torch-mlir/lib/Conversion/TorchToTosa/TosaLegalizeCommon.cpp

320 lines
11 KiB
C++

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#include "torch-mlir/Conversion/TorchToTosa/TosaLegalizeCommon.h"
#include "torch-mlir/Conversion/TorchToTosa/TosaLegalizeUtils.h"
#include <climits>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <numeric>
#include "mlir/Dialect/Quant/QuantTypes.h" // from @llvm-project
#include "mlir/Dialect/Tensor/IR/Tensor.h" // from @llvm-project
#include "mlir/Dialect/Tosa/IR/TosaOps.h" // from @llvm-project
#include "mlir/IR/BuiltinTypes.h" // from @llvm-project
#include "mlir/IR/Matchers.h" // from @llvm-project
#include "mlir/IR/PatternMatch.h" // from @llvm-project
#include "llvm/Support/FormatVariadic.h"
namespace mlir {
namespace tosa {
// Common function for lowering reduce operations to TOSA ops.
template <typename T>
llvm::Optional<Value> convertReduceOpCommon(
PatternRewriter &rewriter, Operation *op, RankedTensorType output_type,
Value input_value, ElementsAttr axes_elems, bool keep_dims,
Type reduce_element_type, bool is_quantized, double input_scale,
int64_t input_zp, double output_scale, int64_t output_zp) {
RankedTensorType input_type =
input_value.getType().dyn_cast<RankedTensorType>();
if (!input_type)
return llvm::None;
ArrayRef<int64_t> input_shape = input_type.getShape();
ArrayRef<int64_t> output_shape = output_type.getShape();
auto input_rank = input_shape.size();
Value val = input_value;
if (axes_elems.getNumElements() == 0) {
// No axes means return the original tensor.
auto identity_op = CreateOpAndInfer<tosa::IdentityOp>(
rewriter, op->getLoc(), output_type, val);
val = identity_op.getResult();
} else {
// Reduce along each axis
SmallVector<int64_t> shape_vec(input_shape.begin(), input_shape.end());
if (is_quantized) {
val = buildRescaleToInt32(rewriter, op, val, input_scale, input_zp);
}
for (int i = 0; i < axes_elems.getNumElements(); i++) {
int64_t axis_val = axes_elems.getValues<IntegerAttr>()[i].getInt();
if (axis_val < 0)
axis_val += input_rank;
auto axis_attr = rewriter.getI64IntegerAttr(axis_val);
shape_vec[axis_val] = 1;
RankedTensorType reduce_type = RankedTensorType::get(
shape_vec,
reduce_element_type);
auto reduce_op = CreateOpAndInfer<T>(rewriter, op->getLoc(), reduce_type,
val, axis_attr);
val = reduce_op.getResult();
}
if (is_quantized) {
RankedTensorType output_rescale_type =
RankedTensorType::get(shape_vec, output_type.getElementType());
val = buildRescale(rewriter, op, output_rescale_type, val, output_scale,
0, output_zp, false, true);
}
// Optionally squeeze out the reduced axes.
if (!keep_dims) {
auto reshape_op = CreateOpAndInfer<tosa::ReshapeOp>(
rewriter, op->getLoc(), output_type, val,
rewriter.getI64ArrayAttr(output_shape));
val = reshape_op.getResult();
}
}
return val;
}
// Lowers ReduceAll to a sequence of TOSA ops.
llvm::Optional<Value>
convertReduceAllOp(PatternRewriter &rewriter, Operation *op,
RankedTensorType output_type, Value input_value,
ElementsAttr axes_elems, bool keep_dims) {
RankedTensorType input_type =
input_value.getType().dyn_cast<RankedTensorType>();
if (!input_type)
return llvm::None;
return convertReduceOpCommon<tosa::ReduceAllOp>(
rewriter, op, output_type, input_value, axes_elems, keep_dims,
output_type.getElementType(), false, 1.0f, 0, 1.0f, 0);
}
// Lowers ReduceAny to a sequence of TOSA ops.
llvm::Optional<Value>
convertReduceAnyOp(PatternRewriter &rewriter, Operation *op,
RankedTensorType output_type, Value input_value,
ElementsAttr axes_elems, bool keep_dims) {
RankedTensorType input_type =
input_value.getType().dyn_cast<RankedTensorType>();
if (!input_type)
return llvm::None;
return convertReduceOpCommon<tosa::ReduceAnyOp>(
rewriter, op, output_type, input_value, axes_elems, keep_dims,
output_type.getElementType(), false, 1.0f, 0, 1.0f, 0);
}
// Lowers ReduceMin to a sequence of TOSA ops.
llvm::Optional<Value>
convertReduceMinOp(PatternRewriter &rewriter, Operation *op,
RankedTensorType output_type, Value input_value,
ElementsAttr axes_elems, bool keep_dims) {
RankedTensorType input_type =
input_value.getType().dyn_cast<RankedTensorType>();
if (!input_type)
return llvm::None;
return convertReduceOpCommon<tosa::ReduceMinOp>(
rewriter, op, output_type, input_value, axes_elems, keep_dims,
output_type.getElementType(), false, 1.0f, 0, 1.0f, 0);
}
// Lowers ReduceMax to a sequence of TOSA ops.
llvm::Optional<Value>
convertReduceMaxOp(PatternRewriter &rewriter, Operation *op,
RankedTensorType output_type, Value input_value,
ElementsAttr axes_elems, bool keep_dims) {
RankedTensorType input_type =
input_value.getType().dyn_cast<RankedTensorType>();
if (!input_type)
return llvm::None;
return convertReduceOpCommon<tosa::ReduceMaxOp>(
rewriter, op, output_type, input_value, axes_elems, keep_dims,
output_type.getElementType(), false, 1.0f, 0, 1.0f, 0);
}
// Lowers ReduceProd to a sequence of TOSA ops.
llvm::Optional<Value>
convertReduceProdOp(PatternRewriter &rewriter, Operation *op,
RankedTensorType output_type, Value input_value,
ElementsAttr axes_elems, bool keep_dims) {
RankedTensorType input_type =
input_value.getType().dyn_cast<RankedTensorType>();
if (!input_type)
return llvm::None;
bool input_is_qtype =
input_type.getElementType().isa<mlir::quant::UniformQuantizedType>();
bool output_is_qtype =
output_type.getElementType().isa<mlir::quant::UniformQuantizedType>();
if (input_is_qtype || output_is_qtype) {
op->emitOpError("ConvertReduceProdOp: input/output tensor should "
"be all floating-point.");
return llvm::None;
}
return convertReduceOpCommon<tosa::ReduceProdOp>(
rewriter, op, output_type, input_value, axes_elems, keep_dims,
output_type.getElementType(), false, 1.0f, 0, 1.0f, 0);
}
// Lowers ReduceSum to a sequence of TOSA ops.
llvm::Optional<Value>
convertReduceSumOp(PatternRewriter &rewriter, Operation *op,
RankedTensorType output_type, Value input_value,
ElementsAttr axes_elems, bool keep_dims) {
RankedTensorType input_type =
input_value.getType().dyn_cast<RankedTensorType>();
if (!input_type)
return llvm::None;
bool input_is_qtype =
input_type.getElementType().isa<mlir::quant::UniformQuantizedType>();
bool output_is_qtype =
output_type.getElementType().isa<mlir::quant::UniformQuantizedType>();
if (input_is_qtype != output_is_qtype) {
op->emitOpError("ConvertReduceSumOp: input/output tensor should "
"be all quantized or all floating-point.");
return llvm::None;
}
double input_scale = 1.0f;
double output_scale = 1.0f;
int64_t input_zp = 0;
int64_t output_zp = 0;
Type reduce_element_type = input_type.getElementType();
if (input_is_qtype) {
auto input_qtype =
input_type.getElementType().cast<mlir::quant::UniformQuantizedType>();
auto output_qtype =
output_type.getElementType().cast<mlir::quant::UniformQuantizedType>();
int32_t input_shift = 20;
input_scale =
static_cast<double>(1 << input_shift) * input_qtype.getScale();
output_scale =
1.0 / (output_qtype.getScale() * static_cast<double>(1 << input_shift));
input_zp = input_qtype.getZeroPoint();
output_zp = output_qtype.getZeroPoint();
reduce_element_type = rewriter.getI32Type();
}
return convertReduceOpCommon<tosa::ReduceSumOp>(
rewriter, op, output_type, input_value, axes_elems, keep_dims,
reduce_element_type, input_is_qtype, input_scale, input_zp, output_scale,
output_zp);
}
// Lowers ReduceMean to a sequence of TOSA ops.
llvm::Optional<Value>
convertReduceMeanOp(PatternRewriter &rewriter, Operation *op,
RankedTensorType output_type, Value input_value,
ElementsAttr axes_elems, bool keep_dims) {
// reduce_mean is lowered as followed:
// op1 = reduce_sum(input)
// op2 = mul(op1, 1.0 / num_elements_on_reduced_axis)
RankedTensorType input_type =
input_value.getType().dyn_cast<RankedTensorType>();
if (!input_type)
return llvm::None;
bool input_is_qtype =
input_type.getElementType().isa<mlir::quant::UniformQuantizedType>();
bool output_is_qtype =
output_type.getElementType().isa<mlir::quant::UniformQuantizedType>();
if (input_is_qtype != output_is_qtype) {
op->emitOpError("ConvertReduceSumOp: input/output tensor should "
"be all quantized or all floating-point.");
return llvm::None;
}
// Only supports float type mean() if it's non-quantized
if (!input_is_qtype && !output_type.getElementType().isa<mlir::FloatType>()) {
op->emitWarning(
"Failed convertReduceMean: input unquantized type but output element "
"not FloatType!");
return llvm::None;
}
int64_t input_rank = input_type.getRank();
ArrayRef<int64_t> inputShape = input_type.getShape();
int64_t num_elems_on_reduced_axis = 1;
for (int i = 0; i < axes_elems.getNumElements(); i++) {
int64_t axis_val = axes_elems.getValues<IntegerAttr>()[i].getInt();
if (axis_val < 0)
axis_val += input_rank;
if (inputShape[axis_val] < 0)
op->emitOpError("Failed convertReduceMean: support for dynamic input "
"shape not implemented");
num_elems_on_reduced_axis *= inputShape[axis_val];
}
double div_scale = 1.0 / static_cast<double>(num_elems_on_reduced_axis);
double input_scale = 1.0f;
double output_scale = 1.0f;
int64_t input_zp = 0;
int64_t output_zp = 0;
Type reduce_element_type = input_type.getElementType();
if (input_is_qtype) {
auto input_qtype =
input_type.getElementType().cast<mlir::quant::UniformQuantizedType>();
auto output_qtype =
output_type.getElementType().cast<mlir::quant::UniformQuantizedType>();
// Combine 'div_scale' as part of output rescale
output_scale = div_scale * input_qtype.getScale() / output_qtype.getScale();
input_zp = input_qtype.getZeroPoint();
output_zp = output_qtype.getZeroPoint();
reduce_element_type = rewriter.getI32Type();
}
auto val = convertReduceOpCommon<tosa::ReduceSumOp>(
rewriter, op, output_type, input_value, axes_elems, keep_dims,
reduce_element_type, input_is_qtype, input_scale, input_zp, output_scale,
output_zp);
if (!val.has_value())
return llvm::None;
if (!input_is_qtype) {
Value div_const = getTosaConstTensorSingleF32(rewriter, op, div_scale);
return CreateOpAndInfer<tosa::MulOp>(rewriter, op->getLoc(), output_type,
val.value(), div_const, 0)
.getResult();
}
return val;
}
} // namespace tosa
} // namespace mlir