder.getLoc(), rewriter.getType<Torch::FloatType>(), aScale,
bScale);
Value mmZp = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0));
c = rewriter.create<Torch::Aten_MakePerTensorQuantizedTensorOp>(
binder.getLoc(), cTy, c, mmScale, mmZp);
cTy = rewriter.getType<Torch::ValueTensorType>(
resultType.getOptionalSizes(), rewriter.getF32Type());
c = rewriter.create<Torch::AtenDequantizeSelfOp>(binder.getLoc(), cTy,
c);
cTy = dyn_cast<Torch::ValueTensorType>(
getQTorchTypeFromTorchIntType(resultType));
Value dtyVal = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(
rewriter.getIntegerType(64),
static_cast<int64_t>(
Torch::getScalarTypeForType(cTy.getDtype()))));
c = rewriter.create<Torch::AtenQuantizePerTensorOp>(
binder.getLoc(), cTy, c, cScale, cZp, dtyVal);
rewriter.replaceOpWithNewOp<Torch::AtenIntReprOp>(binder.op, resultType,
c);
return success();
});
patterns.onOp("Reciprocal", 1,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value operand;
if (binder.tensorOperand(operand) ||
binder.tensorResultType(resultType))
return failure();
rewriter.replaceOpWithNewOp<Torch::AtenReciprocalOp>(
binder.op, resultType, operand);
return success();
});
patterns.onOp(
"Relu", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value x;
if (binder.tensorOperand(x) || binder.tensorResultType(resultType))
return failure();
rewriter.replaceOpWithNewOp<Torch::AtenReluOp>(binder.op, resultType,
x);
return success();
});
patterns.onOp("Round", 11,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value operand;
if (binder.tensorOperand(operand) ||
binder.tensorResultType(resultType))
return failure();
rewriter.replaceOpWithNewOp<Torch::AtenRoundOp>(
binder.op, resultType, operand);
return success();
});
patterns.onOp("RNN", 1,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
return OnnxRnnExpander(binder, rewriter);
});
patterns.onOp(
"Scatter", 9, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
int64_t axis;
if (binder.s64IntegerAttr(axis, "axis", {}))
return rewriter.notifyMatchFailure(binder.op, "axis bind failure");
Torch::ValueTensorType resultTy;
Value data, indices, updates;
if (binder.tensorOperandAtIndex(data, 0) ||
binder.tensorOperandAtIndex(indices, 1) ||
binder.tensorOperandAtIndex(updates, 2) ||
binder.tensorResultType(resultTy))
return failure();
auto dataTy = cast<Torch::ValueTensorType>(data.getType()),
indicesTy = cast<Torch::ValueTensorType>(indices.getType()),
updatesTy = cast<Torch::ValueTensorType>(updates.getType());
int64_t dataRank = dataTy.getSizes().size(),
indicesRank = indicesTy.getSizes().size(),
updatesRank = updatesTy.getSizes().size();
if ((dataRank < 1) || (indicesRank < 1) || (updatesRank < 1) ||
(axis < -dataRank) || (axis >= dataRank))
return failure();
Value axisValue = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(axis));
rewriter.replaceOpWithNewOp<Torch::AtenScatterSrcOp>(
binder.op, resultTy, data, axisValue, indices, updates);
return success();
});
patterns.onOp(
"ScatterElements", 1,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
SmallVector<Value> valList;
int64_t axis;
std::string reduction;
int64_t numOperands = binder.op->getNumOperands();
if (binder.tensorOperands(valList, numOperands) ||
binder.s64IntegerAttr(axis, "axis", 0) ||
binder.customOpNameStringAttr(reduction, "reduction", "none") ||
binder.tensorResultType(resultType))
return failure();
auto loc = binder.getLoc();
Value data = valList[0];
Value indices = valList[1];
Value updates = valList[2];
// ONNX allows negative axis.
if (axis < 0)
axis +=
cast<Torch::ValueTensorType>(data.getType()).getSizes().size();
Value constAxis = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), axis));
Value zero = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getI64IntegerAttr(0));
Value one = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getI64IntegerAttr(1));
Value axisSize = rewriter.create<Torch::AtenSizeIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(), data,
constAxis);
auto indicesTy = cast<Torch::ValueTensorType>(indices.getType());
Value indicesAdd = rewriter.create<Torch::AtenAddScalarOp>(
loc, indicesTy, indices, axisSize, one);
Value inputNeg = rewriter.create<Torch::AtenLtScalarOp>(
loc,
rewriter.getType<Torch::ValueTensorType>(indicesTy.getSizes(),
rewriter.getI1Type()),
indices, zero);
indices = rewriter.create<Torch::AtenWhereSelfOp>(
loc, indicesTy, inputNeg, indicesAdd, indices);
if (reduction == "none") {
rewriter.replaceOpWithNewOp<Torch::AtenScatterSrcOp>(
binder.op, resultType, data, constAxis, indices, updates);
return success();
}
// TODO: Implement max and min cases
if (reduction == "mul") {
reduction = "multiply";
} else if (reduction == "max" || reduction == "min") {
return rewriter.notifyMatchFailure(
binder.op, "max/min reduction unsupported for scatter elements");
}
Value cstStrReduction =
rewriter.create<Torch::ConstantStrOp>(binder.getLoc(), reduction);
rewriter.replaceOpWithNewOp<Torch::AtenScatterReduceOp>(
binder.op, resultType, data, constAxis, indices, updates,
cstStrReduction);
return success();
});
patterns.onOp(
"SequenceConstruct", 11,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
SmallVector<Value> operands;
Torch::ListType resultType;
if (binder.tensorOperands(operands, binder.getNumOperands()) ||
binder.tensorListResultType(resultType))
return failure();
rewriter.replaceOpWithNewOp<Torch::PrimListConstructOp>(
binder.op, resultType, operands);
return success();
});
patterns.onOp(
"SequenceLength", 11,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
// onnx.SequenceLength takes a sequence(list) of tensors, and returns
// a zero rank tensor with the length.
Torch::ValueTensorType resultType;
Value x;
if (binder.tensorListOperand(x) || binder.tensorResultType(resultType))
return failure();
Value cstFalse =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), false);
Value none = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
Value len = rewriter.create<Torch::AtenLenTOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(), x);
// AtenLenTOp returns a torch.int, so we have to
// put that in a tensor.
rewriter.replaceOpWithNewOp<Torch::AtenTensorIntOp>(
binder.op, resultType, len, none, none, cstFalse);
return success();
});
patterns.onOp(
"Sigmoid", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value x;
if (binder.tensorOperand(x) || binder.tensorResultType(resultType))
return failure();
rewriter.replaceOpWithNewOp<Torch::AtenSigmoidOp>(binder.op, resultType,
x);
return success();
});
patterns.onOp("Sin", 7,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value operand;
if (binder.tensorOperand(operand) ||
binder.tensorResultType(resultType))
return failure();
rewriter.replaceOpWithNewOp<Torch::AtenSinOp>(
binder.op, resultType, operand);
return success();
});
patterns.onOp("Tanh", 1,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value operand;
if (binder.tensorOperand(operand) ||
binder.tensorResultType(resultType))
return failure();
rewriter.replaceOpWithNewOp<Torch::AtenTanhOp>(
binder.op, resultType, operand);
return success();
});
patterns.onOp("Sqrt", 1,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value operand;
if (binder.tensorOperand(operand) ||
binder.tensorResultType(resultType))
return failure();
rewriter.replaceOpWithNewOp<Torch::AtenSqrtOp>(
binder.op, resultType, operand);
return success();
});
patterns.onOp(
"Sub", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value x;
Value y;
if (binder.tensorOperands(x, y) || binder.tensorResultType(resultType))
return failure();
Value const1 = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 1));
rewriter.replaceOpWithNewOp<Torch::AtenSubTensorOp>(
binder.op, resultType, x, y, const1);
return success();
});
patterns.onOp(
"Sum", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
if (binder.op->getNumOperands() == 1) {
Torch::ValueTensorType resultType;
Value x;
if (binder.tensorOperand(x) || binder.tensorResultType(resultType))
return failure();
rewriter.replaceOp(binder.op, x);
return success();
}
Torch::ValueTensorType resultType;
SmallVector<Value> valList;
int64_t numOperands = binder.op->getNumOperands();
if (binder.tensorOperands(valList, numOperands) ||
binder.tensorResultType(resultType))
return failure();
Value const1 = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 1));
// Short circuit to binary add
if (numOperands == 2) {
rewriter.replaceOpWithNewOp<Torch::AtenAddTensorOp>(
binder.op, resultType, valList[0], valList[1], const1);
return success();
}
// When binder.op->getNumOperands() > 2
Value curr = rewriter.create<Torch::AtenAddTensorOp>(
binder.getLoc(), resultType, valList[0], valList[1], const1);
for (int i = 2; i < numOperands; i++) {
if (i == numOperands - 1) {
curr = rewriter.create<Torch::AtenAddTensorOp>(
binder.getLoc(), resultType, curr, valList[i], const1);
} else {
SmallVector<int64_t> resultBroadcastShapeInt;
SmallVector<Value> resultBroadcastShapeValue;
Torch::computeBroadcastShape(rewriter, binder.getLoc(), curr,
valList[i], resultBroadcastShapeInt,
resultBroadcastShapeValue);
auto baseType = Torch::ValueTensorType::get(
binder.op->getContext(), resultBroadcastShapeInt,
resultType.getOptionalDtype());
curr = rewriter.create<Torch::AtenAddTensorOp>(
binder.getLoc(), baseType, curr, valList[i], const1);
}
}
rewriter.replaceOp(binder.op, curr);
return success();
});
patterns.onOp("Where", 1,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
SmallVector<Value> valList;
int64_t numOperands = binder.op->getNumOperands();
if (binder.tensorOperands(valList, numOperands) ||
binder.tensorResultType(resultType))
return failure();
Value condition = valList[0];
Value x = valList[1];
Value y = valList[2];
rewriter.replaceOpWithNewOp<Torch::AtenWhereSelfOp>(
binder.op, resultType, condition, x, y);
return success();
});
patterns.onOp(
"Xor", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value x;
Value y;
if (binder.tensorOperands(x, y) || binder.tensorResultType(resultType))
return failure();
rewriter.replaceOpWithNewOp<Torch::AtenLogicalXorOp>(binder.op,
resultType, x, y);
return success();
});
patterns.onOp(
"Squeeze", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
SmallVector<Value> inputOperands;
if (binder.tensorOperands(inputOperands, binder.op->getNumOperands()) ||
binder.tensorResultType(resultType))
return failure();
Value data = inputOperands[0];
auto inputType = dyn_cast<Torch::ValueTensorType>(data.getType());
if (!inputType.hasSizes() || !resultType.hasSizes())
return rewriter.notifyMatchFailure(
binder.op,
"unimplemented: expected input and result to have shapes");
int64_t inputRank = inputType.getSizes().size();
int64_t resultRank = resultType.getSizes().size();
int64_t rankDiff = inputRank - resultRank;
if (rankDiff == 0) {
// In this case, no dimension is squeezed. Hence just replace the op
// with input.
rewriter.replaceOp(binder.op, data);
return success();
}
if (inputOperands.size() == 1) {
// Case: `axes` value is not present which means squeeze all the
// dimensions with shape value 1.
rewriter.replaceOpWithNewOp<Torch::AtenSqueezeOp>(binder.op,
resultType, data);
return success();
}
SmallVector<Value> dimList;
if (inputType.areAllSizesKnown() && resultType.areAllSizesKnown()) {
// If the input shape and result shape is statically known then the
// list of dims to be squeezed can be derived from those shapes. As a
// result, we don't have to wait for the dim values to be known at
// runtime which is also expected by the downstream pipeline.
SmallVector<int64_t> inputShape(inputType.getSizes());
SmallVector<int64_t> resultShape(resultType.getSizes());
SmallVector<int64_t> squeezeDims;
unsigned resultShapeCounter = 0;
for (unsigned i = 0; i < inputRank; i++) {
if (resultShapeCounter < resultRank &&
inputShape[i] == resultShape[resultShapeCounter]) {
resultShapeCounter++;
} else {
squeezeDims.push_back(i);
}
}
for (auto i : squeezeDims) {
dimList.push_back(rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(i)));
}
}
if (dimList.empty()) {
Value axes = inputOperands[1];
Torch::BaseTensorType axesType =
cast<Torch::BaseTensorType>(axes.getType());
SmallVector<int64_t> selectSizes{1};
Type selectResultType = axesType.getWithSizesAndDtype(
selectSizes, axesType.getOptionalDtype());
Value zero = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0));
for (int i = 0; i < rankDiff; i++) {
// Go through the axes list and get each dim in the list
Value selectIndex = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), i));
Value extract = rewriter.create<Torch::AtenSelectIntOp>(
binder.getLoc(), selectResultType, axes, zero, selectIndex);
Value dim = rewriter.create<Torch::AtenItemOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(), extract);
dimList.push_back(dim);
}
}
Value dimValueList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
rewriter.getType<Torch::ListType>(
rewriter.getType<Torch::IntType>()),
dimList);
rewriter.replaceOpWithNewOp<Torch::PrimsSqueezeOp>(
binder.op, resultType, data, dimValueList);
return success();
});
patterns.onOp(
"Unsqueeze", 13,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
// Unlike squeeze where we are able to lower to Torch::PrimsSqueezeOp,
// pytorch does not support torch.unsqueeze to insert multiple new dims.
// discussion can be found here:
// https://github.com/pytorch/pytorch/issues/9410
// So, for now, we unroll into multiple unsqueezes.
Location loc = binder.getLoc();
Torch::ValueTensorType resultType;
Value data, axes;
if (binder.tensorOperands(data, axes) ||
binder.tensorResultType(resultType))
return failure();
auto inputType = dyn_cast<Torch::ValueTensorType>(data.getType());
if (!inputType.hasSizes() || !resultType.hasSizes())
return rewriter.notifyMatchFailure(
binder.op,
"unimplemented: expected input and result to have shapes");
int64_t inputRank = inputType.getSizes().size();
int64_t resultRank = resultType.getSizes().size();
int64_t rankDiff = resultRank - inputRank;
if (rankDiff == 0) {
// In this case, no dimension is unsqueezed. Hence just replace the op
// with input.
rewriter.replaceOp(binder.op, data);
return success();
}
SmallVector<int64_t> unsqueezeDims;
SmallVector<int64_t> inputShape(inputType.getSizes());
if (inputType.areAllSizesKnown() && resultType.areAllSizesKnown()) {
// If the input shape and result shape is statically known then the
// list of dims to be squeezed can be derived from those shapes. As a
// result, we don't have to wait for the dim values to be known at
// runtime which is also expected by the downstream pipeline.
SmallVector<int64_t> resultShape(resultType.getSizes());
unsigned inputShapeCounter = 0;
for (unsigned i = 0; i < resultRank; i++) {
if (inputShapeCounter < inputRank &&
inputShape[inputShapeCounter] == resultShape[i]) {
inputShapeCounter++;
} else {
unsqueezeDims.push_back(i);
}
}
} else {
SmallVector<int64_t> unsqueezeDimsInts;
if (!matchPattern(axes, m_OnnxListOfConstantInts(unsqueezeDimsInts)))
return rewriter.notifyMatchFailure(
binder.op, "only support constant int axes values");
for (auto dim : unsqueezeDimsInts)
unsqueezeDims.push_back(dim < 0 ? dim + resultRank : dim);
// If we don't sort, unsqueezing first on 4 and then on 0 would fail
// for shape = {x,y,z}, and axes [4,0]
llvm::sort(unsqueezeDims.begin(), unsqueezeDims.end());
}
Value result = data;
SmallVector<int64_t> unsqueezeShape = inputShape;
for (auto dim : unsqueezeDims) {
unsqueezeShape.insert(unsqueezeShape.begin() + dim, 1);
Type unsqueezeType = resultType.getWithSizesAndDtype(
unsqueezeShape, resultType.getOptionalDtype());
Value cstDim = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(dim));
result = rewriter.create<Torch::AtenUnsqueezeOp>(loc, unsqueezeType,
result, cstDim);
}
rewriter.replaceOp(binder.op, result);
return success();
});
patterns.onOp(
"Softmax", 13, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value input;
int64_t axis;
if (binder.tensorOperand(input) ||
binder.s64IntegerAttr(axis, "axis", -1) ||
binder.tensorResultType(resultType))
return failure();
// ONNX allows negative axis.
if (axis < 0)
axis +=
cast<Torch::ValueTensorType>(input.getType()).getSizes().size();
Value constAxis = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), axis));
Value noneVal = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
rewriter.replaceOpWithNewOp<Torch::AtenSoftmaxIntOp>(
binder.op, resultType, input, constAxis, /*dtype=*/noneVal);
return success();
});
patterns.onOp(
"Selu", 6, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
// y = gamma * (alpha * e^x - alpha) for x <= 0, y = gamma * x for x > 0
Torch::ValueTensorType resultType;
float alpha, gamma;
Value operand;
// Refer https://onnx.ai/onnx/operators/onnx__Selu.html for the default
// alpha and gamma values.
if (binder.tensorOperand(operand) ||
binder.f32FloatAttr(alpha, "alpha", 1.67326) ||
binder.f32FloatAttr(gamma, "gamma", 1.0507) ||
binder.tensorResultType(resultType))
return failure();
Value vAlpha = rewriter.create<Torch::ConstantFloatOp>(
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
rewriter.getFloatAttr(rewriter.getF64Type(), alpha));
Value vScale = rewriter.create<Torch::ConstantFloatOp>(
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
rewriter.getFloatAttr(rewriter.getF64Type(), gamma));
Value vInputScale = rewriter.create<Torch::ConstantFloatOp>(
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
rewriter.getFloatAttr(rewriter.getF64Type(), 1.0));
rewriter.replaceOpWithNewOp<Torch::AtenEluOp>(
binder.op, resultType, operand, vAlpha, vScale, vInputScale);
return success();
});
patterns.onOp("ReduceL1", 1,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
int64_t keepDims, noop_with_empty_axes;
Value operand;
if (binder.tensorOperandAtIndex(operand, 0) ||
binder.tensorResultType(resultType) ||
binder.s64IntegerAttr(keepDims, "keepdims", 1) ||
binder.s64IntegerAttr(noop_with_empty_axes,
"noop_with_empty_axes", 0))
return failure();
Value data = rewriter.create<Torch::AtenAbsOp>(
binder.getLoc(), operand.getType(), operand);
return reducedSumImpl(binder, rewriter, data, resultType,
/*storeValue=*/operand, keepDims,
noop_with_empty_axes, false);
});
patterns.onOp(
"ReduceL2", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value operand;
int64_t keepDims, noop_with_empty_axes;
if (binder.tensorOperandAtIndex(operand, 0) ||
binder.tensorResultType(resultType) ||
binder.s64IntegerAttr(keepDims, "keepdims", 1) ||
binder.s64IntegerAttr(noop_with_empty_axes, "noop_with_empty_axes",
0))
return failure();
// A ReduceL2 op is equivalent to the following sequence of operations:
// Mul(x, x) -> ReduceSum -> CastF32 -> Sqrt -> CastLike(resultType)
Value squareOfOperand = rewriter.create<Torch::AtenMulTensorOp>(
binder.getLoc(), operand.getType(), operand, operand);
auto reducedSum =
reducedSumImpl(binder, rewriter, squareOfOperand, resultType,
operand, keepDims, noop_with_empty_axes, true);
if (failed(reducedSum))
return rewriter.notifyMatchFailure(
binder.op,
"Failed to perform sum operation on square of operand");
Value castDType = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(/*Float32Type*/ 6));
Value noneVal = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
Value constFalse =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), false);
// Perform an AtenToDtype op on the squared sum of the operand, stored
// now in operand itself.
auto size = dyn_cast<Torch::ValueTensorType>(operand.getType())
.getOptionalSizes();
auto f32ResultType = rewriter.getType<Torch::ValueTensorType>(
size, rewriter.getF32Type());
Value operandCast = rewriter.create<Torch::AtenToDtypeOp>(
binder.getLoc(), f32ResultType, operand, castDType,
/*non_blocking=*/constFalse, /*copy=*/constFalse,
/*memory_format=*/noneVal);
Value operandSqrt = rewriter.create<Torch::AtenSqrtOp>(
binder.getLoc(), f32ResultType, operandCast);
Value resultDtype = Torch::getDtypeIntValueForType(
rewriter, binder.getLoc(), resultType.getDtype());
rewriter.replaceOpWithNewOp<Torch::AtenToDtypeOp>(
binder.op, resultType, operandSqrt, resultDtype,
/*non_blocking=*/constFalse, /*copy=*/constFalse,
/*memory_format=*/noneVal);
return success();
});
patterns.onOp("ReduceLogSum", 1,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value data;
int64_t keepDims, noop_with_empty_axes;
if (binder.tensorOperandAtIndex(data, 0) ||
binder.tensorResultType(resultType) ||
binder.s64IntegerAttr(keepDims, "keepdims", 1) ||
binder.s64IntegerAttr(noop_with_empty_axes,
"noop_with_empty_axes", 0))
return failure();
auto reducedSumBool =
reducedSumImpl(binder, rewriter, data, resultType,
/*storeValue=*/data, keepDims,
noop_with_empty_axes, true);
if (failed(reducedSumBool))
return rewriter.notifyMatchFailure(
binder.op,
"Failed to perform sum operation on square of operand");
rewriter.replaceOpWithNewOp<Torch::AtenLogOp>(
binder.op, resultType, data);
return success();
});
patterns.onOp(
"ReduceLogSumExp", 1,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value data;
int64_t keepDims, noop_with_empty_axes;
if (binder.tensorOperandAtIndex(data, 0) ||
binder.tensorResultType(resultType) ||
binder.s64IntegerAttr(keepDims, "keepdims", 1) ||
binder.s64IntegerAttr(noop_with_empty_axes, "noop_with_empty_axes",
0))
return failure();
// out = Log(reducesum(exp(data)))
Value castDType = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(/*Float64Type*/ 7));
Value noneVal = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
Value constFalse =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), false);
auto size =
dyn_cast<Torch::ValueTensorType>(data.getType()).getOptionalSizes();
auto f64ResultType = rewriter.getType<Torch::ValueTensorType>(
size, rewriter.getF64Type());
Value dataCast = rewriter.create<Torch::AtenToDtypeOp>(
binder.getLoc(), f64ResultType, data, castDType,
/*non_blocking=*/constFalse, /*copy=*/constFalse,
/*memory_format=*/noneVal);
Value dataExp = rewriter.create<Torch::AtenExpOp>(
binder.getLoc(), f64ResultType, dataCast);
auto f64ReduceType = rewriter.getType<Torch::ValueTensorType>(
resultType.getOptionalSizes(), rewriter.getF64Type());
auto reducedSumBool = reducedSumImpl(
binder, rewriter, dataExp, f64ReduceType,
/*storeValue=*/data, keepDims, noop_with_empty_axes, true);
if (failed(reducedSumBool))
return rewriter.notifyMatchFailure(
binder.op,
"Failed to perform sum operation on square of operand");
Value finalResult = rewriter.create<Torch::AtenLogOp>(
binder.getLoc(), f64ReduceType, data);
Value resultDtype = Torch::getDtypeIntValueForType(
rewriter, binder.getLoc(), resultType.getDtype());
rewriter.replaceOpWithNewOp<Torch::AtenToDtypeOp>(
binder.op, resultType, finalResult, resultDtype,
/*non_blocking=*/constFalse, /*copy=*/constFalse,
/*memory_format=*/noneVal);
return success();
});
patterns.onOp("ReduceSum", 1,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value data;
int64_t keepDims, noop_with_empty_axes;
if (binder.tensorOperandAtIndex(data, 0) ||
binder.tensorResultType(resultType) ||
binder.s64IntegerAttr(keepDims, "keepdims", 1) ||
binder.s64IntegerAttr(noop_with_empty_axes,
"noop_with_empty_axes", 0))
return failure();
return reducedSumImpl(binder, rewriter, data, resultType,
/*storeValue=*/data, keepDims,
noop_with_empty_axes, false);
});
patterns.onOp("ReduceSumSquare", 1,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value data;
int64_t keepDims, noop_with_empty_axes;
if (binder.tensorOperandAtIndex(data, 0) ||
binder.tensorResultType(resultType) ||
binder.s64IntegerAttr(keepDims, "keepdims", 1) ||
binder.s64IntegerAttr(noop_with_empty_axes,
"noop_with_empty_axes", 0))
return failure();
Value dataSquare = rewriter.create<Torch::AtenMulTensorOp>(
binder.getLoc(), data.getType(), data, data);
return reducedSumImpl(binder, rewriter, dataSquare,
resultType,
/*storeValue=*/data, keepDims,
noop_with_empty_axes, false);
});
patterns.onOp(
"ReduceMean", 1,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value data;
int64_t keepDims, noop_with_empty_axes;
if (binder.tensorOperandAtIndex(data, 0) ||
binder.tensorResultType(resultType) ||
binder.s64IntegerAttr(keepDims, "keepdims", 1) ||
binder.s64IntegerAttr(noop_with_empty_axes, "noop_with_empty_axes",
0))
return failure();
SmallVector<Value> axesList;
Value axesVal;
if (!binder.tensorOperandAtIndex(axesVal, 1)) {
auto inputType = dyn_cast<Torch::ValueTensorType>(data.getType());
if (!inputType.hasSizes() || !resultType.hasSizes()) {
return rewriter.notifyMatchFailure(
binder.op,
"unimplemented: expected input and result to have shapes");
}
// If the input shape and result shape is statically known then the
// list of dims to be squeezed can be derived from those shapes. As a
// result, we don't have to wait for the dim values to be known at
// runtime which is also expected by the downstream pipeline.
if (inputType.areAllSizesKnown() && resultType.areAllSizesKnown()) {
SmallVector<int64_t> inputShape{inputType.getSizes()};
SmallVector<int64_t> resultShape{resultType.getSizes()};
if (llvm::equal(inputShape, resultShape)) {
// Case: none of the dimension is reduced.
rewriter.replaceOp(binder.op, data);
return success();
}
if (areAllElementsDistinct(inputShape)) {
// The check for the input shape elements to be distinct is added
// for the cases like:
// Input: [3, 2, 2] -> Output: [3, 2]
// For the above case, from the input and output shape it can't be
// inferred whether the dim:1 is reduced or dim:2. To avoid these
// type of cases, the check has been placed.
SmallVector<int64_t> reduceDims;
unsigned resultShapeCounter = 0;
for (unsigned i = 0; i < inputShape.size(); i++) {
if (resultShapeCounter < resultShape.size() &&
inputShape[i] == resultShape[resultShapeCounter]) {
resultShapeCounter++;
} else {
reduceDims.push_back(i);
if (resultShapeCounter < resultShape.size() &&
resultShape[resultShapeCounter] == 1)
resultShapeCounter++;
}
}
for (auto i : reduceDims) {
axesList.push_back(rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(i)));
}
}
}
if (axesList.empty()) {
Torch::BaseTensorType axesType =
cast<Torch::BaseTensorType>(axesVal.getType());
auto axesTy = dyn_cast<Torch::ValueTensorType>(axesVal.getType());
auto axesShape = axesTy.getSizes();
if (axesShape.size() != 1 || axesShape[0] == Torch::kUnknownSize)
return failure();
Value zero = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getI64IntegerAttr(0));
SmallVector<int64_t> selectSizes{1};
auto selType = rewriter.getType<Torch::ValueTensorType>(
selectSizes, axesType.getOptionalDtype());
int64_t numAxes = axesShape[0];
for (int64_t i = 0; i < numAxes; ++i) {
Value iv = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getI64IntegerAttr(i));
Value extract = rewriter.create<Torch::AtenSelectIntOp>(
binder.getLoc(), selType, axesVal, zero, iv);
Value dim = rewriter.create<Torch::AtenItemOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(), extract);
axesList.push_back(dim);
}
}
}
SmallVector<int64_t> axesInts;
if (!binder.s64IntegerArrayAttr(axesInts, "axes", {})) {
for (int64_t i = 0, s = axesInts.size(); i < s; ++i) {
Value iv = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getI64IntegerAttr(axesInts[i]));
axesList.push_back(iv);
}
}
// deal with case when axes is empty
if (axesList.empty() && noop_with_empty_axes) {
rewriter.replaceOp(binder.op, data);
return success();
}
Value dimValueList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
axesList);
Value keepDimBool =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), keepDims);
Value noneVal = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
rewriter.replaceOpWithNewOp<Torch::AtenMeanDimOp>(
binder.op, resultType, data, dimValueList, keepDimBool,
/*dtype=*/noneVal);
return success();
});
patterns.onOp(
"ReduceMax", 13,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
// AtenAmaxOp allows us to pass a list of dims
Torch::ValueTensorType resultType;
Value data;
Value axes;
int64_t keepDims;
int64_t noop_with_empty_axes;
if (binder.tensorOperandAtIndex(data, 0) ||
binder.tensorResultType(resultType) ||
binder.s64IntegerAttr(keepDims, "keepdims", 1) ||
binder.s64IntegerAttr(noop_with_empty_axes, "noop_with_empty_axes",
0))
return failure();
auto dataTy = cast<Torch::BaseTensorType>(data.getType());
Torch::IntType torchIntTy = rewriter.getType<Torch::IntType>();
// If any of the input dims are 0 we set to the lower limit:
if (llvm::any_of(dataTy.getSizes(), [](int64_t d) { return d == 0; }) &&
(llvm::any_of(dataTy.getSizes(),
[](int64_t d) { return d == Torch::kUnknownSize; }) ||
keepDims)) {
auto dty = dataTy.getDtype();
Value scalar;
if (FloatType fpTy = dyn_cast<FloatType>(dty)) {
auto inf =
APFloat::getInf(fpTy.getFloatSemantics(), /*Negative=*/true);
scalar = rewriter.create<Torch::ConstantFloatOp>(
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
rewriter.getFloatAttr(rewriter.getF64Type(),
inf.convertToDouble()));
}
if (IntegerType intTy = dyn_cast<IntegerType>(dty)) {
auto minInt =
intTy.isSigned()
? APInt::getSignedMinValue(intTy.getIntOrFloatBitWidth())
: APInt::getMinValue(intTy.getIntOrFloatBitWidth());
scalar = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), torchIntTy,
rewriter.getIntegerAttr(rewriter.getIntegerType(64),
minInt.getSExtValue()));
}
llvm::SmallVector<Value> fillDims;
for (int i = 0, s = resultType.getSizes().size(); i < s; ++i) {
auto staticDim = resultType.getSizes()[i];
if (staticDim != Torch::kUnknownSize) {
fillDims.push_back(rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), torchIntTy,
rewriter.getI64IntegerAttr(staticDim)));
continue;
}
Value iv = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), torchIntTy, rewriter.getI64IntegerAttr(i));
fillDims.push_back(rewriter.create<Torch::AtenSizeIntOp>(
binder.getLoc(), torchIntTy, data, iv));
}
Value none = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
Value fillDimsList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(), Torch::ListType::get(torchIntTy), fillDims);
rewriter.replaceOpWithNewOp<Torch::AtenFullOp>(
binder.op, resultType, fillDimsList, scalar, none, none, none,
none);
return success();
}
// Previous version of the operation had the axes as an attribute:
SmallVector<Value> axesList;
llvm::SmallVector<int64_t> axesAttr;
if (!binder.s64IntegerArrayAttr(axesAttr, "axes", {})) {
for (int i = 0, s = axesAttr.size(); i < s; ++i) {
axesList.push_back(rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), torchIntTy,
rewriter.getI64IntegerAttr(axesAttr[i])));
}
}
// Extract the axes values from the axes operand:
if (!binder.tensorOperandAtIndex(axes, 1)) {
Torch::BaseTensorType axesType =
cast<Torch::BaseTensorType>(axes.getType());
SmallVector<int64_t> selectSizes{1};
Type selectResultType = axesType.getWithSizesAndDtype(
selectSizes, axesType.getOptionalDtype());
auto sizes = axesType.getSizes();
Value zero = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0));
// Extract the value of each axes:
for (int i = 0; i < sizes[0]; i++) {
// Go through the axes list and get each dim in the list
Value selectIndex = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), i));
Value extract = rewriter.create<Torch::AtenSelectIntOp>(
binder.getLoc(), selectResultType, axes, zero, selectIndex);
Value dim = rewriter.create<Torch::AtenItemOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(), extract);
axesList.push_back(dim);
}
}
// Handle the noop case:
if (axesList.empty() && noop_with_empty_axes) {
rewriter.replaceOp(binder.op, data);
return success();
}
// Deal with case when no axes arg is passed but not a noop:
if (axesList.empty()) {
int64_t numDims = dyn_cast<Torch::ValueTensorType>(data.getType())
.getSizes()
.size();
for (int i = 0; i < numDims; i++) {
Value curr = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), i));
axesList.push_back(curr);
}
}
// Handle negative axis:
Value rankVal = rewriter.create<Torch::AtenDimOp>(binder.getLoc(),
torchIntTy, data);
Value zero = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getI64IntegerAttr(0));
for (Value &axes : axesList) {
Value isNegative =
rewriter.create<Torch::AtenLtIntOp>(binder.getLoc(), axes, zero);
isNegative = rewriter.create<Torch::AtenIntBoolOp>(binder.getLoc(),
isNegative);
Value finalOffset = rewriter.create<Torch::AtenMulIntOp>(
binder.getLoc(), isNegative, rankVal);
axes = rewriter.create<Torch::AtenAddIntOp>(binder.getLoc(), axes,
finalOffset);
}
Value dimValueList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(), Torch::ListType::get(torchIntTy), axesList);
Value keepDimBool =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), keepDims);
rewriter.replaceOpWithNewOp<Torch::AtenAmaxOp>(
binder.op, resultType, data, dimValueList, keepDimBool);
return success();
});
patterns.onOp(
"ReduceMin", 13,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
// AtenAminOp allows us to pass a list of dims
Torch::ValueTensorType resultType;
Value data;
Value axes;
int64_t keepDims;
int64_t noop_with_empty_axes;
if (binder.tensorOperandAtIndex(data, 0) ||
binder.tensorResultType(resultType) ||
binder.s64IntegerAttr(keepDims, "keepdims", 1) ||
binder.s64IntegerAttr(noop_with_empty_axes, "noop_with_empty_axes",
0))
return failure();
auto dataTy = cast<Torch::BaseTensorType>(data.getType());
Torch::IntType torchIntTy = rewriter.getType<Torch::IntType>();
// If any of the input dims are 0 we set to the upper limit:
if (llvm::any_of(dataTy.getSizes(), [](int64_t d) { return d == 0; }) &&
(llvm::any_of(dataTy.getSizes(),
[](int64_t d) { return d == Torch::kUnknownSize; }) ||
keepDims)) {
auto dty = dataTy.getDtype();
Value scalar;
if (FloatType fpTy = dyn_cast<FloatType>(dty)) {
auto inf = APFloat::getInf(fpTy.getFloatSemantics());
scalar = rewriter.create<Torch::ConstantFloatOp>(
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
rewriter.getFloatAttr(rewriter.getF64Type(),
inf.convertToDouble()));
}
if (IntegerType intTy = dyn_cast<IntegerType>(dty)) {
auto mx =
intTy.isSigned()
? APInt::getSignedMaxValue(intTy.getIntOrFloatBitWidth())
: APInt::getMaxValue(intTy.getIntOrFloatBitWidth());
scalar = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), torchIntTy,
rewriter.getIntegerAttr(rewriter.getIntegerType(64),
mx.getSExtValue()));
}
llvm::SmallVector<Value> fillDims;
for (int i = 0, s = resultType.getSizes().size(); i < s; ++i) {
auto staticDim = resultType.getSizes()[i];
if (staticDim != Torch::kUnknownSize) {
fillDims.push_back(rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), torchIntTy,
rewriter.getI64IntegerAttr(staticDim)));
continue;
}
Value iv = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), torchIntTy, rewriter.getI64IntegerAttr(i));
fillDims.push_back(rewriter.create<Torch::AtenSizeIntOp>(
binder.getLoc(), torchIntTy, data, iv));
}
Value none = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
Value fillDimsList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(), Torch::ListType::get(torchIntTy), fillDims);
rewriter.replaceOpWithNewOp<Torch::AtenFullOp>(
binder.op, resultType, fillDimsList, scalar, none, none, none,
none);
return success();
}
// Previous version of the operation had the axes as an attribute:
SmallVector<Value> axesList;
llvm::SmallVector<int64_t> axesAttr;
if (!binder.s64IntegerArrayAttr(axesAttr, "axes", {})) {
for (int i = 0, s = axesAttr.size(); i < s; ++i) {
axesList.push_back(rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), torchIntTy,
rewriter.getI64IntegerAttr(axesAttr[i])));
}
}
// Extract the axes values from the axes operand:
if (!binder.tensorOperandAtIndex(axes, 1)) {
Torch::BaseTensorType axesType =
cast<Torch::BaseTensorType>(axes.getType());
SmallVector<int64_t> selectSizes{1};
Type selectResultType = axesType.getWithSizesAndDtype(
selectSizes, axesType.getOptionalDtype());
auto sizes = axesType.getSizes();
Value zero = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0));
// Extract the value of each axes:
for (int i = 0; i < sizes[0]; i++) {
// Go through the axes list and get each dim in the list
Value selectIndex = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), i));
Value extract = rewriter.create<Torch::AtenSelectIntOp>(
binder.getLoc(), selectResultType, axes, zero, selectIndex);
Value dim = rewriter.create<Torch::AtenItemOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(), extract);
axesList.push_back(dim);
}
}
// Handle the noop case:
if (axesList.empty() && noop_with_empty_axes) {
rewriter.replaceOp(binder.op, data);
return success();
}
// Deal with case when no axes arg is passed but not a noop:
if (axesList.empty()) {
int64_t numDims = dyn_cast<Torch::ValueTensorType>(data.getType())
.getSizes()
.size();
for (int i = 0; i < numDims; i++) {
Value curr = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), i));
axesList.push_back(curr);
}
}
// Handle negative axis:
Value rankVal = rewriter.create<Torch::AtenDimOp>(binder.getLoc(),
torchIntTy, data);
Value zero = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getI64IntegerAttr(0));
for (Value &axes : axesList) {
Value isNegative =
rewriter.create<Torch::AtenLtIntOp>(binder.getLoc(), axes, zero);
isNegative = rewriter.create<Torch::AtenIntBoolOp>(binder.getLoc(),
isNegative);
Value finalOffset = rewriter.create<Torch::AtenMulIntOp>(
binder.getLoc(), isNegative, rankVal);
axes = rewriter.create<Torch::AtenAddIntOp>(binder.getLoc(), axes,
finalOffset);
}
Value dimValueList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(), Torch::ListType::get(torchIntTy), axesList);
Value keepDimBool =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), keepDims);
rewriter.replaceOpWithNewOp<Torch::AtenAminOp>(
binder.op, resultType, data, dimValueList, keepDimBool);
return success();
});
patterns.onOp(
"Shape", 9, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value operand;
int64_t start, end;
if (binder.tensorOperand(operand) ||
binder.tensorResultType(resultType) ||
binder.s64IntegerAttr(start, "start", 0) ||
binder.s64IntegerAttr(end, "end", -1))
return failure();
auto inputType = dyn_cast<Torch::ValueTensorType>(operand.getType());
int64_t inputRank = inputType.getSizes().size();
auto shapeType = Torch::ValueTensorType::get(
binder.op->getContext(), SmallVector<int64_t>{inputRank},
resultType.getOptionalDtype());
Value shape = rewriter.create<Torch::Aten_ShapeAsTensorOp>(
binder.getLoc(), shapeType, operand);
if (start == 0 && end == -1) {
rewriter.replaceOp(binder.op, shape);
return success();
}
Value sv = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(start));
Value ev = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(end));
Value step = rewriter.create<Torch::ConstantIntOp>(binder.getLoc(), 1);
Value dim = rewriter.create<Torch::ConstantIntOp>(binder.getLoc(), 0);
shape = rewriter.create<Torch::AtenSliceTensorOp>(
binder.getLoc(), resultType, shape, dim, sv, ev, step);
rewriter.replaceOp(binder.op, shape);
return success();
});
patterns.onOp("Sinh", 9,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value operand;
if (binder.tensorOperand(operand) ||
binder.tensorResultType(resultType))
return failure();
rewriter.replaceOpWithNewOp<Torch::AtenSinhOp>(
binder.op, resultType, operand);
return success();
});
// split with fixed-size parts
// Arguments:
// - input: the tensor to split
// Attributes:
// - axis: the axis along which to split the input
// - num_outputs: the number of outputs to produce
// Outputs:
// - outputs: the produced outputs. Variadic with num_outputs elements.
// Note: torch.aten gives a list of tensors, but ONNX gives a variadic list of
// tensors
// so we need to unpack the list
patterns.onOp(
"Split", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Value self;
int64_t axis;
int64_t numOutputs;
if (binder.tensorOperand(self))
return rewriter.notifyMatchFailure(
binder.op, "Not converting to AtenSplitTensorOp due to input "
"tensor mismatch");
if (binder.s64IntegerAttr(axis, "axis", 0))
return rewriter.notifyMatchFailure(binder.op,
"Failed to get axis attribute");
numOutputs = binder.op->getNumResults();
if (binder.s64IntegerAttr(numOutputs, "num_outputs", numOutputs))
return rewriter.notifyMatchFailure(
binder.op, "Failed to get num_outputs attribute");
auto loc = binder.getLoc();
auto result0Ty =
cast<Torch::ValueTensorType>(binder.op->getResult(0).getType());
auto resultNTy = cast<Torch::ValueTensorType>(
binder.op->getResults().back().getType());
auto selfTy = cast<Torch::ValueTensorType>(self.getType());
int64_t dim = axis;
if (dim < 0)
dim += selfTy.getSizes().size();
Value dimValue = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getType<Torch::IntType>(),
rewriter.getI64IntegerAttr(dim));
Value vNumOutputs = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getType<Torch::IntType>(),
rewriter.getI64IntegerAttr(numOutputs));
Value one = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(1));
Value zero = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(0));
Value vDimSize = rewriter.create<Torch::AtenSizeIntOp>(
loc, rewriter.getType<Torch::IntType>(), self, dimValue);
Value addNumOutputs =
rewriter.create<Torch::AtenAddIntOp>(loc, vDimSize, vNumOutputs);
Value subOne =
rewriter.create<Torch::AtenSubIntOp>(loc, addNumOutputs, one);
Value splitSize =
rewriter.create<Torch::AtenFloordivIntOp>(loc, subOne, vNumOutputs);
llvm::SmallVector<Value> outputs;
Value step = one;
Value start = zero;
for (int i = 0; i < numOutputs - 1; ++i) {
Value end =
rewriter.create<Torch::AtenAddIntOp>(loc, start, splitSize);
Value slice = rewriter.create<Torch::AtenSliceTensorOp>(
loc, result0Ty, self, dimValue, start, end, step);
start = end;
outputs.push_back(slice);
}
Value end = vDimSize;
Value lastSlice = rewriter.create<Torch::AtenSliceTensorOp>(
loc, resultNTy, self, dimValue, start, end, step);
outputs.push_back(lastSlice);
rewriter.replaceOp(binder.op, outputs);
return success();
});
// split with variable parts
// Arguments:
// - input: the tensor to split
// - split: the sizes of the splits to be produced
// Attributes:
// - axis: the axis along which to split the input
// - num_outputs: the number of outputs to produce
// Outputs:
// - outputs: the produced outputs. Variadic with num_outputs elements.
// Note: torch.aten gives a list of tensors, but ONNX gives a variadic list of
// tensors
// so we need to unpack the list
patterns.onOp(
"Split", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Value self;
Value split;
int64_t axis;
int64_t num_outputs;
if (binder.tensorOperandAtIndex(self, 0) ||
binder.tensorOperandAtIndex(split, 1))
return rewriter.notifyMatchFailure(
binder.op, "Not converting to AtenSplitWithSizesOp due to input "
"tensor mismatch");
if (binder.s64IntegerAttr(axis, "axis", 0))
return rewriter.notifyMatchFailure(binder.op,
"Failed to get axis attribute");
if (binder.s64IntegerAttr(num_outputs, "num_outputs", 0))
return rewriter.notifyMatchFailure(
binder.op, "Failed to get num_outputs attribute");
auto result0Ty =
cast<Torch::ValueTensorType>(binder.op->getResult(0).getType());
auto selfTy =
cast<Torch::ValueTensorType>(binder.op->getOperand(0).getType());
int64_t dim = axis;
if (dim < 0)
dim += selfTy.getSizes().size();
llvm::SmallVector<int64_t> intermediateShape(result0Ty.getSizes());
for (auto result : binder.op->getResultTypes()) {
int64_t d = cast<Torch::ValueTensorType>(result).getSizes()[dim];
intermediateShape[dim] = d == intermediateShape[dim] ? d : -1;
}
Torch::PrimTolistOp splitToList = rewriter.create<Torch::PrimTolistOp>(
binder.getLoc(),
Torch::ListType::get(rewriter.getType<Torch::IntType>()), split);
Value dimValue = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), dim));
// TODO: Attempting to use the shape expected by the ONNX mlir as ground
// truth. For now just use dynamic shapes.
auto resultOuterType =
Torch::ListType::get(rewriter.getType<Torch::ValueTensorType>(
/*std::optional<llvm::ArrayRef<int64_t>>=*/intermediateShape,
result0Ty.getOptionalDtype()));
Torch::AtenSplitWithSizesOp new_op =
rewriter.create<Torch::AtenSplitWithSizesOp>(
binder.getLoc(), resultOuterType, self,
splitToList.getResult(0), dimValue);
// the onnx op is variadic with multiple results, but AtenSplitWithSizes
// outputs a list so we need to unpack the list
rewriter.replaceOpWithNewOp<Torch::PrimListUnpackOp>(
binder.op, binder.op->getResults().getType(), new_op.getResult());
return success();
});
patterns.onOp("Tan", 7,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value operand;
if (binder.tensorOperand(operand) ||
binder.tensorResultType(resultType))
return failure();
rewriter.replaceOpWithNewOp<Torch::AtenTanOp>(
binder.op, resultType, operand);
return success();
});
patterns.onOp(
"Transpose", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
auto loc = binder.getLoc();
Torch::ValueTensorType resultType;
Value operand;
if (binder.tensorOperand(operand) ||
binder.tensorResultType(resultType))
return failure();
auto operandType = cast<Torch::ValueTensorType>(operand.getType());
TensorType tensorType = operandType.toBuiltinTensor();
if (!tensorType || !tensorType.hasRank())
return failure();
// Default permutation is to reverse orders:
int64_t rank = tensorType.getRank();
llvm::SmallVector<int64_t> reverse(rank);
for (int64_t i = 0; i < rank; ++i) {
reverse[i] = rank - i - 1;
}
llvm::SmallVector<int64_t> permutations;
if (failed(binder.s64IntegerArrayAttr(permutations, "perm", reverse)))
return rewriter.notifyMatchFailure(binder.op,
"Failed to obtain permutations");
if (static_cast<int64_t>(permutations.size()) != rank)
return rewriter.notifyMatchFailure(
binder.op, "Permutation length does not match operand rank");
llvm::SmallVector<int64_t> shape(tensorType.getShape());
llvm::SmallVector<int64_t> current(rank);
for (int64_t i = 0; i < rank; ++i) {
current[i] = i;
}
for (auto &dim : permutations)
dim = dim < 0 ? dim + rank : dim;
// We need to override to the destination if known:
if (resultType.hasSizes()) {
for (int i = 0; i < rank; ++i) {
shape[permutations[i]] = resultType.getSizes()[i];
}
}
// Convert dynamic shape dimension:
for (unsigned i = 0; i < shape.size(); i++) {
if (shape[i] == ShapedType::kDynamic)
shape[i] = Torch::kUnknownSize;
}
for (int64_t i = 0; i < rank; ++i) {
if (current[i] == permutations[i])
continue;
int64_t target = i + 1;
for (; target < rank; ++target) {
if (current[target] == permutations[i])
break;
}
std::swap(shape[i], shape[target]);
std::swap(current[i], current[target]);
Value dim0 = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), i));
Value dim1 = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), target));
operand = rewriter.create<Torch::AtenTransposeIntOp>(
loc,
Torch::ValueTensorType::get(tensorType.getContext(), shape,
operandType.getOptionalDtype()),
operand, dim0, dim1);
}
rewriter.replaceOp(binder.op, operand);
return success();
});
patterns.onOp(
"Slice", 13, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultTorchType;
Value operand, starts, ends;
// Handle if axes are not provided
if (binder.tensorOperandAtIndex(operand, 0) ||
binder.tensorOperandAtIndex(starts, 1) ||
binder.tensorOperandAtIndex(ends, 2) ||
binder.tensorResultType(resultTorchType)) {
return failure();
}
auto context = rewriter.getContext();
auto operandTorchTy = cast<Torch::ValueTensorType>(operand.getType());
auto operandTy =
dyn_cast<RankedTensorType>(operandTorchTy.toBuiltinTensor());
if (!operandTy)
return rewriter.notifyMatchFailure(
binder.op,
"Expected tensor operator argument to be a ranked tensor type");
auto startsTorchTy = cast<Torch::ValueTensorType>(starts.getType());
auto startsTy =
dyn_cast<RankedTensorType>(startsTorchTy.toBuiltinTensor());
int startSize = startsTy.getDimSize(0);
auto endsTorchTy = cast<Torch::ValueTensorType>(ends.getType());
auto endsTy = dyn_cast<RankedTensorType>(endsTorchTy.toBuiltinTensor());
int endSize = endsTy.getDimSize(0);
auto resultTy =
dyn_cast<RankedTensorType>(resultTorchType.toBuiltinTensor());
if (!resultTy)
return rewriter.notifyMatchFailure(
binder.op, "Expected result type to be a ranked tensor type");
Location loc = binder.getLoc();
// Binding `axes` from its arguments or through a default value
Value axes;
if (binder.getNumOperands() >= 4) {
if (binder.tensorOperandAtIndex(axes, 3)) {
return failure();
}
}
// Binding `steps` from its arguments or through a default value
Value steps;
if (binder.getNumOperands() >= 5) {
if (binder.tensorOperandAtIndex(steps, 4)) {
return failure();
}
} else {
// The default `steps` value is a 1d tensor filled with ones with a
// size equal to the size of `starts` and `ends`.
Value none = rewriter.create<Torch::ConstantNoneOp>(loc);
Value sizeStepInput = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), startSize));
Value sizeStepsInput = rewriter.create<Torch::PrimListConstructOp>(
loc,
Torch::ListType::get(
Torch::IntType::get(binder.op->getContext())),
sizeStepInput);
steps = rewriter.create<Torch::AtenOnesOp>(
loc, startsTorchTy, sizeStepsInput, none, none, none, none);
}
if (!(endsTy.getRank() == 1 && startsTy.getRank() == 1 &&
startSize == endSize))
return rewriter.notifyMatchFailure(
binder.op, "Expected the rank of starts and ends tensors to be 1 "
"and their dimensions to match");
if (axes) {
auto axesTorchTy = cast<Torch::ValueTensorType>(axes.getType());
auto axesTy =
dyn_cast<RankedTensorType>(axesTorchTy.toBuiltinTensor());
int64_t numAxes = axesTy.getDimSize(0);
if (!(axesTy && numAxes == endSize))
return rewriter.notifyMatchFailure(
binder.op, "Axes should be the same size of starts and ends");
}
auto stepsTy = dyn_cast<RankedTensorType>(
cast<Torch::ValueTensorType>(steps.getType()).toBuiltinTensor());
if (!(stepsTy && stepsTy.getDimSize(0) == endsTy.getDimSize(0)))
return rewriter.notifyMatchFailure(
binder.op, "Steps should be the same size of starts and ends");
Value zero = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0));
auto select = [&](Value v, Value k) -> Value {
auto ty = cast<Torch::ValueTensorType>(v.getType());
auto sel = rewriter.create<Torch::AtenIndexSelectOp>(
loc,
Torch::ValueTensorType::get(ty.getContext(), ArrayRef<int64_t>{1},
ty.getOptionalDtype()),
v, zero, k);
Value item = rewriter.create<Torch::AtenItemOp>(
loc, rewriter.getType<Torch::IntType>(), sel);
return item;
};
llvm::SmallVector<int64_t> intermediateShape(operandTy.getShape());
for (int i = 0, s = operandTy.getRank(); i < s; ++i) {
if (operandTy.getDimSize(i) != resultTy.getDimSize(i))
intermediateShape[i] = -1;
if (intermediateShape[i] == ShapedType::kDynamic)
intermediateShape[i] = Torch::kUnknownSize;
}
auto intermediateType = Torch::ValueTensorType::get(
context, intermediateShape, resultTorchType.getOptionalDtype());
for (int i = 0; i < endSize; ++i) {
Value k = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), i));
Value kTensor = rewriter.create<Torch::PrimNumToTensorScalarOp>(
loc,
Torch::ValueTensorType::get(
context, ArrayRef<int64_t>{1},
rewriter.getIntegerType(64, /*signed*/ 1)),
k);
Value start = select(starts, kTensor);
Value end = select(ends, kTensor);
Value axis = axes ? select(axes, kTensor) : k;
Value step = select(steps, kTensor);
auto sliceType = intermediateType;
sliceType = i == (endSize - 1) ? resultTorchType : sliceType;
operand = rewriter.create<Torch::AtenSliceTensorOp>(
loc, sliceType, operand, axis, start, end, step);
}
rewriter.replaceOp(binder.op, operand);
return success();
});
patterns.onOp(
"Reshape", 5, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value data;
Value shape;
int64_t allowzero;
if (binder.tensorOperands(data, shape) ||
binder.tensorResultType(resultType) ||
binder.s64IntegerAttr(allowzero, "allowzero", 0))
return failure();
// If the result shape is static then we can create a result shape list
// directly using the result shape values (integers).
if (resultType.hasSizes()) {
bool hasStaticShape = resultType.areAllSizesKnown();
ArrayRef<int64_t> resultShapeInt = resultType.getSizes();
if (hasStaticShape) {
SmallVector<Value> resultShape;
for (int64_t dim : resultShapeInt) {
resultShape.push_back(rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(dim)));
}
Value resultShapeList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
Torch::ListType::get(
Torch::IntType::get(binder.op->getContext())),
resultShape);
rewriter.replaceOpWithNewOp<Torch::AtenReshapeOp>(
binder.op, resultType, data, resultShapeList);
return success();
}
}
Torch::BaseTensorType shapeType =
cast<Torch::BaseTensorType>(shape.getType());
SmallVector<Value> dimList;
SmallVector<int64_t> selectSizes;
selectSizes.push_back(1);
Type selectResultType = shapeType.getWithSizesAndDtype(
llvm::ArrayRef(selectSizes), shapeType.getOptionalDtype());
auto shapeSizes =
dyn_cast<Torch::ValueTensorType>(shape.getType()).getSizes();
auto dataSizes =
dyn_cast<Torch::ValueTensorType>(data.getType()).getSizes();
Value zero = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0));
if (allowzero == 0) {
// convert shape (tensor) into torch int list while dealing with zero
// vals
for (int i = 0; i < shapeSizes[0]; i++) {
// Go through the shape list and get each dim in the list
Value selectIndex = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), i));
Value extract = rewriter.create<Torch::AtenSelectIntOp>(
binder.getLoc(), selectResultType, shape, zero, selectIndex);
Value dim = rewriter.create<Torch::AtenItemOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(), extract);
// deal with zero axis values: replace with original dim value in
// input
Value isZero =
rewriter.create<Torch::AtenEqIntOp>(binder.getLoc(), dim, zero);
isZero =
rewriter.create<Torch::AtenIntBoolOp>(binder.getLoc(), isZero);
int64_t dataRank = dataSizes.size();
if (i < dataRank) {
auto torchIntTy = rewriter.getType<Torch::IntType>();
auto int64Ty = rewriter.getIntegerType(64, true);
auto dimTy = rewriter.getType<Torch::ValueTensorType>(
ArrayRef<int64_t>(), int64Ty);
auto boolTy = rewriter.getType<Torch::ValueTensorType>(
ArrayRef<int64_t>(), rewriter.getI1Type());
Value iv = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(i));
Value inDim = rewriter.create<Torch::AtenSizeIntOp>(
binder.getLoc(), torchIntTy, data, iv);
isZero = rewriter.create<Torch::PrimNumToTensorScalarOp>(
binder.getLoc(), boolTy, isZero);
inDim = rewriter.create<Torch::PrimNumToTensorScalarOp>(
binder.getLoc(), dimTy, inDim);
dim = rewriter.create<Torch::PrimNumToTensorScalarOp>(
binder.getLoc(), dimTy, dim);
Value finalDim = rewriter.create<Torch::AtenWhereSelfOp>(
binder.getLoc(), dimTy, isZero, inDim, dim);
dim = rewriter.create<Torch::AtenItemOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
finalDim);
}
dimList.push_back(dim);
}
Value dimValueList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
Torch::ListType::get(
Torch::IntType::get(binder.op->getContext())),
dimList);
rewriter.replaceOpWithNewOp<Torch::AtenReshapeOp>(
binder.op, resultType, data, dimValueList);
return success();
}
// convert axes (tensor) into torch int list
for (int i = 0; i < shapeSizes[0]; i++) {
// Go through the axes list and get each dim in the list
Value selectIndex = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), i));
Value extract = rewriter.create<Torch::AtenSelectIntOp>(
binder.getLoc(), selectResultType, shape, zero, selectIndex);
Value dim = rewriter.create<Torch::AtenItemOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(), extract);
dimList.push_back(dim);
}
Value dimValueList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
dimList);
rewriter.replaceOpWithNewOp<Torch::AtenReshapeOp>(binder.op, resultType,
data, dimValueList);
return success();
});
patterns.onOp(
"ReduceProd", 13,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
// ReduceProd allows us to pass a list of dims but AtenProdDimIn only
// allow one dim as input.
Torch::ValueTensorType resultType;
Value data;
Value axes;
int64_t keepDims;
int64_t noop_with_empty_axes;
if (binder.tensorOperandAtIndex(data, 0) ||
binder.tensorResultType(resultType) ||
binder.s64IntegerAttr(keepDims, "keepdims", 1) ||
binder.s64IntegerAttr(noop_with_empty_axes, "noop_with_empty_axes",
0))
return failure();
auto dataTy = cast<Torch::BaseTensorType>(data.getType());
Torch::IntType torchIntTy = rewriter.getType<Torch::IntType>();
if (!resultType.hasSizes() || !resultType.areAllSizesKnown() ||
!dataTy.areAllSizesKnown())
return rewriter.notifyMatchFailure(
binder.op,
"Expected the input and result type to have known sizes");
int64_t rank = dataTy.getSizes().size();
SmallVector<Value> axesList;
Value zero = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(0));
// Previous version of the operation had the axes as an attribute:
llvm::SmallVector<int64_t> axesAttr;
if (!binder.s64IntegerArrayAttr(axesAttr, "axes", {})) {
for (int i = 0, s = axesAttr.size(); i < s; ++i) {
axesList.push_back(rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), torchIntTy,
rewriter.getI64IntegerAttr(axesAttr[i])));
}
}
// Handle cases that axes are explicitly specified.
// Extract the axes values from the axes operand.
// This really shouldn't happen but it helps pass weird tests.
// TODO: Derive the chosen axes from the data type and final result type
// instead of using the dynamic axes at operand[1].
if (!binder.tensorOperandAtIndex(axes, 1)) {
Torch::BaseTensorType axesType =
cast<Torch::BaseTensorType>(axes.getType());
auto sizes = axesType.getSizes();
for (int i = 0; i < sizes[0]; i++) {
Value selectIndex = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(i));
Value extract = rewriter.create<Torch::AtenSelectIntOp>(
binder.getLoc(),
axesType.getWithSizesAndDtype(llvm::SmallVector<int64_t>{1},
axesType.getOptionalDtype()),
axes, zero, selectIndex);
Value dim = rewriter.create<Torch::AtenItemOp>(binder.getLoc(),
torchIntTy, extract);
axesList.push_back(dim);
}
}
// Handle the noop case:
// When axes is empty and noop_with_empty_axes is set to true, input
// tensor will not be reduced, and the output tensor would be
// equivalent to input tensor.
if (axesList.empty() && noop_with_empty_axes) {
rewriter.replaceOp(binder.op, data);
return success();
}
// Handle case when no axes arg is passed but not a noop:
// Manually set positive axis to all dims.
if (axesList.empty()) {
for (int i = 0; i < rank; i++) {
Value dimValue = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(i));
axesList.push_back(dimValue);
}
}
// Handle negative axis:
Value rankVal = rewriter.create<Torch::AtenDimOp>(binder.getLoc(),
torchIntTy, data);
for (Value &axes : axesList) {
Value isNegative =
rewriter.create<Torch::AtenLtIntOp>(binder.getLoc(), axes, zero);
isNegative = rewriter.create<Torch::AtenIntBoolOp>(binder.getLoc(),
isNegative);
Value finalOffset = rewriter.create<Torch::AtenMulIntOp>(
binder.getLoc(), isNegative, rankVal);
axes = rewriter.create<Torch::AtenAddIntOp>(binder.getLoc(), axes,
finalOffset);
}
// Handle multiple axes case:
// ReduceProd on each dim, always set keepDimsBool == True to avoid
// segfault.
Value trueVal =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), true);
Value noneVal = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
SmallVector<int64_t> intermediateShape(rank, Torch::kUnknownSize);
Value dataReduceProd = data;
for (int i = 0, numAxes = axesList.size(); i < numAxes; i++) {
auto axis = axesList[i];
if (keepDims && i == numAxes - 1) {
dataReduceProd = rewriter.create<Torch::AtenProdDimIntOp>(
binder.getLoc(),
dataTy.getWithSizesAndDtype(resultType.getSizes(),
dataTy.getOptionalDtype()),
dataReduceProd, axis, trueVal, noneVal);
rewriter.replaceOp(binder.op, dataReduceProd);
return success();
}
Type resultTyReduceProd = dataTy.getWithSizesAndDtype(
ArrayRef(intermediateShape), dataTy.getOptionalDtype());
dataReduceProd = rewriter.create<Torch::AtenProdDimIntOp>(
binder.getLoc(), resultTyReduceProd, dataReduceProd, axis,
trueVal, noneVal);
}
// Derived the final shape of the tensor after prod loop of each axis.
SmallVector<int64_t> dataReduceProdSize;
auto dataSize = dataTy.getSizes();
auto resultTypeSizes = resultType.getSizes();
if (!keepDims) {
// Handle the keepDimsBool == False case:
// 2 point algorithm to derive the static shape after prod loop.
int j = 0;
for (int i = 0; i < rank; i++) {
if (resultTypeSizes.size() && dataSize[i] == resultTypeSizes[j]) {
dataReduceProdSize.push_back(resultTypeSizes[i]);
j++;
continue;
}
dataReduceProdSize.push_back(1);
}
}
// Handle the keepDimsBool == False case:
// Reshape the prod loop result to the final result shape.
SmallVector<Value> dataReduceProdShape;
for (auto dim : dataReduceProdSize)
dataReduceProdShape.push_back(rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(dim)));
Value dataReduceProdShapeList =
rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
rewriter.getType<Torch::ListType>(
rewriter.getType<Torch::IntType>()),
dataReduceProdShape);
rewriter.replaceOpWithNewOp<Torch::AtenReshapeOp>(
binder.op, resultType, dataReduceProd, dataReduceProdShapeList);
return success();
});
patterns.onOp(
"Range", 11, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
// ONNX.Range(start, limit, delta) -- limit is exclusive
Torch::ValueTensorType resultType;
Value start, limit, delta;
auto loc = binder.getLoc();
Value none = rewriter.create<Torch::ConstantNoneOp>(loc);
if (binder.tensorOperandAtIndex(start, 0) ||
binder.tensorOperandAtIndex(limit, 1) ||
binder.tensorOperandAtIndex(delta, 2) ||
binder.tensorResultType(resultType))
return failure();
// Convert a 0-dimensional/Scalar Tensor ([]) to Scalar Torch Numeric
// Value torch.tensor(1.1) equivalent in ONNX to 1.1 as an example
// type of start, limit, delta can be one of: double, float, int16,
// int32, int64 Assuming start, limit and delta to be same type (could
// they be different?)
Torch::BaseTensorType startTensorType =
cast<Torch::BaseTensorType>(start.getType());
bool isFloatDType = startTensorType.getDtype().isF64() ||
startTensorType.getDtype().isF32();
bool isIntDType = startTensorType.getDtype().isInteger(16) ||
startTensorType.getDtype().isInteger(32) ||
startTensorType.getDtype().isInteger(64);
if (!isFloatDType && !isIntDType) {
return rewriter.notifyMatchFailure(
binder.op, "Expected the start, limit, delta to be one of "
"double, float, int16, int32, int64");
}
Value scalarStart, scalarLimit, scalarDelta;
if (isFloatDType) {
scalarStart = getItemOp<Torch::FloatType>(binder, rewriter, start);
scalarLimit = getItemOp<Torch::FloatType>(binder, rewriter, limit);
scalarDelta = getItemOp<Torch::FloatType>(binder, rewriter, delta);
} else {
scalarStart = getItemOp<Torch::IntType>(binder, rewriter, start);
scalarLimit = getItemOp<Torch::IntType>(binder, rewriter, limit);
scalarDelta = getItemOp<Torch::IntType>(binder, rewriter, delta);
}
rewriter.replaceOpWithNewOp<Torch::AtenArangeStartStepOp>(
binder.op, resultType, scalarStart, scalarLimit, scalarDelta, none,
none, none, none);
return success();
});
patterns.onOp(
"Size", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value operand;
if (binder.tensorOperand(operand) ||
binder.tensorResultType(resultType))
return failure();
auto loc = binder.getLoc();
auto &op = binder.op;
auto operandTy = cast<Torch::BaseTensorType>(operand.getType());
if (!operandTy.hasSizes())
return rewriter.notifyMatchFailure(op, "input rank unknown");
llvm::SmallVector<Value> dims;
int64_t rank = operandTy.getSizes().size();
for (int i = 0; i < rank; ++i) {
auto iv = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(i));
Value dim = rewriter.create<Torch::AtenSizeIntOp>(
loc, rewriter.getType<Torch::IntType>(), operand, iv);
dims.push_back(dim);
}
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(loc, false);
Value none = rewriter.create<Torch::ConstantNoneOp>(loc);
if (dims.empty()) {
Value one = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(1));
rewriter.replaceOpWithNewOp<Torch::AtenTensorIntOp>(
op, resultType, one, none, none, cstFalse);
return success();
}
Value prod = dims[0];
for (int i = 1, s = dims.size(); i < s; ++i)
prod = rewriter.create<Torch::AtenMulIntOp>(loc, prod, dims[i]);
rewriter.replaceOpWithNewOp<Torch::AtenTensorIntOp>(
op, resultType, prod, none, none, cstFalse);
return success();
});
patterns.onOp(
"Tile", 6, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value operand;
Value repeatDims;
if (binder.tensorOperands(operand, repeatDims) ||
binder.tensorResultType(resultType))
return failure();
// convert repeatDims tensor to list of ints
auto repeatDimsSizes =
dyn_cast<Torch::ValueTensorType>(repeatDims.getType()).getSizes();
SmallVector<Value> dimList;
SmallVector<int64_t> selectSizes;
selectSizes.push_back(1);
Torch::BaseTensorType shapeType =
cast<Torch::BaseTensorType>(repeatDims.getType());
Type selectResultType = shapeType.getWithSizesAndDtype(
llvm::ArrayRef(selectSizes), shapeType.getOptionalDtype());
Value zero = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0));
for (int i = 0; i < repeatDimsSizes[0]; i++) {
Value selectIndex = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), i));
Value extract = rewriter.create<Torch::AtenSelectIntOp>(
binder.getLoc(), selectResultType, repeatDims, zero, selectIndex);
Value dim = rewriter.create<Torch::AtenItemOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(), extract);
dimList.push_back(dim);
}
Value dimValueList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
dimList);
rewriter.replaceOpWithNewOp<Torch::AtenTileOp>(binder.op, resultType,
operand, dimValueList);
return success();
});
patterns.onOp(
"TopK", 11, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType Values_type, Indices_type;
Value input, kValue;
int64_t axis;
bool largest, sorted;
if (binder.tensorOperandAtIndex(input, 0) ||
binder.tensorOperandAtIndex(kValue, 1) ||
binder.s64IntegerAttr(axis, "axis", -1) ||
binder.s64BoolAttr(largest, "largest", true) ||
binder.s64BoolAttr(sorted, "sorted", true) ||
binder.tensorResultTypeAtIndex(Values_type, 0) ||
binder.tensorResultTypeAtIndex(Indices_type, 1))
return failure();
std::optional<unsigned> maybeRank = Torch::getTensorRank(input);
if (!maybeRank)
return rewriter.notifyMatchFailure(binder.op,
"Unimplemented: unranked tensor");
unsigned rank = *maybeRank;
axis = Torch::toPositiveDim(axis, rank);
Value cstAxis = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(axis));
Value cstLargest =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), largest);
Value cstSorted =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), sorted);
Value kValueInt = rewriter.create<Torch::AtenItemOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(), kValue);
rewriter.replaceOpWithNewOp<Torch::AtenTopkOp>(
binder.op, Values_type, Indices_type, input, kValueInt, cstAxis,
cstLargest, cstSorted);
return success();
});
patterns.onOp("Sign", 9,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value operand;
if (binder.tensorOperand(operand) ||
binder.tensorResultType(resultType))
return failure();
rewriter.replaceOpWithNewOp<Torch::AtenSignOp>(
binder.op, resultType, operand);
return success();
});
patterns.onOp(
"Softplus", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value input;
if (binder.tensorOperand(input) ||
binder.tensorResultType(resultType)) {
return failure();
}
// out = ln(exp(x) + 1)
Value exp = rewriter.create<Torch::AtenExpOp>(binder.getLoc(),
resultType, input);
rewriter.replaceOpWithNewOp<Torch::AtenLog1pOp>(binder.op, resultType,
exp);
return success();
});
patterns.onOp("Softsign", 22,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value input;
if (binder.tensorOperand(input) ||
binder.tensorResultType(resultType)) {
return failure();
}
Value absX = rewriter.create<Torch::AtenAbsOp>(
binder.getLoc(), resultType, input);
Value constOne = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(1));
Value absXPlusOne = rewriter.create<Torch::AtenAddScalarOp>(
binder.getLoc(), resultType, absX, constOne, constOne);
rewriter.replaceOpWithNewOp<Torch::AtenDivTensorOp>(
binder.op, resultType, input, absXPlusOne);
return success();
});
patterns.onOp(
"Trilu", 14, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value input;
int64_t upper;
if (binder.tensorOperandAtIndex(input, 0) ||
binder.s64IntegerAttr(upper, "upper", 1) ||
binder.tensorResultType(resultType)) {
return failure();
}
Value diagonal;
if (binder.tensorOperandAtIndex(diagonal, 1)) {
diagonal = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(0));
} else {
diagonal = rewriter.create<Torch::AtenItemOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(), diagonal);
}
if (upper) {
rewriter.replaceOpWithNewOp<Torch::AtenTriuOp>(binder.op, resultType,
input, diagonal);
return success();
}
rewriter.replaceOpWithNewOp<Torch::AtenTrilOp>(binder.op, resultType,
input, diagonal);
return success();
});
patterns.onOp("ThresholdedRelu", 10,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value input;
float alpha;
if (binder.tensorOperand(input) ||
binder.f32FloatAttr(alpha, "alpha", 1.0)) {
return failure();
}
Value cstAlpha = rewriter.create<Torch::ConstantFloatOp>(
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
rewriter.getFloatAttr(rewriter.getF64Type(), alpha));
Value value = rewriter.create<Torch::ConstantFloatOp>(
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
rewriter.getFloatAttr(rewriter.getF64Type(), 0.0));
rewriter.replaceOpWithNewOp<Torch::AtenThresholdOp>(
binder.op, resultType, input, cstAlpha, value);
return success();
});
patterns.onOp(
"RandomNormal", 1,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
SmallString<64> name("torch.onnx.seed");
auto seedAttr = binder.op->getAttr(name);
if (seedAttr)
return rewriter.notifyMatchFailure(
binder.op,
"unimplemented: support not present for seed attribute");
Torch::ValueTensorType resultType;
int64_t dtypeIntOnnx;
float mean, scale;
SmallVector<int64_t> shape;
if (binder.s64IntegerAttr(dtypeIntOnnx, "dtype", 1) ||
binder.f32FloatAttr(mean, "mean", 0.0) ||
binder.f32FloatAttr(scale, "scale", 1.0) ||
binder.s64IntegerArrayAttr(shape, "shape", {}) ||
binder.tensorResultType(resultType)) {
return failure();
}
std::optional<int64_t> dtypeIntTorch =
onnxDtypeIntToTorchDtypeInt(dtypeIntOnnx);
if (!dtypeIntTorch.has_value()) {
return rewriter.notifyMatchFailure(
binder.op,
"unimplemented support for the given dtype conversion");
}
Value constDtype = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(dtypeIntTorch.value()));
Value shapeList = createConstantIntList(binder, rewriter, shape);
Value cstNone = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
Value self = rewriter.create<Torch::AtenEmptyMemoryFormatOp>(
binder.op->getLoc(), resultType, shapeList,
/*dtype=*/constDtype,
/*layout=*/cstNone,
/*device=*/cstNone, /*pinMemory=*/cstNone,
/*memoryFormat=*/cstNone);
Value cstMean = rewriter.create<Torch::ConstantFloatOp>(
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
rewriter.getFloatAttr(rewriter.getF64Type(), mean));
Value cstStd = rewriter.create<Torch::ConstantFloatOp>(
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
rewriter.getFloatAttr(rewriter.getF64Type(), scale));
rewriter.replaceOpWithNewOp<Torch::AtenNormalFunctionalOp>(
binder.op, resultType, self, cstMean, cstStd,
/*generator=*/cstNone);
return success();
});
patterns.onOp(
"RandomNormalLike", 1,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
SmallString<64> name("torch.onnx.seed");
auto seedAttr = binder.op->getAttr(name);
if (seedAttr)
return rewriter.notifyMatchFailure(
binder.op,
"unimplemented: support not present for seed attribute");
Torch::ValueTensorType resultType;
int64_t dtypeIntOnnx;
float mean, scale;
SmallVector<int64_t> shape;
Value input;
if (binder.tensorOperand(input) ||
binder.s64IntegerAttr(dtypeIntOnnx, "dtype", 1) ||
binder.f32FloatAttr(mean, "mean", 0.0) ||
binder.f32FloatAttr(scale, "scale", 1.0) ||
binder.tensorResultType(resultType)) {
return failure();
}
std::optional<int64_t> dtypeIntTorch =
onnxDtypeIntToTorchDtypeInt(dtypeIntOnnx);
if (!dtypeIntTorch.has_value()) {
return rewriter.notifyMatchFailure(
binder.op,
"unimplemented support for the given dtype conversion");
}
Value constDtype = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(dtypeIntTorch.value()));
Value cstNone = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
Value cstFalse =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), false);
input = rewriter.create<Torch::AtenToDtypeOp>(
binder.op->getLoc(), resultType, input, constDtype,
/*non_blocking=*/cstFalse, /*copy=*/cstFalse,
/*memory_format=*/cstNone);
Value cstMean = rewriter.create<Torch::ConstantFloatOp>(
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
rewriter.getFloatAttr(rewriter.getF64Type(), mean));
Value cstStd = rewriter.create<Torch::ConstantFloatOp>(
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
rewriter.getFloatAttr(rewriter.getF64Type(), scale));
rewriter.replaceOpWithNewOp<Torch::AtenNormalFunctionalOp>(
binder.op, resultType, input, cstMean, cstStd,
/*generator=*/cstNone);
return success();
});
patterns.onOp(
"RandomUniform", 1,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
SmallString<64> name("torch.onnx.seed");
auto seedAttr = binder.op->getAttr(name);
if (seedAttr)
return rewriter.notifyMatchFailure(
binder.op,
"unimplemented: support not present for seed attribute");
Torch::ValueTensorType resultType;
int64_t dtypeIntOnnx;
float high, low;
SmallVector<int64_t> shape;
if (binder.s64IntegerAttr(dtypeIntOnnx, "dtype", 1) ||
binder.f32FloatAttr(high, "high", 1.0) ||
binder.f32FloatAttr(low, "low", 0.0) ||
binder.s64IntegerArrayAttr(shape, "shape", {}) ||
binder.tensorResultType(resultType)) {
return failure();
}
std::optional<int64_t> dtypeIntTorch =
onnxDtypeIntToTorchDtypeInt(dtypeIntOnnx);
if (!dtypeIntTorch.has_value()) {
return rewriter.notifyMatchFailure(
binder.op,
"unimplemented support for the given dtype conversion");
}
Value constDtype = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(dtypeIntTorch.value()));
Value shapeList = createConstantIntList(binder, rewriter, shape);
Value cstNone = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
Value self = rewriter.create<Torch::AtenEmptyMemoryFormatOp>(
binder.op->getLoc(), resultType, shapeList,
/*dtype=*/constDtype,
/*layout=*/cstNone,
/*device=*/cstNone, /*pinMemory=*/cstNone,
/*memoryFormat=*/cstNone);
Value cstHigh = rewriter.create<Torch::ConstantFloatOp>(
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
rewriter.getFloatAttr(rewriter.getF64Type(), high));
Value cstLow = rewriter.create<Torch::ConstantFloatOp>(
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
rewriter.getFloatAttr(rewriter.getF64Type(), low));
rewriter.replaceOpWithNewOp<Torch::AtenUniformOp>(
binder.op, resultType, self, cstLow, cstHigh,
/*generator=*/cstNone);
return success();
});
patterns.onOp(
"RandomUniformLike", 1,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
SmallString<64> name("torch.onnx.seed");
auto seedAttr = binder.op->getAttr(name);
if (seedAttr)
return rewriter.notifyMatchFailure(
binder.op,
"unimplemented: support not present for seed attribute");
Torch::ValueTensorType resultType;
int64_t dtypeIntOnnx;
float high, low;
SmallVector<int64_t> shape;
Value input;
if (binder.tensorOperand(input) ||
binder.s64IntegerAttr(dtypeIntOnnx, "dtype", 1) ||
binder.f32FloatAttr(high, "high", 1.0) ||
binder.f32FloatAttr(low, "low", 0.0) ||
binder.tensorResultType(resultType)) {
return failure();
}
std::optional<int64_t> dtypeIntTorch =
onnxDtypeIntToTorchDtypeInt(dtypeIntOnnx);
if (!dtypeIntTorch.has_value()) {
return rewriter.notifyMatchFailure(
binder.op,
"unimplemented support for the given dtype conversion");
}
Value constDtype = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(dtypeIntTorch.value()));
Value cstNone = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
Value cstFalse =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), false);
input = rewriter.create<Torch::AtenToDtypeOp>(
binder.op->getLoc(), resultType, input, constDtype,
/*non_blocking=*/cstFalse, /*copy=*/cstFalse,
/*memory_format=*/cstNone);
Value cstHigh = rewriter.create<Torch::ConstantFloatOp>(
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
rewriter.getFloatAttr(rewriter.getF64Type(), high));
Value cstLow = rewriter.create<Torch::ConstantFloatOp>(
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
rewriter.getFloatAttr(rewriter.getF64Type(), low));
rewriter.replaceOpWithNewOp<Torch::AtenUniformOp>(
binder.op, resultType, input, cstLow, cstHigh,
/*generator=*/cstNone);
return success();
});
patterns.onOp(
"SoftmaxCrossEntropyLoss", 12,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
int64_t ignoreIndex;
std::string reduction;
SmallVector<int64_t> shape;
Value scores, labels, weight;
if (binder.tensorOperandAtIndex(scores, 0) ||
binder.tensorOperandAtIndex(labels, 1) ||
binder.s64IntegerAttr(ignoreIndex, "ignore_index", -100) ||
binder.customOpNameStringAttr(reduction, "reduction", "mean") ||
binder.tensorResultTypeAtIndex(resultType, 0)) {
return failure();
}
if (binder.tensorOperandAtIndex(weight, 2))
weight = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
Value cstIgnoreIndex = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(ignoreIndex));
int64_t reductionInt = reduction == "none" ? 0
: reduction == "mean" ? 1
: 2;
Value cstReductionInt = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(reductionInt));
// The default PyTorch value for label smoothing is "0.0".
// Refer:
// https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
Value cstLabelSmoothing = rewriter.create<Torch::ConstantFloatOp>(
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
rewriter.getFloatAttr(rewriter.getF64Type(), 0.0));
Value loss = rewriter.create<Torch::AtenCrossEntropyLossOp>(
binder.getLoc(), resultType, scores, labels, weight,
cstReductionInt, cstIgnoreIndex, cstLabelSmoothing);
if (binder.op->getNumResults() == 1) {
rewriter.replaceOp(binder.op, loss);
return success();
}
Torch::ValueTensorType resultTypeLogProb;
if (binder.tensorResultTypeAtIndex(resultTypeLogProb, 1))
return failure();
Value dim = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(1));
Value cstNone = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
Value logProb = rewriter.create<Torch::AtenLogSoftmaxIntOp>(
binder.getLoc(), resultTypeLogProb, scores, dim, /*dtype=*/cstNone);
rewriter.replaceOp(binder.op, {loss, logProb});
return success();
});
patterns.onOp(
"Resize", 11, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
llvm::SmallVector<Value> operands;
std::string mode, nearest_mode, coordTfMode;
int64_t antialias, exclude_outside;
float extrapolation_value;
Value noneVal = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
if (auto attr = binder.op->getAttr("torch.onnx.axes")) {
return rewriter.notifyMatchFailure(
binder.op,
"unimplemented: support not present for axes attribute");
}
if (auto attr =
binder.op->getAttr("torch.onnx.keep_aspect_ratio_policy")) {
return rewriter.notifyMatchFailure(
binder.op, "unimplemented: support not present for "
"keep_aspect_ratio_policy attribute");
}
if (binder.tensorOperandsList(operands) ||
binder.tensorResultType(resultType) ||
binder.customOpNameStringAttr(mode, "mode", "nearest") ||
binder.customOpNameStringAttr(
coordTfMode, "coordinate_transformation_mode", "half_pixel") ||
binder.s64IntegerAttr(antialias, "antialias", 0) ||
binder.s64IntegerAttr(exclude_outside, "exclude_outside", 0) ||
binder.f32FloatAttr(extrapolation_value, "extrapolation_value",
0.0) ||
binder.customOpNameStringAttr(nearest_mode, "nearest_mode",
"round_prefer_floor"))
return failure();
if (antialias != 0) {
return rewriter.notifyMatchFailure(
binder.op,
"unimplemented: support not present for antialias attribute");
}
if (exclude_outside != 0) {
return rewriter.notifyMatchFailure(
binder.op, "unimplemented: support not present for "
"exclude_outside attribute");
}
if (extrapolation_value != 0.0) {
return rewriter.notifyMatchFailure(
binder.op, "unimplemented: support not present for "
"extrapolation_value attribute");
}
if (coordTfMode == "tf_crop_and_resize")
return rewriter.notifyMatchFailure(
binder.op, "unimplemented: coordinate transformation mode: "
"tf_crop_and_resize");
if (mode == "nearest" && coordTfMode != "asymmetric" &&
coordTfMode != "half_pixel") {
return rewriter.notifyMatchFailure(
binder.op, "unimplemented: support not present for coord tf mode "
"except asymmetric and half_pixel");
}
unsigned rank = dyn_cast<Torch::ValueTensorType>(operands[0].getType())
.getSizes()
.size();
Value cstFalse =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), false);
Value cstTrue =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), true);
Value modeStrValue;
Value scalesValueList = noneVal;
Value sizesValueList = noneVal;
Value alignCorners =
coordTfMode == "align_corners" ? cstTrue : cstFalse;
if (mode == "cubic") {
return rewriter.notifyMatchFailure(binder.op,
"unimplemented: bicubic mode");
}
// supported modes:
// bilinear (half_pixel), bilinear with align_corners,
// bilinear_pytorch_half_pixel, bilinear_asymmetric nearest
// (asymmetric), nearest with align_corners, nearest_half_pixel,
// nearest_pytorch_half_pixel
if (mode == "linear") {
std::string modeStr;
switch (rank) {
case 3:
modeStr = "linear";
break;
case 4:
modeStr = "bilinear";
break;
case 5:
modeStr = "trilinear";
break;
default:
return failure();
}
// Confusingly enough, the default coordTfMode for pytorch bilinear
// mode is apparently half_pixel, NOT pytorch_half_pixel
if (coordTfMode != "half_pixel" && coordTfMode != "align_corners")
modeStr = (modeStr + "_") + coordTfMode;
modeStrValue =
rewriter.create<Torch::ConstantStrOp>(binder.getLoc(), modeStr);
}
if (mode == "nearest") {
std::string modeStr = "nearest";
// The default coordTfMode for pytorch with mode = nearest is
// apparently asymmetric
if (coordTfMode != "asymmetric" && coordTfMode != "align_corners")
modeStr = (modeStr + "_") + coordTfMode;
if (nearest_mode != "floor" && nearest_mode != "")
modeStr = modeStr + "," + nearest_mode;
modeStrValue =
rewriter.create<Torch::ConstantStrOp>(binder.getLoc(), modeStr);
}
if (operands.size() < 4) {
Value scaleOperand = operands[2];
scalesValueList = getValueList(binder, rewriter, scaleOperand);
sizesValueList = noneVal;
} else {
Value sizeOperand = operands[3];
scalesValueList = noneVal;
sizesValueList = getValueList(binder, rewriter, sizeOperand);
}
if (isa<Torch::NoneType>(scalesValueList.getType()) &&
isa<Torch::NoneType>(sizesValueList.getType())) {
return rewriter.notifyMatchFailure(binder.op, "unknown scaling mode");
}
rewriter
.replaceOpWithNewOp<Torch::Aten__InterpolateSizeListScaleListOp>(
binder.op, resultType, operands[0], sizesValueList,
scalesValueList, modeStrValue,
/* AnyTorchOptionalBoolType:$align_corners */ alignCorners,
/* AnyTorchOptionalBoolType:$recompute_scale_factor */ noneVal,
/*Torch_BoolType:$antialias*/ cstFalse);
return success();
});
patterns.onOp(
"RoiAlign", 16, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
// operands = input, rois, batch_indices
SmallVector<Value> operands;
std::string coordTfMode, mode;
int64_t outHInt, outWInt, samplingRatioInt;
float spatialScaleFloat;
Torch::ValueTensorType resultType;
if (binder.tensorOperands(operands, 3) ||
binder.customOpNameStringAttr(
coordTfMode, "coordinate_transformation_mode", "half_pixel") ||
binder.customOpNameStringAttr(mode, "mode", "avg") ||
binder.s64IntegerAttr(outHInt, "output_height", 1) ||
binder.s64IntegerAttr(outWInt, "output_width", 1) ||
binder.s64IntegerAttr(samplingRatioInt, "sampling_ratio", 0) ||
binder.f32FloatAttr(spatialScaleFloat, "spatial_scale", 1.0f) ||
binder.tensorResultType(resultType))
return failure();
Value input = operands[0];
Value rois = operands[1];
Value batchIndices = operands[2];
// the torchvision roi_pool op does not support these features:
if (mode == "max" &&
(coordTfMode != "half_pixel" || samplingRatioInt != 0))
return rewriter.notifyMatchFailure(
binder.op, "unsupported: roi max pooling without default "
"coordTfMode and sampling_ratio");
Location loc = binder.getLoc();
// concatenate the batchIndices to the rois to get rois as a num_roisx5
// tensor. The batchIndices tensor is an int64 tensor, and needs to be
// converted to float before concatenation.
auto roisType = dyn_cast<Torch::ValueTensorType>(rois.getType());
if (!roisType || !roisType.hasSizes())
return failure();
Value cstDim = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(1));
FailureOr<Value> unsqueezeIndices =
Torch::unsqueezeTensor(rewriter, binder.op, batchIndices, cstDim);
if (failed(unsqueezeIndices))
return failure();
batchIndices = unsqueezeIndices.value();
auto batchIndicesType =
cast<Torch::ValueTensorType>(batchIndices.getType());
Value dTypeInt =
Torch::getDtypeIntValueForType(rewriter, loc, roisType.getDtype());
Value none = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
Value cstFalse =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), false);
Value newBatchIndices = rewriter.create<Torch::AtenToDtypeOp>(
loc,
batchIndicesType.getWithSizesAndDtype(
batchIndicesType.getOptionalSizes(),
roisType.getOptionalDtype()),
batchIndices, dTypeInt, cstFalse, cstFalse, none);
SmallVector<int64_t> roiSizes(roisType.getSizes());
roiSizes.back() = 5;
auto catType = rewriter.getType<Torch::ValueTensorType>(
roiSizes, roisType.getDtype());
Type listElemType =
roisType.getWithSizesAndDtype(/*optionalSizes=*/std::nullopt,
/*optionalDtype=*/nullptr);
Type listType = Torch::ListType::get(listElemType);
Value tensorList = rewriter.create<Torch::PrimListConstructOp>(
binder.op->getLoc(), listType, ValueRange{newBatchIndices, rois});
Value newRois =
rewriter.create<Torch::AtenCatOp>(loc, catType, tensorList, cstDim);
// make constants from attributes
Value cstSpatialScale = rewriter.create<Torch::ConstantFloatOp>(
loc, rewriter.getF64FloatAttr(spatialScaleFloat));
Value pooledHeight = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(outHInt));
Value pooledWidth = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(outWInt));
// this is for consistency with the default pytorch sampling ratio value
samplingRatioInt = (samplingRatioInt == 0) ? -1 : samplingRatioInt;
Value samplingRatio = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(samplingRatioInt));
bool aligned = coordTfMode == "half_pixel";
Value cstAligned = rewriter.create<Torch::ConstantBoolOp>(loc, aligned);
if (mode == "avg") {
rewriter.replaceOpWithNewOp<Torch::TorchvisionRoiAlignOp>(
binder.op, resultType, input, newRois, cstSpatialScale,
pooledHeight, pooledWidth, samplingRatio, cstAligned);
return success();
}
// mode == "max"
auto indicesType = resultType.getWithSizesAndDtype(
resultType.getOptionalSizes(), batchIndicesType.getDtype());
auto roiPool = rewriter.create<Torch::TorchvisionRoiPoolOp>(
loc, TypeRange{resultType, indicesType}, input, newRois,
cstSpatialScale, pooledHeight, pooledWidth);
rewriter.replaceOp(binder.op, roiPool.getResult(0));
return success();
});
patterns.onOp(
"SpaceToDepth", 1,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value input;
int64_t blockSize;
std::string mode;
if (binder.tensorOperand(input) ||
binder.s64IntegerAttr(blockSize, "blocksize") ||
binder.customOpNameStringAttr(mode, "mode", "DCR") ||
binder.tensorResultType(resultType))
return failure();
auto inputTy = dyn_cast<Torch::BaseTensorType>(input.getType());
if (!inputTy || !inputTy.hasSizes()) {
return rewriter.notifyMatchFailure(
binder.op, "Expected input type having sizes");
}
SmallVector<int64_t> inputSizes{inputTy.getSizes()};
if (inputSizes.size() != 4) {
return rewriter.notifyMatchFailure(binder.op,
"Expected input rank to be 4");
}
Value b = rewriter.create<Torch::AtenSizeIntOp>(
binder.getLoc(), input,
rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(0)));
Value c = rewriter.create<Torch::AtenSizeIntOp>(
binder.getLoc(), input,
rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(1)));
Value h = rewriter.create<Torch::AtenSizeIntOp>(
binder.getLoc(), input,
rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(2)));
Value w = rewriter.create<Torch::AtenSizeIntOp>(
binder.getLoc(), input,
rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(3)));
Value cstBlockSize = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(blockSize));
Value cstBlockSizeSquare = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(blockSize * blockSize));
Value hDivBlockSize = rewriter.create<Torch::AtenDivIntOp>(
binder.getLoc(), h, cstBlockSize);
Value wDivBlockSize = rewriter.create<Torch::AtenDivIntOp>(
binder.getLoc(), w, cstBlockSize);
hDivBlockSize = rewriter.create<Torch::AtenIntFloatOp>(binder.getLoc(),
hDivBlockSize);
wDivBlockSize = rewriter.create<Torch::AtenIntFloatOp>(binder.getLoc(),
wDivBlockSize);
// The implementation is as follows:
// tmp = np.reshape(
// x, [b, c, h // blocksize, blocksize, w // blocksize, blocksize]
// )
// tmp = np.transpose(tmp, [0, 3, 5, 1, 2, 4])
// y = np.reshape(tmp, [b, c * (blocksize**2), h // blocksize, w //
// blocksize])
Value reshapeSizesList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
Torch::ListType::get(Torch::IntType::get(input.getContext())),
llvm::SmallVector<Value>{b, c, hDivBlockSize, cstBlockSize,
wDivBlockSize, cstBlockSize});
int64_t hDivBlockSizeInt = inputSizes[2] == Torch::kUnknownSize
? Torch::kUnknownSize
: inputSizes[2] / blockSize;
int64_t wDivBlockSizeInt = inputSizes[3] == Torch::kUnknownSize
? Torch::kUnknownSize
: inputSizes[3] / blockSize;
SmallVector<int64_t, 6> reshapeSizesInt{inputSizes[0], inputSizes[1],
hDivBlockSizeInt, blockSize,
wDivBlockSizeInt, blockSize};
Value reshapedInput = rewriter.create<Torch::AtenReshapeOp>(
binder.getLoc(),
inputTy.getWithSizesAndDtype(reshapeSizesInt,
inputTy.getOptionalDtype()),
input, reshapeSizesList);
SmallVector<int64_t, 6> permuteDimsInt{0, 3, 5, 1, 2, 4};
Value permutedInput;
if (failed(createTorchPermuteOp(binder, rewriter, binder.getLoc(),
reshapedInput, permuteDimsInt,
permutedInput)))
return rewriter.notifyMatchFailure(
binder.op, "Failed to create Torch Permute op");
Value cMulBlockSizeSquare = rewriter.create<Torch::AtenMulIntOp>(
binder.getLoc(), c, cstBlockSizeSquare);
reshapeSizesList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
Torch::ListType::get(Torch::IntType::get(input.getContext())),
llvm::SmallVector<Value>{b, cMulBlockSizeSquare, hDivBlockSize,
wDivBlockSize});
rewriter.replaceOpWithNewOp<Torch::AtenReshapeOp>(
binder.op, resultType, permutedInput, reshapeSizesList);
return success();
});
patterns.onOp(
"Shrink", 9, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Location loc = binder.getLoc();
Torch::ValueTensorType resultType;
Value input;
float bias, lambd;
if (binder.tensorOperand(input) ||
binder.f32FloatAttr(bias, "bias", 0.0) ||
binder.f32FloatAttr(lambd, "lambd", 0.5) ||
binder.tensorResultType(resultType)) {
return failure();
}
Torch::ValueTensorType inputType =
cast<Torch::ValueTensorType>(input.getType());
if (!isa<mlir::FloatType>(inputType.getDtype()))
return rewriter.notifyMatchFailure(
binder.op, "unimplemented: non-floating point dtype");
Torch::ValueTensorType comparisonResultType =
rewriter.getType<Torch::ValueTensorType>(
ArrayRef<int64_t>(inputType.getSizes()), rewriter.getI1Type());
// The formula of this operator is: If x < -lambd, y = x + bias; If x >
// lambd, y = x - bias; Otherwise, y = 0.
// The implementation is based on the following algorithm:
// Shrink <bias,lambd>(input) => (output)
// {
// Lambd = Constant <value_float: float = @lambd> ()
// LambdCast = CastLike (Lambd, input)
// Bias = Constant <value_float: float = @bias> ()
// BiasCast = CastLike (Bias, input)
// Zero = Constant <value: tensor = float {0}> ()
// ZeroCast = CastLike (Zero, input)
// NegLmbda = Neg (LambdCast)
// InputLessThanNegLambda = Less (input, NegLmbda)
// InputAddBias = Add (input, BiasCast)
// InputSubBias = Sub (input, BiasCast)
// LambdaLessThanInput = Less (LambdCast, input)
// InputSubBiasOrZero = Where (LambdaLessThanInput, InputSubBias,
// ZeroCast) output = Where (InputLessThanNegLambda, InputAddBias,
// InputSubBiasOrZero)
// }
Value constLambd = rewriter.create<Torch::ConstantFloatOp>(
loc, rewriter.getFloatAttr(rewriter.getF64Type(), lambd));
Value constBias = rewriter.create<Torch::ConstantFloatOp>(
loc, rewriter.getFloatAttr(rewriter.getF64Type(), bias));
Value constZero = rewriter.create<Torch::ConstantFloatOp>(
loc, rewriter.getFloatAttr(rewriter.getF64Type(), 0.0));
Value constOne = rewriter.create<Torch::ConstantFloatOp>(
loc, rewriter.getFloatAttr(rewriter.getF64Type(), 1.0));
Value constNegLambd = rewriter.create<Torch::ConstantFloatOp>(
loc, rewriter.getFloatAttr(rewriter.getF64Type(), -lambd));
Value inputLTNegLambd = rewriter.create<Torch::AtenLtScalarOp>(
loc, comparisonResultType, input, constNegLambd);
Value inputPlusBias = rewriter.create<Torch::AtenAddScalarOp>(
loc, inputType, input, constBias, /*alpha=*/constOne);
Value inputSubBias = rewriter.create<Torch::AtenSubScalarOp>(
loc, inputType, input, constBias, /*alpha=*/constOne);
Value inputGTLambd = rewriter.create<Torch::AtenGtScalarOp>(
loc, comparisonResultType, input, constLambd);
Value inputSubBiasOrZero =
rewriter.create<Torch::AtenWhereScalarOtherOp>(
loc, resultType, inputGTLambd, inputSubBias, constZero);
rewriter.replaceOpWithNewOp<Torch::AtenWhereSelfOp>(
binder.op, resultType, inputLTNegLambd, inputPlusBias,
inputSubBiasOrZero);
return success();
});
patterns.onOp("SequenceAt", 11,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value inputSequence, position;
if (binder.tensorListOperandAtIndex(inputSequence, 0) ||
binder.tensorOperandAtIndex(position, 1) ||
binder.tensorResultType(resultType))
return failure();
Value index = rewriter.create<Torch::AtenItemOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
position);
rewriter.replaceOpWithNewOp<Torch::Aten__Getitem__TOp>(
binder.op, resultType, inputSequence, index);
return success();
});
patterns.onOp(
"SequenceEmpty", 11,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ListType resultType;
int64_t dtypeIntOnnx;
if (binder.s64IntegerAttr(dtypeIntOnnx, "dtype", 1) ||
binder.tensorListResultType(resultType))
return failure();
std::optional<int64_t> dtypeIntTorch =
onnxDtypeIntToTorchDtypeInt(dtypeIntOnnx);
if (!dtypeIntTorch.has_value()) {
return rewriter.notifyMatchFailure(
binder.op,
"unimplemented support for the given dtype conversion");
}
Value constDtype = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(dtypeIntTorch.value()));
Value shapeList = createConstantIntList(binder, rewriter, {});
Value cstNone = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
Value self = rewriter.create<Torch::AtenEmptyMemoryFormatOp>(
binder.op->getLoc(), resultType.getContainedType(), shapeList,
/*dtype=*/constDtype,
/*layout=*/cstNone,
/*device=*/cstNone, /*pinMemory=*/cstNone,
/*memoryFormat=*/cstNone);
rewriter.replaceOpWithNewOp<Torch::PrimListConstructOp>(
binder.op, resultType, llvm::SmallVector<Value>{self});
return success();
});
patterns.onOp(
"SequenceErase", 11,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ListType resultType;
Value inputSequence, position;
if (binder.tensorListOperandAtIndex(inputSequence, 0) ||
binder.tensorListResultType(resultType))
return failure();
Value length = rewriter.create<Torch::AtenLenTOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(), inputSequence);
Value cstNone = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
Value cstOne = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(1));
if (binder.op->getNumOperands() == 1) {
// If True, it means that the `position` arg is missing and
// the last tensor from the list has to be erased.
Value lengthMinusOne = rewriter.create<Torch::AtenSubIntOp>(
binder.getLoc(), length, cstOne);
rewriter.replaceOpWithNewOp<Torch::AtenSliceTOp>(
binder.op, resultType, inputSequence, /*start=*/cstNone,
/*end=*/lengthMinusOne, /*step=*/cstOne);
return success();
}
if (binder.tensorOperandAtIndex(position, 1))
return failure();
Value positionInt = rewriter.create<Torch::AtenItemOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(), position);
// Handling negative position value.
Value cstZero = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(0));
Value isPositionNegative = rewriter.create<Torch::AtenLtIntOp>(
binder.getLoc(), positionInt, cstZero);
isPositionNegative = rewriter.create<Torch::AtenIntBoolOp>(
binder.getLoc(), isPositionNegative);
Value finalOffset = rewriter.create<Torch::AtenMulIntOp>(
binder.getLoc(), isPositionNegative, length);
positionInt = rewriter.create<Torch::AtenAddIntOp>(
binder.getLoc(), positionInt, finalOffset);
Value listBeforePosition = rewriter.create<Torch::AtenSliceTOp>(
binder.getLoc(), resultType, inputSequence, /*start=*/cstNone,
/*end=*/positionInt, /*step=*/cstOne);
Value positionPlusOne = rewriter.create<Torch::AtenAddIntOp>(
binder.getLoc(), positionInt, cstOne);
Value listAfterPosition = rewriter.create<Torch::AtenSliceTOp>(
binder.getLoc(), resultType, inputSequence,
/*start=*/positionPlusOne,
/*end=*/length, /*step=*/cstOne);
rewriter.replaceOpWithNewOp<Torch::AtenAddTOp>(
binder.op, resultType, listBeforePosition, listAfterPosition);
return success();
});
patterns.onOp(
"SequenceInsert", 11,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ListType resultType;
Value inputSequence, position, insertValue;
if (binder.tensorListOperandAtIndex(inputSequence, 0) ||
binder.tensorOperandAtIndex(insertValue, 1) ||
binder.tensorListResultType(resultType))
return failure();
if (binder.op->getNumOperands() == 1) {
// If True, it means that the `position` arg is missing and
// the tensor has to be inserted at the end of the list.
Value length = rewriter.create<Torch::AtenLenTOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
inputSequence);
rewriter.replaceOpWithNewOp<Torch::AtenInsertTOp>(
binder.op, inputSequence, /*idx=*/length,
/*el=*/insertValue);
return success();
}
if (binder.tensorOperandAtIndex(position, 2))
return failure();
Value positionInt = rewriter.create<Torch::AtenItemOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(), position);
rewriter.create<Torch::AtenInsertTOp>(binder.getLoc(), inputSequence,
/*idx=*/positionInt,
/*el=*/insertValue);
rewriter.replaceOp(binder.op, inputSequence);
return success();
});
patterns.onOp(
"SequenceMap", 17,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
llvm::SmallVector<Value> operands;
Torch::ListType resultType;
if (binder.tensorOperandsList(operands) || operands.size() == 0 ||
binder.tensorListResultType(resultType)) {
return failure();
}
Region *bodyRegion;
if (binder.getRegionAtIndex(bodyRegion, 0)) {
return rewriter.notifyMatchFailure(binder.op,
"Failed getting Body Region");
}
// construct an empty list, append results through the loop
auto resultTensorType =
dyn_cast<Torch::ValueTensorType>(resultType.getContainedType());
Value shapeList = createConstantIntList(binder, rewriter,
resultTensorType.getSizes());
Value cstNone = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
Value self = rewriter.create<Torch::AtenEmptyMemoryFormatOp>(
binder.op->getLoc(), resultType.getContainedType(), shapeList,
/*dtype=*/cstNone, /*layout=*/cstNone, /*device=*/cstNone,
/*pinMemory=*/cstNone, /*memoryFormat=*/cstNone);
Value result = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(), resultType, llvm::SmallVector<Value>{self});
// create a for-like primLoopOp
// with the length of sequence as max iter_num
Value len = rewriter.create<Torch::AtenLenTOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(), operands[0]);
auto cstTrue = rewriter.create<Torch::ConstantBoolOp>(
binder.getLoc(), rewriter.getBoolAttr(true));
mlir::ImplicitLocOpBuilder b(binder.getLoc(), rewriter);
auto loop =
b.create<Torch::PrimLoopOp>(resultType, len, cstTrue, result);
rewriter.cloneRegionBefore(*bodyRegion, loop.getRegion(),
loop.getRegion().begin());
// primLoopOp loopBody expects torch.int as first arg
// remove inputs from the region and use it from outside
loop.getRegion().front().insertArgument(0U, resultType,
binder.getLoc());
Value sequenceArg = loop.getRegion().front().getArgument(0);
loop.getRegion().front().insertArgument(
0U, rewriter.getType<Torch::IntType>(), binder.getLoc());
Value indexArg = loop.getRegion().front().getArgument(0);
// get sequence[i] (and addtionalInput[i]) in each iteration
rewriter.setInsertionPointToStart(&loop.getRegion().front());
for (size_t i = 0; i < operands.size(); i++) {
Value argInput = loop.getRegion().front().getArgument(2);
if (isa<Torch::ListType>(operands[i].getType())) {
auto tensorType = dyn_cast<Torch::ValueTensorType>(
dyn_cast<Torch::ListType>(operands[i].getType())
.getContainedType());
Value item = rewriter.create<Torch::Aten__Getitem__TOp>(
binder.getLoc(), tensorType, operands[i], indexArg);
argInput.replaceAllUsesWith(item);
} else {
argInput.replaceAllUsesWith(operands[i]);
}
loop.getRegion().eraseArgument(2);
}
// replace terminator
PatternRewriter::InsertionGuard guard(rewriter);
Operation *terminator = loop.getRegion().front().getTerminator();
rewriter.setInsertionPoint(terminator);
// update sequence input
auto terminatorOperands = terminator->getOperands();
Value append = rewriter.create<Torch::AtenAppendTOp>(
binder.getLoc(), resultType, sequenceArg, terminatorOperands[0]);
rewriter.replaceOpWithNewOp<Torch::PrimLoopConditionOp>(
terminator, cstTrue, append);
rewriter.replaceOp(binder.op, loop);
return success();
});
patterns.onOp(
"Upsample", 9, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
std::string mode;
Value input, scales;
if (binder.tensorOperands(input, scales) ||
binder.customOpNameStringAttr(mode, "mode", "nearest") ||
binder.tensorResultType(resultType)) {
return failure();
}
if (mode != "nearest" && mode != "linear")
return rewriter.notifyMatchFailure(
binder.op, "unsupported interpolation mode other than nearest, "
"linear");
int64_t resultRank = resultType.getSizes().size();
if (resultRank > 5)
return rewriter.notifyMatchFailure(
binder.op, "supports upto 3d upsampling only");
Value scalesValueList = getValueList(binder, rewriter, scales);
if (mode == "linear") {
if (resultRank == 4)
mode = "bilinear";
if (resultRank == 5)
mode = "trilinear";
}
Value modeStrValue =
rewriter.create<Torch::ConstantStrOp>(binder.getLoc(), mode);
Value cstNone = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(
binder.getLoc(), rewriter.getBoolAttr(false));
rewriter
.replaceOpWithNewOp<Torch::Aten__InterpolateSizeListScaleListOp>(
binder.op, resultType, input, /*size=*/cstNone, scalesValueList,
modeStrValue,
/* AnyTorchOptionalBoolType:$align_corners */ cstNone,
/* AnyTorchOptionalBoolType:$recompute_scale_factor */ cstNone,
/*Torch_BoolType:$antialias*/ cstFalse);
return success();
});
patterns.onOp(
"STFT", 17, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
// operands in order ->(signal, frameStep, window, frameLength*)
SmallVector<Value> operands;
int64_t onesided;
Torch::ValueTensorType resultType;
if (binder.tensorOperandsList(operands) ||
binder.s64IntegerAttr(onesided, "onesided", 1) ||
binder.tensorResultType(resultType))
return failure();
Value signal = operands[0];
Value frameStep = operands[1];
auto signalTy = cast<Torch::ValueTensorType>(signal.getType());
auto signalShape = signalTy.getSizes();
auto resultShape = resultType.getSizes();
// There are two possible cases for optional inputs frameLength and
// window, which are that either 4 operands will be passed with window
// being !torch.none, or three operands will be passed, with window
// present and frameLength absent. In the former case, we simply create
// a rectangular window consisting of ones, and in the latter, we set
// frameLength equal to the the inputShape[-2] or windowShape[0]
// depending upon whether window was present or not. Note that it is
// possible that both window and frameLength can be none, which would
// mean that either only two operands were passed, or, in case of three
// operands, window was passed in as none, and frameLength was absent.
Value window = nullptr, frameLength = nullptr;
bool windowIsNone = true, frameLengthIsNone = true;
if (operands.size() == 3) {
window = operands[2];
windowIsNone = isa<Torch::NoneType>(window.getType());
}
if (operands.size() == 4) {
window = operands[2];
frameLength = operands[3];
windowIsNone = isa<Torch::NoneType>(window.getType());
frameLengthIsNone = isa<Torch::NoneType>(frameLength.getType());
}
ArrayRef<int64_t> windowShape;
if (frameLengthIsNone) {
if (windowIsNone) {
frameLength = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(
signalShape[signalShape.size() - 2]));
} else {
windowShape =
cast<Torch::ValueTensorType>(window.getType()).getSizes();
frameLength = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(windowShape[0]));
}
}
Value frameLengthItem;
if (!frameLengthIsNone || windowIsNone) {
frameLengthItem =
getItemOp<Torch::IntType>(binder, rewriter, frameLength);
} else {
frameLengthItem = frameLength;
}
Value frameStepItem =
getItemOp<Torch::IntType>(binder, rewriter, frameStep);
if (windowIsNone) {
auto onesResultTy = rewriter.getType<Torch::ValueTensorType>(
ArrayRef<int64_t>({-1}), signalTy.getDtype());
Value none = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
Value sizes = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
Torch::ListType::get(
Torch::IntType::get(binder.op->getContext())),
SmallVector<Value>{frameLengthItem});
window = rewriter.create<Torch::AtenOnesOp>(
binder.getLoc(), onesResultTy, sizes, none, none, none, none);
}
FailureOr<Type> complexDtype;
if (signalTy.getDtype().isBF16()) {
return rewriter.notifyMatchFailure(
binder.op,
"unimplemented: support for bfloat16 type is unimplemented.");
}
if (signalTy.getDtype().isF16()) {
complexDtype = Torch::getTypeForScalarType(
binder.op->getContext(),
torch::torch_upstream::ScalarType::ComplexHalf);
} else if (signalTy.getDtype().isF32()) {
complexDtype = Torch::getTypeForScalarType(
binder.op->getContext(),
torch::torch_upstream::ScalarType::ComplexFloat);
} else {
complexDtype = Torch::getTypeForScalarType(
binder.op->getContext(),
torch::torch_upstream::ScalarType::ComplexDouble);
}
auto complexSignalTy = rewriter.getType<Torch::ValueTensorType>(
ArrayRef<int64_t>({signalShape[0], signalShape[1]}),
complexDtype.value());
// The onnx STFT op always passes in a float input, and if the input
// is intended to be complex, its shape will be [batch][length][2],
// where [...][0] is the real component, and [...][1] is the complex
// component. This complex input has to be made torch compatible before
// being passed into torch.stft, so it is necessary to call
// AtenViewAsComplexOp. In case of real input, the shape of the signal
// will be [batch][length][1], and therefore it will have to be squeezed
// at dim=2, before being passed into torch.stft.
if (signalShape[2] == 2) {
signal = rewriter.create<Torch::AtenViewAsComplexOp>(
binder.getLoc(), complexSignalTy, signal);
} else {
Value two = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(2));
auto newSignalTy = signalTy.getWithSizesAndDtype(
ArrayRef<int64_t>({signalShape[0], signalShape[1]}),
signalTy.getDtype());
signal = rewriter.create<Torch::AtenSqueezeDimOp>(
binder.getLoc(), newSignalTy, signal, two);
}
// In case the window is not given, we use frameLength
// as the length of the window.
Value windowLen;
if (!windowIsNone) {
windowLen = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(windowShape[0]));
} else {
windowLen = frameLengthItem;
}
Value falseVal =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), false);
Value trueVal =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), true);
auto stftTy = complexSignalTy.getWithSizesAndDtype(
ArrayRef<int64_t>({resultShape[0], resultShape[2], resultShape[1]}),
complexSignalTy.getDtype());
// After torch.stft is called and the result is stored into the value
// stft, there is one thing to note: The resultType for the onnx op
// will have shape [batch][num_frames][length][2], while the shape of
// stft will be [batch][length][num_frames]. Before the value is
// converted to real through torch.view_as_real, we must permute the
// shape of stft to match the shape of resultType. Also, it is
// immaterial whether torch.view_as_real is called after or before the
// permutation; both outputs will be equivalent.
Value stft = rewriter.create<Torch::AtenStftOp>(
binder.getLoc(), stftTy, signal, frameLengthItem, frameStepItem,
windowLen, window, falseVal, onesided ? trueVal : falseVal,
trueVal);
auto permuteStftTy = complexSignalTy.getWithSizesAndDtype(
ArrayRef<int64_t>({resultShape[0], resultShape[1], resultShape[2]}),
complexSignalTy.getDtype());
Value permuteDims = createConstantIntList(binder, rewriter, {0, 2, 1});
Value permutedStft = rewriter.create<Torch::AtenPermuteOp>(
binder.getLoc(), permuteStftTy, stft, permuteDims);
rewriter.replaceOpWithNewOp<Torch::AtenViewAsRealOp>(
binder.op, resultType, permutedStft);
return success();
});
patterns.onOp(
"ReverseSequence", 10,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value input, sequenceLens;
int64_t batchAxis, timeAxis;
if (binder.tensorOperandAtIndex(input, 0) ||
binder.tensorOperandAtIndex(sequenceLens, 1) ||
binder.s64IntegerAttr(batchAxis, "batch_axis", 1) ||
binder.s64IntegerAttr(timeAxis, "time_axis", 0) ||
binder.tensorResultType(resultType))
return failure();
auto inputTy = cast<Torch::ValueTensorType>(input.getType());
SmallVector<int64_t> inputShape(inputTy.getSizes());
auto dtype = resultType.getDtype();
Value cstZero = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(0));
Value cstOne = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(1));
Value batchAxisVal = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(batchAxis));
Value timeAxisVal = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(timeAxis));
SmallVector<int64_t> sliceShape(inputShape);
sliceShape[batchAxis] = 1;
auto sliceType =
rewriter.getType<Torch::ValueTensorType>(sliceShape, dtype);
SmallVector<int64_t> flipShape(sliceShape);
flipShape[timeAxis] = Torch::kUnknownSize;
auto flipType =
rewriter.getType<Torch::ValueTensorType>(flipShape, dtype);
auto scalarTensorType = rewriter.getType<Torch::ValueTensorType>(
ArrayRef<int64_t>{1}, rewriter.getIntegerType(64, /*signed*/ 1));
for (int i = 0; i < inputShape[batchAxis]; i++) {
// slice i iterating on batch axis
Value k = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(i));
Value end =
rewriter.create<Torch::AtenAddIntOp>(binder.getLoc(), k, cstOne);
Value sliceBatch = rewriter.create<Torch::AtenSliceTensorOp>(
binder.getLoc(), sliceType, input, batchAxisVal, k, end, cstOne);
// get sequence length and slice the reversing part
Value kTensor = rewriter.create<Torch::PrimNumToTensorScalarOp>(
binder.getLoc(), scalarTensorType, k);
Value sel = rewriter.create<Torch::AtenIndexSelectOp>(
binder.getLoc(), scalarTensorType, sequenceLens, cstZero,
kTensor);
Value len = rewriter.create<Torch::AtenItemOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(), sel);
Value sliceTime = rewriter.create<Torch::AtenSliceTensorOp>(
binder.getLoc(), flipType, sliceBatch, timeAxisVal, cstZero, len,
cstOne);
// flip the sliced reversing tensor
Value dims = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
rewriter.getType<Torch::ListType>(
rewriter.getType<Torch::IntType>()),
SmallVector<Value>{timeAxisVal});
Value flip = rewriter.create<Torch::AtenFlipOp>(
binder.getLoc(), flipType, sliceTime, dims);
// embeds the reversed tensor to the input
Value embedTime = rewriter.create<Torch::AtenSliceScatterOp>(
binder.getLoc(), sliceType, sliceBatch, flip, timeAxisVal,
/*start=*/cstZero, /*end=*/len, /*step=*/cstOne);
input = rewriter.create<Torch::AtenSliceScatterOp>(
binder.getLoc(), resultType, input, embedTime, batchAxisVal,
/*start=*/k, /*end=*/end, /*step=*/cstOne);
}
rewriter.replaceOp(binder.op, input);
return success();
});
patterns.onOp(
"ScatterND", 11,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value data, indices, updates;
std::string reduction;
if (binder.tensorOperandAtIndex(data, 0) ||
binder.tensorOperandAtIndex(indices, 1) ||
binder.tensorOperandAtIndex(updates, 2) ||
binder.tensorResultType(resultType))
return failure();
// Previous to version 16 of ScatterND, reduction attribute was not
// supported. Setting it as "none" for unsupported versions.
if (binder.customOpNameStringAttr(reduction, "reduction", "none")) {
reduction = "none";
}
// Map onnx reduction type to torch reduction type.
if (reduction == "add") {
reduction = "sum";
} else if (reduction == "mul") {
reduction = "prod";
} else if (reduction == "max") {
reduction = "amax";
} else if (reduction == "min") {
reduction = "amin";
} else if (reduction != "none") {
return rewriter.notifyMatchFailure(
binder.op, "expects reduction to be one of add, mul, max, min, "
"none(default)");
}
Location loc = binder.getLoc();
auto dataTy = dyn_cast<Torch::ValueTensorType>(data.getType());
auto indicesTy = dyn_cast<Torch::ValueTensorType>(indices.getType());
auto updatesTy = dyn_cast<Torch::ValueTensorType>(updates.getType());
if (!dataTy || !indicesTy || !updatesTy || !dataTy.hasSizes() ||
!indicesTy.hasSizes() || !updatesTy.hasSizes())
return failure();
// step 1. Get shapes and ranks of data, indices and updates.
// The last dimension of indices is expected to be static.
ArrayRef<int64_t> dataShape = dataTy.getSizes();
int64_t dataRank = dataShape.size();
ArrayRef<int64_t> updatesShape = updatesTy.getSizes();
int64_t updatesRank = updatesShape.size();
ArrayRef<int64_t> indicesShape = indicesTy.getSizes();
int64_t indicesRank = indicesShape.size();
int64_t indicesLastDim = indicesShape.back();
// Given data tensor of rank r >= 1, indices tensor of rank q >= 1, and
// updates tensor of rank q + r - indices_shape[-1] - 1, the output is
// produced by creating a copy of the input data, and then updating
// its value to values specified by updates at specific index positions
// specified by indices. Its output shape is the same as the shape of
// data.
// indices_shape[-1] must be static to have deterministic ranks.
if (dataRank < 1 || indicesRank < 1 || updatesRank < 1)
return rewriter.notifyMatchFailure(
binder.op, "expected data, indices and updates rank to be >= 1");
if (indicesLastDim == Torch::kUnknownSize || indicesLastDim <= 0)
return rewriter.notifyMatchFailure(
binder.op, "expected last dimension of indices to be static and "
"greater than zero");
// step 2. Get dimension list of data.
SmallVector<Value> dataDims;
for (int64_t i = 0; i < dataRank; ++i) {
Value k = rewriter.create<Torch::ConstantIntOp>(loc, i);
Value dataDim = rewriter.create<Torch::AtenSizeIntOp>(loc, data, k);
dataDims.push_back(dataDim);
}
// step 3. Get dimension list of indices.
Value constZero = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(0));
Value constOne = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(1));
SmallVector<Value> indicesDimsMinusOne;
Value indicesFlattenDim = constOne;
for (int64_t i = 0; i < indicesRank - 1; ++i) {
Value k = rewriter.create<Torch::ConstantIntOp>(loc, i);
Value indicesDim =
rewriter.create<Torch::AtenSizeIntOp>(loc, indices, k);
indicesDimsMinusOne.push_back(indicesDim);
indicesFlattenDim = rewriter.create<Torch::AtenMulIntOp>(
loc, indicesFlattenDim, indicesDim);
}
ArrayRef<int64_t> indicesShapeMinusOne = indicesShape.drop_back();
// Algorithm: We can not directly perform torch.scatter as it requires
// the ranks of data(`r`), indices(`q`) and updates to be same.
// So we will perform collapse and expand operations to match the
// ranks of data, indices and updates(making sure the semantic of the
// onnx.scatter_nd is preserved), then perform torch.scatter operation,
// later unflatten the scatter result to match onnx.scatter_nd output.
// For example, assuming
// indices is of shape (4, 5, 3, 2), data is (4, 10, 11, 7, 4) and
// updates is (4, 5, 3, 11, 7, 4). Firstly, modify indices to 1-D
// indexing as the torch.scatter op supports only single dimensional
// indexing(this algorithm would have been simpler if we can get a
// torch op that supports indexing at multiple dimensions
// simultaneously). 1-D indexed indices will be of shape (4, 5, 3, 1),
// now materialize it to `r-indices_shape[-1]` dimension of data i.e.
// reshaping it to the shape (4, 5, 3, 1, 1, 1). Next step is to
// flatten+expand the indices and flatten the data to (60, 11, 7, 4) and
// (40, 11, 7, 4) shapes respectively and then perform the torch.scatter
// operation. Post the scatter operation, unflatten the first dimension
// of result to (4, 10, 11, 7, 4) which is our required result.
// step 4. Convert indices_shape[-1] dimensional indexing to 1D
// indexing.
Value sliceDim = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(indicesRank - 1));
SmallVector<int64_t> indicesSliceShape(indicesShapeMinusOne);
indicesSliceShape.push_back(1);
auto indicesSliceTy = rewriter.getType<Torch::ValueTensorType>(
indicesSliceShape, indicesTy.getOptionalDtype());
Value start = constZero;
Value updatedIndices;
for (int64_t i = 0; i < indicesLastDim; ++i) {
Value end = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(i + 1));
Value indicesSlice = rewriter.create<Torch::AtenSliceTensorOp>(
loc, indicesSliceTy, indices, sliceDim, start, end,
/*step=*/constOne);
start = end;
// Apply bounds checking on the indices slice.
auto boolTy = rewriter.getType<Torch::ValueTensorType>(
indicesSliceShape, rewriter.getI1Type());
Value lt = rewriter.create<Torch::AtenLtScalarOp>(
loc, boolTy, indicesSlice, constZero);
Value add = rewriter.create<Torch::AtenAddScalarOp>(
loc, indicesSliceTy, indicesSlice, dataDims[i],
/*alpha=*/constOne);
indicesSlice = rewriter.create<Torch::AtenWhereSelfOp>(
loc, indicesSliceTy, lt, add, indicesSlice);
if (i == 0) {
updatedIndices = indicesSlice;
continue;
}
updatedIndices = rewriter.create<Torch::AtenAddTensorOp>(
loc, indicesSliceTy, indicesSlice, updatedIndices, dataDims[i]);
}
// step 5. Compute all the required result types here.
SmallVector<int64_t> reshapeIndicesShape(indicesShapeMinusOne);
SmallVector<Value> reshapeIndicesDims(indicesDimsMinusOne);
// Determine the collapsed dim size of indices(index_shape[-1] is not
// part of collapsing as we already removed it by 1-D indexing).
SmallVector<int64_t> flattenIndicesShape;
auto indicesCt = 1;
for (int64_t i = 0; i < indicesRank - 1; ++i) {
if (indicesShape[i] == Torch::kUnknownSize) {
indicesCt = Torch::kUnknownSize;
break;
}
indicesCt *= indicesShape[i];
}
flattenIndicesShape.push_back(indicesCt);
// Compute the shape of expand op.
SmallVector<Value> expandIndicesDims;
expandIndicesDims.push_back(indicesFlattenDim);
SmallVector<int64_t> expandIndicesShape;
expandIndicesShape.push_back(indicesCt);
// Determine the collapsed dim size of data.
SmallVector<int64_t> flattenDataShape;
auto dataCt = 1;
for (int64_t i = 0; i < indicesLastDim; ++i) {
if (dataShape[i] == Torch::kUnknownSize) {
dataCt = Torch::kUnknownSize;
break;
}
dataCt *= dataShape[i];
}
flattenDataShape.push_back(dataCt);
// Determine the collapsed dim size of updates.
SmallVector<int64_t> flattenUpdatesShape;
auto updatesCt = 1;
for (int64_t i = 0; i < indicesRank - 1; ++i) {
if (updatesShape[i] == Torch::kUnknownSize) {
updatesCt = Torch::kUnknownSize;
break;
}
updatesCt *= updatesShape[i];
}
flattenUpdatesShape.push_back(updatesCt);
flattenUpdatesShape.insert(flattenUpdatesShape.end(),
updatesShape.begin() + indicesRank - 1,
updatesShape.end());
// Append `r-indices_shape[-1]` unit or data dims appropriately to all
// result types.
for (int64_t i = indicesLastDim; i < dataRank; ++i) {
reshapeIndicesShape.push_back(1);
flattenIndicesShape.push_back(1);
flattenDataShape.push_back(dataShape[i]);
expandIndicesShape.push_back(dataShape[i]);
reshapeIndicesDims.push_back(constOne);
expandIndicesDims.push_back(dataDims[i]);
}
// step 6. Reshape 1-D indexed indices to match the rank of flattened
// data by inserting unit dimensions.
auto intListTy = rewriter.getType<Torch::ListType>(
rewriter.getType<Torch::IntType>());
Value reshapeIndicesSizeList =
rewriter.create<Torch::PrimListConstructOp>(loc, intListTy,
reshapeIndicesDims);
auto reshapeIndicesTy = rewriter.getType<Torch::ValueTensorType>(
reshapeIndicesShape, indicesTy.getOptionalDtype());
Value reshapedIndices = rewriter.create<Torch::AtenViewOp>(
loc, reshapeIndicesTy, updatedIndices, reshapeIndicesSizeList);
// step 7. Flatten `q-1` dimensions of the indices and updates.
auto flattenIndicesTy = rewriter.getType<Torch::ValueTensorType>(
flattenIndicesShape, indicesTy.getOptionalDtype());
auto flattenUpdatesTy = rewriter.getType<Torch::ValueTensorType>(
flattenUpdatesShape, updatesTy.getOptionalDtype());
Value flattenedIndices = reshapedIndices;
Value flattenedUpdates = updates;
if (indicesRank == 1) {
flattenedIndices = rewriter.create<Torch::AtenUnsqueezeOp>(
loc, flattenIndicesTy, reshapedIndices, constZero);
flattenedUpdates = rewriter.create<Torch::AtenUnsqueezeOp>(
loc, flattenUpdatesTy, updates, constZero);
} else if (indicesRank > 1) {
Value endDim = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(indicesRank - 2));
flattenedIndices = rewriter.create<Torch::AtenFlattenUsingIntsOp>(
loc, flattenIndicesTy, reshapedIndices, constZero, endDim);
flattenedUpdates = rewriter.create<Torch::AtenFlattenUsingIntsOp>(
loc, flattenUpdatesTy, updates, constZero, endDim);
}
// step 8. Expand `r-indices_shape[-1]` dims of flattened indices.
auto expandIndicesTy = rewriter.getType<Torch::ValueTensorType>(
expandIndicesShape, indicesTy.getOptionalDtype());
Value expandIndicesSizeList =
rewriter.create<Torch::PrimListConstructOp>(loc, intListTy,
expandIndicesDims);
Value constFalse = rewriter.create<Torch::ConstantBoolOp>(
loc, rewriter.getType<Torch::BoolType>(),
rewriter.getBoolAttr(false));
Value expandedIndices = rewriter.create<Torch::AtenExpandOp>(
loc, expandIndicesTy, flattenedIndices, expandIndicesSizeList,
/*implicit=*/constFalse);
// step 9. Flatten indices_shape[-1] dimensions of data.
auto flattenDataTy = rewriter.getType<Torch::ValueTensorType>(
flattenDataShape, dataTy.getOptionalDtype());
Value endDim = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(indicesLastDim - 1));
Value flattenedData = rewriter.create<Torch::AtenFlattenUsingIntsOp>(
loc, flattenDataTy, data, constZero, endDim);
// step 10. Now we have flattenedData, expandedIndices and
// flattenedUpdates of same rank to perform scatter operation.
auto scatterTy = rewriter.getType<Torch::ValueTensorType>(
flattenDataShape, dataTy.getOptionalDtype());
Value scatter;
if (reduction == "none") {
scatter = rewriter.create<Torch::AtenScatterSrcOp>(
loc, scatterTy, flattenedData, /*axis=*/constZero,
expandedIndices, flattenedUpdates);
} else {
Value cstReduction =
rewriter.create<Torch::ConstantStrOp>(loc, reduction);
Value constTrue = rewriter.create<Torch::ConstantBoolOp>(
loc, rewriter.getType<Torch::BoolType>(),
rewriter.getBoolAttr(true));
scatter = rewriter.create<Torch::AtenScatterReduceTwoOp>(
loc, scatterTy, flattenedData, /*axis=*/constZero,
expandedIndices, flattenedUpdates, cstReduction,
/*include_self=*/constTrue);
}
// step 11. Unflatten the collapsed data dims of scatter result.
if (indicesLastDim == 1) {
rewriter.replaceOp(binder.op, scatter);
return success();
}
Value unflattenSizeList = rewriter.create<Torch::PrimListConstructOp>(
loc, intListTy, dataDims);
rewriter.replaceOpWithNewOp<Torch::AtenUnflattenIntOp>(
binder.op, resultType, scatter, constZero, unflattenSizeList);
return success();
});
// split to sequence
// Arguments:
// - input: the tensor to split
// -Split(optional): Length of each output
// Attributes:
// - axis: the axis along which to split the input
// - keepdims: to keep the split dimension or not. Ignored when 'split' is
// specified Outputs:
// - outputs: sequence of tensor
//
patterns.onOp(
"SplitToSequence", 11,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Value self;
Value split;
int64_t axis;
int64_t keepdims;
Torch::ListType resultType;
if (binder.op->getNumOperands() == 1)
return rewriter.notifyMatchFailure(
binder.op, "No of operands should be two.Keepdims attribute is "
"not yet implemented");
if (binder.tensorOperandAtIndex(self, 0) ||
binder.tensorListResultType(resultType) ||
binder.s64IntegerAttr(keepdims, "keepdims", 1) ||
binder.tensorOperandAtIndex(split, 1) ||
binder.s64IntegerAttr(axis, "axis", 0))
return rewriter.notifyMatchFailure(
binder.op,
"Not converting to AtenSplitToSequenceOp due to inputs ");
Value axisValue = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getI64IntegerAttr(axis));
auto splitTy = cast<Torch::ValueTensorType>(split.getType());
if (!splitTy || !splitTy.hasSizes())
return failure();
auto splitSizes = splitTy.getSizes();
unsigned splitDim = splitTy.getSizes().size();
if (splitDim > 1)
return rewriter.notifyMatchFailure(
binder.op, "Split should be scalar or 1-D Tensor ");
if (splitDim == 1) {
if (splitSizes[0] == Torch::kUnknownSize) {
return rewriter.notifyMatchFailure(
binder.op, "Dynamic shapes for Split is not yet supported");
} else if (splitSizes[0] <=
1) { // dealing with 1/0 element in 1-D tensor
Value splitInt = rewriter.create<Torch::AtenItemOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(), split);
rewriter.replaceOpWithNewOp<Torch::AtenSplitTensorOp>(
binder.op, resultType, self, splitInt, axisValue);
return success();
} else {
// Handling multiple elment in split
Value shapeList =
createConstantIntList(binder, rewriter, splitSizes);
rewriter.replaceOpWithNewOp<Torch::AtenSplitSizesOp>(
binder.op, resultType, self, shapeList, axisValue);
return success();
}
} else if (splitDim == 0) { // Handle 0-D tensor
Value splitInt = rewriter.create<Torch::AtenItemOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(), split);
rewriter.replaceOpWithNewOp<Torch::AtenSplitTensorOp>(
binder.op, resultType, self, splitInt, axisValue);
return success();
} else {
return rewriter.notifyMatchFailure(
binder.op, "Handling of this kind of inputs is not there");
}
});
patterns.onOp(
"Unique", 11, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Value input;
int64_t axis, sorted;
SmallVector<Type> resultTypes;
if (binder.tensorOperand(input) ||
binder.s64IntegerAttr(sorted, "sorted", 1) ||
binder.tensorResultTypes(resultTypes))
return failure();
Value zero = rewriter.create<Torch::ConstantIntOp>(binder.getLoc(), 0);
auto inputTy = cast<Torch::ValueTensorType>(input.getType());
if (!inputTy.hasSizes()) {
return rewriter.notifyMatchFailure(
binder.op, "Expected input type to have sizes");
}
auto inputShape = inputTy.getSizes();
int64_t inputDim = static_cast<int64_t>(inputShape.size());
Value axisVal;
SmallVector<int64_t> outputTensorSizes(inputDim);
bool axisWasNone;
if (!binder.optionalS64IntegerAttr(axis, "axis")) {
if (axis < -1 * inputDim || axis > inputDim - 1)
return rewriter.notifyMatchFailure(binder.op,
"invalid value for axis");
axisVal = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(axis));
axisWasNone = false;
} else {
axisVal = zero;
axisWasNone = true;
}
Value sortedVal = rewriter.create<Torch::ConstantBoolOp>(
binder.getLoc(), rewriter.getBoolAttr(sorted));
Value trueVal =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), true);
// The shape of inverse_indices is the same as input shape, but
// resulTypes[2] must be used to avoid live value after conversion.
Torch::ValueTensorType outputTy;
outputTy = cast<Torch::ValueTensorType>(resultTypes[0]);
Torch::ValueTensorType countsTy =
cast<Torch::ValueTensorType>(resultTypes[3]);
Torch::ValueTensorType inverseTy =
cast<Torch::ValueTensorType>(resultTypes[2]);
if (axisWasNone) {
int64_t inputNumel = 1;
for (auto elem : inputShape) {
if (elem == Torch::kUnknownSize) {
return rewriter.notifyMatchFailure(
binder.op,
"Expected all sizes in input shape to be statically known");
}
inputNumel *= elem;
}
auto flattenResultTy = rewriter.getType<Torch::ValueTensorType>(
ArrayRef({inputNumel}), inputTy.getDtype());
Value negativeOne =
rewriter.create<Torch::ConstantIntOp>(binder.getLoc(), -1);
input = rewriter.create<Torch::AtenFlattenUsingIntsOp>(
binder.getLoc(), flattenResultTy, input, zero, negativeOne);
}
Torch::AtenUniqueDimOp intermResults =
rewriter.create<Torch::AtenUniqueDimOp>(
binder.getLoc(), outputTy, inverseTy, countsTy, input, axisVal,
sortedVal, trueVal, trueVal);
SmallVector<Value> uniqueResults = intermResults.getResults();
// Calculate the indices where each of the unique elements first
// appeared in the original input tensor. Also, the counts tensor and
// the indices tensor have the same Dtype, int64, so reuse that here.
auto arangeResultType = rewriter.getType<Torch::ValueTensorType>(
ArrayRef<int64_t>({inputShape[0]}), countsTy.getOptionalDtype());
Value inputDimZero = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(inputShape[0]));
Value int64Type = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(4));
Value noneVal = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
Value perm = rewriter.create<Torch::AtenArangeOp>(
binder.getLoc(), arangeResultType, inputDimZero,
/*dtype=*/int64Type,
/*layout=*/noneVal, /*device=*/noneVal, /*pin_memory=*/noneVal);
// Inverse has the same shape as input, but the dtype is not the same.
Value flipDims = createConstantIntList(binder, rewriter, {0});
Value inverse = rewriter.create<Torch::AtenFlipOp>(
binder.getLoc(),
inputTy.getWithSizesAndDtype(inputShape, countsTy.getDtype()),
uniqueResults[1], flipDims);
perm = rewriter.create<Torch::AtenFlipOp>(
binder.getLoc(), cast<Torch::ValueTensorType>(perm.getType()), perm,
flipDims);
auto newInverseTy = rewriter.getType<Torch::ValueTensorType>(
ArrayRef<int64_t>({outputTy.getSizes()[0]}), countsTy.getDtype());
Value newInverseSize =
createConstantIntList(binder, rewriter, {outputTy.getSizes()[0]});
Value newInverse = rewriter.create<Torch::AtenNewEmptyOp>(
binder.getLoc(), newInverseTy, inverse, newInverseSize,
/*dtype=*/int64Type, /*layout=*/noneVal, /*device=*/noneVal,
/*pin_memory=*/noneVal);
Value firstOccurIndices = rewriter.create<Torch::AtenScatterSrcOp>(
binder.getLoc(), resultTypes[1], newInverse, zero, inverse, perm);
rewriter.replaceOp(binder.op, {uniqueResults[0], firstOccurIndices,
uniqueResults[1], uniqueResults[2]});
return success();
});
patterns.onOp(
"TfIdfVectorizer", 9,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
llvm::SmallVector<int64_t> ngram_counts;
llvm::SmallVector<int64_t> ngram_indexes;
llvm::SmallVector<int64_t> pool_int64s;
std::string mode;
int64_t min_gram_length;
int64_t max_gram_length;
int64_t max_skip_count;
Value input;
Torch::ValueTensorType resultType;
if (binder.s64IntegerArrayAttr(ngram_counts, "ngram_counts", {}) ||
binder.s64IntegerArrayAttr(ngram_indexes, "ngram_indexes", {}) ||
binder.s64IntegerArrayAttr(pool_int64s, "pool_int64s", {}) ||
binder.customOpNameStringAttr(mode, "mode", "") ||
binder.s64IntegerAttr(min_gram_length, "min_gram_length", 0) ||
binder.s64IntegerAttr(max_gram_length, "max_gram_length", 0) ||
binder.s64IntegerAttr(max_skip_count, "max_skip_count", 0) ||
binder.tensorOperand(input) || binder.tensorResultType(resultType))
return failure();
if (mode != "TF")
return rewriter.notifyMatchFailure(binder.op,
"TF mode supported only");
if (pool_int64s.size() == 0)
return rewriter.notifyMatchFailure(
binder.op, "pool_int64s empty, only integers supported");
auto inputType = dyn_cast<Torch::ValueTensorType>(input.getType());
auto inputSizes =
dyn_cast<Torch::ValueTensorType>(input.getType()).getSizes();
SmallVector<int64_t> inputShape(inputSizes);
bool is_2d = (inputShape.size() > 1) ? true : false;
if (is_2d && inputShape[0] == ShapedType::kDynamic)
return rewriter.notifyMatchFailure(
binder.op, "input batch dimension cannot be dynamic");
int batch_size = (is_2d) ? inputShape[0] : 1;
Value none = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
Value zero = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0));
Value one = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(1));
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(
binder.getLoc(), rewriter.getBoolAttr(false));
auto intType = rewriter.getType<Torch::IntType>();
Value loopConditionTrue = rewriter.create<Torch::ConstantBoolOp>(
binder.getLoc(), rewriter.getBoolAttr(true));
Type loopIndexType = intType;
// create a zero tensor for output
SmallVector<int64_t> resultShape(resultType.getSizes());
int64_t rank = resultShape.size();
SmallVector<Value> zerosShapeValues;
for (int j = 0; j < rank; j++) {
Value dimSize = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(resultShape[j]));
zerosShapeValues.push_back(dimSize);
}
Value zerosShapeList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
rewriter.getType<Torch::ListType>(
rewriter.getType<Torch::IntType>()),
zerosShapeValues);
Value output = rewriter.create<Torch::AtenZerosOp>(
binder.getLoc(), resultType, zerosShapeList, none, none, none,
none);
Value batchSize = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(batch_size));
auto batchLoop = rewriter.create<Torch::PrimLoopOp>(
binder.getLoc(), TypeRange({output.getType()}), batchSize,
loopConditionTrue, ValueRange({output}));
{
PatternRewriter::InsertionGuard guard(rewriter);
Block *batchLoopBody = rewriter.createBlock(
&batchLoop.getRegion(), batchLoop.getRegion().begin(),
TypeRange({loopIndexType, output.getType()}),
{binder.getLoc(), binder.getLoc()});
Value batchValue = batchLoopBody->getArgument(0);
Value output = batchLoopBody->getArgument(1);
Value outputForBatch = output;
Value inputSequence = input;
if (is_2d) {
// get input sequence from input (ex: [[0,1],[2,3]] -> [[0,1]] ->
// [0,1])
SmallVector<int64_t> inputSequenceShape;
inputSequenceShape.push_back(1);
inputSequenceShape.push_back(inputShape[1]);
auto inputSequenceType = rewriter.getType<Torch::ValueTensorType>(
inputSequenceShape, inputType.getOptionalDtype());
Value batchPlusOne = rewriter.create<Torch::AtenAddIntOp>(
binder.getLoc(), batchValue, one);
inputSequence = rewriter.create<Torch::AtenSliceTensorOp>(
binder.getLoc(), inputSequenceType, input, /*dim=*/zero,
batchValue, batchPlusOne, one);
inputSequence = rewriter.create<Torch::AtenSqueezeDimOp>(
binder.getLoc(),
Torch::ValueTensorType::get(binder.op->getContext(),
ArrayRef<int64_t>{inputShape[1]},
inputType.getOptionalDtype()),
inputSequence, zero);
SmallVector<int64_t> outputForBatchShape;
outputForBatchShape.push_back(1);
outputForBatchShape.push_back(resultShape[1]);
auto outputForBatchType = rewriter.getType<Torch::ValueTensorType>(
outputForBatchShape, resultType.getOptionalDtype());
outputForBatch = rewriter.create<Torch::AtenSliceTensorOp>(
binder.getLoc(), outputForBatchType, output,
/*dim=*/zero, batchValue, batchPlusOne, one);
outputForBatch = rewriter.create<Torch::AtenSqueezeDimOp>(
binder.getLoc(),
Torch::ValueTensorType::get(binder.op->getContext(),
ArrayRef<int64_t>{resultShape[1]},
resultType.getOptionalDtype()),
outputForBatch, zero);
}
// ngram_counts[j] records the starting position of ngrams within the
// pool_int64's of length j+1. The loop below is iterating through the
// different n-gram sizes
// ngram_i keeps track of which ngram we are looking at in the pool.
// The frequency of this ngram will be stored in the output tensor at
// the position ngram_indexes[ngram_i]
int ngram_i = 0;
for (int j = 0; j < (int)ngram_counts.size(); j++) {
int ngram_length = j + 1;
int start_idx = ngram_counts[j];
int end_idx = (j + 1) < (int)ngram_counts.size()
? ngram_counts[j + 1]
: pool_int64s.size();
if (j + 1 < min_gram_length || j + 1 > max_gram_length) {
// progress the ngram counter for the skipped (j+1)grams
ngram_i += (end_idx - start_idx) / ngram_length;
continue;
}
Value ngramLength = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(ngram_length));
for (int start = start_idx; start < end_idx;
start += ngram_length, ngram_i++) {
Value count = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(0));
// for 1-grams, there is no skipping (skip = gap between
// consecutive values in the n-gram pulled from the input
// sequence), so we default to skip_count_bound = 1 in that case
// to avoid repeating the same count multiple times.
int skip_count_bound =
(ngram_length == 1) ? 1 : (max_skip_count + 1);
Value skipCountBound = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), intType,
rewriter.getI64IntegerAttr(skip_count_bound));
// given a n-gram to search for, and the input sequence to search
// in, we need to count how many times that n-gram appears in the
// input for each skip between 0 and max_skip_count (inclusive).
auto skipLoop = rewriter.create<Torch::PrimLoopOp>(
binder.getLoc(), TypeRange({count.getType()}), skipCountBound,
loopConditionTrue, ValueRange({count}));
{
PatternRewriter::InsertionGuard guard(rewriter);
Block *skipLoopBody = rewriter.createBlock(
&skipLoop.getRegion(), skipLoop.getRegion().begin(),
TypeRange({loopIndexType, count.getType()}),
{binder.getLoc(), binder.getLoc()});
Value skipCount = skipLoopBody->getArgument(0);
Value skipCountPlusOne = rewriter.create<Torch::AtenAddIntOp>(
binder.getLoc(), skipCount, one);
count = skipLoopBody->getArgument(1);
// max_start_index =
// inputSizes.back() - ((ngram_length - 1) * (skip_count + 1));
// the index one higher than the last possible start index
// without the input ngram going out of bounds
Value seqLen = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), intType,
rewriter.getI64IntegerAttr(inputSizes.back()));
Value ngramLengthMinusOne =
rewriter.create<Torch::AtenSubIntOp>(binder.getLoc(),
ngramLength, one);
Value ngramSkipLength = rewriter.create<Torch::AtenMulIntOp>(
binder.getLoc(), ngramLengthMinusOne, skipCountPlusOne);
Value maxStartIndex = rewriter.create<Torch::AtenSubIntOp>(
binder.getLoc(), seqLen, ngramSkipLength);
// This loop will extract each n-gram with the given skip_count
// from the input sequence from start input index, and increment
// the count if the n-gram matches the one gotten from the
// pool_int64s
auto countLoop = rewriter.create<Torch::PrimLoopOp>(
binder.getLoc(), TypeRange({count.getType()}),
maxStartIndex, loopConditionTrue, ValueRange({count}));
{
PatternRewriter::InsertionGuard guard(rewriter);
Block *countLoopBody = rewriter.createBlock(
&countLoop.getRegion(), countLoop.getRegion().begin(),
TypeRange({loopIndexType, count.getType()}),
{binder.getLoc(), binder.getLoc()});
Value startInputIdx = countLoopBody->getArgument(0);
count = countLoopBody->getArgument(1);
// extract input ngram and compare to pool ngram
Torch::BaseTensorType inputSequenceType =
cast<Torch::BaseTensorType>(inputSequence.getType());
SmallVector<int64_t> selectSizes;
selectSizes.push_back(1);
Type selectResultType =
inputSequenceType.getWithSizesAndDtype(
llvm::ArrayRef(selectSizes),
inputSequenceType.getOptionalDtype());
Value foundNgram = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(1));
for (int i = 0; i < ngram_length; i++) {
Value selectIndex = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64),
i));
selectIndex = rewriter.create<Torch::AtenMulIntOp>(
binder.getLoc(), selectIndex, skipCountPlusOne);
selectIndex = rewriter.create<Torch::AtenAddIntOp>(
binder.getLoc(), selectIndex, startInputIdx);
Value inputExtract =
rewriter.create<Torch::AtenSelectIntOp>(
binder.getLoc(), selectResultType, inputSequence,
zero, selectIndex);
Value inputNgram_i = rewriter.create<Torch::AtenItemOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
inputExtract);
Value poolNgram_i = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(),
rewriter.getI64IntegerAttr(pool_int64s[start + i]));
Value isEqual = rewriter.create<Torch::AtenEqIntOp>(
binder.getLoc(), inputNgram_i, poolNgram_i);
isEqual = rewriter.create<Torch::AtenIntBoolOp>(
binder.getLoc(), isEqual);
foundNgram = rewriter.create<Torch::AtenMulIntOp>(
binder.getLoc(), isEqual, foundNgram);
}
count = rewriter.create<Torch::AtenAddIntOp>(
binder.getLoc(), count, foundNgram);
rewriter.create<Torch::PrimLoopConditionOp>(
binder.getLoc(), loopConditionTrue, ValueRange({count}));
}
count = countLoop.getResult(0);
rewriter.create<Torch::PrimLoopConditionOp>(
binder.getLoc(), loopConditionTrue, ValueRange({count}));
}
count = skipLoop.getResult(0);
// insert count "tf" into output
Value countFloat = rewriter.create<Torch::AtenFloatScalarOp>(
binder.getLoc(), count);
Value dataList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
rewriter.getType<Torch::ListType>(
rewriter.getType<Torch::FloatType>()),
SmallVector<Value>{countFloat});
Value cstDtype = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(
(int)torch_upstream::ScalarType::Float));
SmallVector<int64_t> countShape{1};
auto countType = rewriter.getType<Torch::ValueTensorType>(
countShape, resultType.getOptionalDtype());
Value countTensor = rewriter.create<Torch::AtenTensorOp>(
binder.getLoc(), countType, dataList, /*dtype=*/cstDtype,
/*layout=*/none, /*requires_grad=*/cstFalse);
Value insertStart = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(),
rewriter.getI64IntegerAttr(ngram_indexes[ngram_i]));
Value insertEnd = rewriter.create<Torch::AtenAddIntOp>(
binder.getLoc(), insertStart, one);
outputForBatch = rewriter.create<Torch::AtenSliceScatterOp>(
binder.getLoc(), outputForBatch.getType(), outputForBatch,
countTensor,
/*dim=*/zero, insertStart, insertEnd, /*step=*/one);
} // start
}
if (is_2d) {
Value batchPlusOne = rewriter.create<Torch::AtenAddIntOp>(
binder.getLoc(), batchValue, one);
outputForBatch = rewriter.create<Torch::AtenUnsqueezeOp>(
binder.getLoc(),
rewriter.getType<Torch::ValueTensorType>(
llvm::SmallVector<int64_t>{1, resultShape[1]},
resultType.getDtype()),
outputForBatch, zero);
output = rewriter.create<Torch::AtenSliceScatterOp>(
binder.getLoc(), resultType, output, outputForBatch,
/*dim=*/zero, batchValue, batchPlusOne, /*step=*/one);
} else {
output = outputForBatch;
}
rewriter.create<Torch::PrimLoopConditionOp>(
binder.getLoc(), loopConditionTrue, ValueRange({output}));
}
output = batchLoop.getResult(0);
rewriter.replaceOp(binder.op, output);
return success();
});
patterns.onOp(
"Scan", 11, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Location loc = binder.getLoc();
SmallVector<Value> operands;
int64_t numScanInputs;
if (binder.tensorOperandsList(operands) || operands.size() == 0 ||
binder.s64IntegerAttr(numScanInputs, "num_scan_inputs")) {
return rewriter.notifyMatchFailure(binder.op,
"Failed to get required inputs");
}
SmallVector<Type> resultTypes;
if (binder.tensorResultTypes(resultTypes)) {
return rewriter.notifyMatchFailure(binder.op,
"result type bind failure");
}
Region *loopBodyIn;
if (binder.getRegionAtIndex(loopBodyIn, 0)) {
return rewriter.notifyMatchFailure(binder.op,
"Failed getting LoopBody Region");
}
int64_t numInits = operands.size() - numScanInputs;
SmallVector<Value> initVals(operands.begin(),
operands.begin() + numInits);
SmallVector<Value> scanInputs(operands.begin() + numInits,
operands.end());
if (scanInputs.size() < 1) {
return rewriter.notifyMatchFailure(binder.op,
"Expects at least one scan input");
}
Value constZero = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(0));
Value constOne = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(1));
SmallVector<Type> scanOutTypes;
for (unsigned i = numInits; i < resultTypes.size(); i++) {
auto scanOutTy = cast<Torch::ValueTensorType>(resultTypes[i]);
// TODO: Handle dynamic result types.
if (!scanOutTy.hasSizes() || !scanOutTy.areAllSizesKnown()) {
return rewriter.notifyMatchFailure(
binder.op, "Expects result type to be static");
}
Value sizeList =
createConstantIntList(binder, rewriter, scanOutTy.getSizes());
initVals.push_back(Torch::createInitTensor(rewriter, loc, scanOutTy,
constZero, sizeList));
scanOutTypes.push_back(resultTypes[i]);
}
// Create torch.prim.Loop op.
Value maxTripCount = rewriter.create<Torch::AtenSizeIntOp>(
loc, scanInputs[0], constZero);
auto constBoolTrue = rewriter.create<Torch::ConstantBoolOp>(
binder.getLoc(), rewriter.getBoolAttr(true));
auto primLoop = rewriter.create<Torch::PrimLoopOp>(
loc, resultTypes, maxTripCount, constBoolTrue, initVals);
rewriter.cloneRegionBefore(*loopBodyIn, primLoop.getRegion(),
primLoop.getRegion().begin());
// Insert index var as torch.int argument in the loop body, as
// the primLoopOp loopBody expects torch.int as first argument.
primLoop.getRegion().insertArgument(
0u, rewriter.getType<Torch::IntType>(), loc);
auto loopInd = primLoop.getRegion().getArgument(0);
// The block arguments of onnx.scan needs to be replaced with
// slice of scan inputs.
rewriter.setInsertionPointToStart(&primLoop.getRegion().front());
for (unsigned i = 0; i < numScanInputs; i++) {
auto loopBlockArg =
primLoop.getRegion().getArgument(numInits + 1 + i);
Value extract = rewriter.create<Torch::AtenSelectIntOp>(
loc, loopBlockArg.getType(), scanInputs[i], constZero, loopInd);
loopBlockArg.replaceAllUsesWith(extract);
}
primLoop.getRegion().front().eraseArguments(numInits + 1,
/*count=*/numScanInputs);
// Collect the output slices to form scan outputs and replace the
// terminator.
SmallVector<Location> locs(scanOutTypes.size(), loc);
primLoop.getRegion().front().addArguments(scanOutTypes, locs);
PatternRewriter::InsertionGuard guard(rewriter);
Operation *terminator = primLoop.getRegion().front().getTerminator();
auto terminatorOperands = terminator->getOperands();
SmallVector<Value> resTerminatorOperands(
terminatorOperands.begin(), terminatorOperands.begin() + numInits);
SmallVector<Value> scanOutSlices(terminatorOperands.begin() + numInits,
terminatorOperands.end());
rewriter.setInsertionPoint(terminator);
for (unsigned i = 0; i < scanOutSlices.size(); i++) {
Value self = BlockArgument::Value(
primLoop.getRegion().getArgument(numInits + 1 + i));
FailureOr<Value> src = Torch::unsqueezeTensor(
rewriter, binder.op, scanOutSlices[i], constZero);
if (failed(src))
return failure();
Value scanOut = rewriter.create<Torch::AtenSliceScatterOp>(
loc, scanOutTypes[i], self, src.value(), constZero,
/*start=*/loopInd,
/*end=*/loopInd, constOne);
resTerminatorOperands.push_back(scanOut);
}
Value terminatorCond = constBoolTrue;
rewriter.replaceOpWithNewOp<Torch::PrimLoopConditionOp>(
terminator, terminatorCond, resTerminatorOperands);
rewriter.replaceOp(binder.op, primLoop);
return success();
});
}