torch-mlir/projects/pt1
yyp0 22cd4441e7
[Torch] Add support for static uneven divisible AdaptiveAvgPool2d (#3566)
The static uneven divisible AdaptiveAvgPool2d means that although the
input size is not an integer multiple of ouput size, but the kernel and
stride size can also be fixed (not dynamic). The derivation logic of
kernel and stride size is consistent with
torch/_decomp/decomposations.py:adaptive_avg_pool2d as described in the
following:

1. Stride Size
Firstly , derive the start index in each reduce operation according to
the output size (`n`), `start_index = ([0, 1, ..., n - 1] * input_size)
// output_size`. For each index `k`, if `k * (input_size % output_size)
< output_size`, then the current and previous stride keeps the same as
`input_size // output_size`. So suppose `(n-1) * (input_size %
output_size) < output_size`, the stride in the whole AdaptiveAvgPool2d
process keeps static, as `input_size // output_size`.

2. Kernel Size
torch/_decomp/decomposations.py:adaptive_avg_pool2d calculates a static
kernel size when the input/output sizes satisfy either of the two
conditions, `input_size % output_size == 0` or `output_size %
(input_size % output_size) == 0`. Here if `input_size % output_size ==
0`, then the kernel size equals `input_size // output_size`, otherwise
`input_size // output_size + 1.`
2024-08-01 11:37:53 +08:00
..
e2e_testing [Torch] Add support for static uneven divisible AdaptiveAvgPool2d (#3566) 2024-08-01 11:37:53 +08:00
examples [FxImporter] Add an e2e test example for FxImporter (#3331) 2024-05-14 00:45:19 +08:00
python [Torch] Add support for static uneven divisible AdaptiveAvgPool2d (#3566) 2024-08-01 11:37:53 +08:00
test [NFC] Update black version (#3256) 2024-04-29 11:06:01 +08:00
tools Re-organize project structure to separate PyTorch dependencies from core project. (#2542) 2023-11-02 19:45:55 -07:00
CMakeLists.txt Re-organize project structure to separate PyTorch dependencies from core project. (#2542) 2023-11-02 19:45:55 -07:00