mirror of https://github.com/llvm/torch-mlir
1068 lines
40 KiB
C++
1068 lines
40 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
// Also available under a BSD-style license. See LICENSE.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "torch-mlir/Conversion/TorchToMhlo/TorchToMhlo.h"
|
|
|
|
#include "../PassDetail.h"
|
|
#include "./MhloLegalizeUtils.h"
|
|
#include "./PopulatePatterns.h"
|
|
#include "mlir-hlo/Dialect/mhlo/IR/chlo_ops.h"
|
|
#include "mlir-hlo/Dialect/mhlo/IR/hlo_ops.h"
|
|
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "torch-mlir/Conversion/Utils/Utils.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchDialect.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
|
|
#include "torch-mlir/Dialect/Torch/Utils/TorchUpstream.h"
|
|
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
|
|
#include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionOps.h"
|
|
#include <iostream>
|
|
#include <numeric>
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::torch;
|
|
using namespace mlir::torch::Torch;
|
|
|
|
bool skipMultiplyAlpha(Value alphaValue) {
|
|
double doubleValue;
|
|
auto isFloat = matchPattern(alphaValue, m_TorchConstantFloat(&doubleValue));
|
|
|
|
int64_t intValue;
|
|
auto isInt = matchPattern(alphaValue, m_TorchConstantInt(&intValue));
|
|
|
|
return ((isFloat && doubleValue == 1.0) || (isInt && intValue == 1.0));
|
|
}
|
|
|
|
// These legalizations are for unary ops with only for floating point datatypes.
|
|
// There is no supported quantized integer mode for these.
|
|
namespace {
|
|
template <typename AtenOpT, typename MhloOpT>
|
|
class ConvertAtenUnaryFPOnlyOp : public OpConversionPattern<AtenOpT> {
|
|
public:
|
|
using OpConversionPattern<AtenOpT>::OpConversionPattern;
|
|
using OpAdaptor = typename AtenOpT::Adaptor;
|
|
LogicalResult
|
|
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Value self = adaptor.self();
|
|
auto selfTy = self.getType().cast<TensorType>();
|
|
|
|
if (!selfTy)
|
|
return op.emitError("only Tensor types supported in MHLO");
|
|
|
|
if (selfTy.getElementType().isa<mlir::FloatType>()) {
|
|
rewriter.replaceOpWithNewOp<MhloOpT>(
|
|
op,
|
|
OpConversionPattern<AtenOpT>::getTypeConverter()->convertType(
|
|
op.getType()),
|
|
self);
|
|
return success();
|
|
} else {
|
|
return op.emitError(
|
|
"only floating-point datatype legalization supported");
|
|
}
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// aten.ones & aten.zeros
|
|
// Ref: Error checking based on the Torch to TOSA lowering
|
|
namespace {
|
|
template <typename AtenOpT, int fillVal>
|
|
class ConvertAtenConstPatternOp : public OpConversionPattern<AtenOpT> {
|
|
public:
|
|
using OpConversionPattern<AtenOpT>::OpConversionPattern;
|
|
using OpAdaptor = typename AtenOpT::Adaptor;
|
|
LogicalResult
|
|
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
|
|
auto outType = OpConversionPattern<AtenOpT>::getTypeConverter()
|
|
->convertType(op.getType())
|
|
.template dyn_cast<TensorType>();
|
|
|
|
if (!outType)
|
|
return op.emitError("only Tensor types supported in MHLO");
|
|
|
|
Type outElemTy = outType.getElementType();
|
|
if (!outElemTy.isIntOrFloat())
|
|
return op.emitError(
|
|
"only floating-point or integer datatype legalization supported");
|
|
|
|
// FIXME: Handle layout, device and pin_memory. Assume dtype has been
|
|
// processed to set output type correctly?
|
|
if (!op.layout().getType().template isa<Torch::NoneType>())
|
|
return op.emitError("only default layout is supported");
|
|
|
|
bool pinMemory;
|
|
if (!op.pin_memory().getType().template isa<Torch::NoneType>() &&
|
|
(!matchPattern(op.pin_memory(), m_TorchConstantBool(&pinMemory)) ||
|
|
pinMemory)) {
|
|
return op.emitError(
|
|
"unsupported pin_memory, should be either None or false");
|
|
}
|
|
|
|
SmallVector<int64_t> shape;
|
|
if (!matchPattern(op.size(), m_TorchConstantIntList(shape))) {
|
|
return op.emitError("shape must be a list of Scalar constants");
|
|
}
|
|
|
|
int64_t size = 1;
|
|
for (auto s : shape)
|
|
size *= s;
|
|
|
|
SmallVector<int32_t> values(size, fillVal);
|
|
auto constOp =
|
|
mhlo::getConstTensor<int32_t>(rewriter, op, values, shape).value();
|
|
|
|
rewriter.replaceOpWithNewOp<mhlo::ConvertOp>(op, outType, constOp);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
// These binary op legalizations are specific to add/sub which have an
|
|
// alpha multiplier.
|
|
namespace {
|
|
template <typename AtenOpT, typename ChloOpT>
|
|
class ConvertAtenAddSubOp : public OpConversionPattern<AtenOpT> {
|
|
public:
|
|
using OpConversionPattern<AtenOpT>::OpConversionPattern;
|
|
using OpAdaptor = typename AtenOpT::Adaptor;
|
|
LogicalResult
|
|
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Value lhs = adaptor.self();
|
|
RankedTensorType lhsType = lhs.getType().dyn_cast<RankedTensorType>();
|
|
Value rhs = adaptor.other();
|
|
RankedTensorType rhsType = rhs.getType().dyn_cast<RankedTensorType>();
|
|
|
|
if (!lhsType)
|
|
return op.emitError("only Tensor types supported in MHLO");
|
|
|
|
TensorType outType = OpConversionPattern<AtenOpT>::getTypeConverter()
|
|
->convertType(op.getType())
|
|
.template cast<TensorType>();
|
|
|
|
Type outElemTy = outType.getElementType();
|
|
if (!outElemTy.isIntOrFloat()) {
|
|
return op.emitError(
|
|
"only floating-point or integer datatype legalization supported");
|
|
}
|
|
|
|
if (!rhsType) {
|
|
rhs = mhlo::scalarToMhloTensor(rewriter, op, adaptor.other(), outElemTy);
|
|
}
|
|
|
|
lhs = mhlo::promoteType(rewriter, lhs, outType);
|
|
rhs = mhlo::promoteType(rewriter, rhs, outType);
|
|
|
|
if (!skipMultiplyAlpha(op.alpha())) {
|
|
Value alpha =
|
|
mhlo::scalarToMhloTensor(rewriter, op, adaptor.alpha(), outElemTy);
|
|
DenseIntElementsAttr bcastDimensions;
|
|
rhs = rewriter.create<chlo::BroadcastMulOp>(op->getLoc(), rhs, alpha,
|
|
bcastDimensions);
|
|
}
|
|
|
|
DenseIntElementsAttr bcastDimensions;
|
|
rewriter.replaceOpWithNewOp<ChloOpT>(op, outType, lhs, rhs,
|
|
bcastDimensions);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Binary op legalizations for Mul/Div variants.
|
|
namespace {
|
|
template <typename AtenOpT, typename ChloOpT>
|
|
class ConvertAtenMulDivOp : public OpConversionPattern<AtenOpT> {
|
|
public:
|
|
using OpConversionPattern<AtenOpT>::OpConversionPattern;
|
|
using OpAdaptor = typename AtenOpT::Adaptor;
|
|
LogicalResult
|
|
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Value lhs = adaptor.self();
|
|
auto lhsType = lhs.getType().dyn_cast<TensorType>();
|
|
Value rhs = adaptor.other();
|
|
TensorType rhsType = rhs.getType().dyn_cast<TensorType>();
|
|
|
|
if (!lhsType)
|
|
return op.emitError("only Tensor types supported in MHLO");
|
|
|
|
auto outType = OpConversionPattern<AtenOpT>::getTypeConverter()
|
|
->convertType(op.getType())
|
|
.template cast<TensorType>();
|
|
|
|
Type outElemTy = outType.getElementType();
|
|
if (!outElemTy.isIntOrFloat()) {
|
|
return op.emitError(
|
|
"only floating-point or integer datatype legalization supported");
|
|
}
|
|
|
|
if (std::is_same<AtenOpT, AtenSquareOp>()) {
|
|
rhs = lhs;
|
|
} else if (!rhsType) {
|
|
rhs = mhlo::scalarToMhloTensor(rewriter, op, adaptor.other(), outElemTy);
|
|
}
|
|
DenseIntElementsAttr bcastDimensions;
|
|
lhs = mhlo::promoteType(rewriter, lhs, outType);
|
|
rhs = mhlo::promoteType(rewriter, rhs, outType);
|
|
auto loc = op.getLoc();
|
|
Value result =
|
|
rewriter.create<ChloOpT>(loc, outType, lhs, rhs, bcastDimensions);
|
|
|
|
if (!isa<AtenDivTensorModeOp>(op)) {
|
|
rewriter.replaceOp(op, result);
|
|
return success();
|
|
}
|
|
|
|
AtenDivTensorModeOp divTensorModeOp =
|
|
llvm::dyn_cast<AtenDivTensorModeOp>(op.getOperation());
|
|
std::string roundingMode;
|
|
if (!matchPattern(divTensorModeOp.rounding_mode(),
|
|
m_TorchConstantStr(roundingMode)))
|
|
return rewriter.notifyMatchFailure(
|
|
op, "only support constant str rounding mode");
|
|
|
|
if (roundingMode == "trunc") {
|
|
// "trunc" - rounds the results of the division towards zero. Equivalent
|
|
// to C-style integer division.
|
|
auto sign = rewriter.create<mhlo::SignOp>(loc, result);
|
|
auto abs = rewriter.create<mhlo::AbsOp>(loc, result);
|
|
auto floor = rewriter.create<mhlo::FloorOp>(loc, abs);
|
|
result = rewriter.create<mhlo::MulOp>(loc, sign, floor).getResult();
|
|
}
|
|
if (roundingMode == "floor") {
|
|
// "floor" - rounds the results of the division down. Equivalent to
|
|
// floor division in Python (the // operator)
|
|
result = rewriter.create<mhlo::FloorOp>(loc, result).getResult();
|
|
}
|
|
rewriter.replaceOp(op, result);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Binary op legalizations for comparator ops.
|
|
namespace {
|
|
template <typename AtenOpT>
|
|
class ConvertAtenCompareOp : public OpConversionPattern<AtenOpT> {
|
|
public:
|
|
using OpConversionPattern<AtenOpT>::OpConversionPattern;
|
|
using OpAdaptor = typename AtenOpT::Adaptor;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Value lhs = adaptor.self();
|
|
Value rhs = adaptor.other();
|
|
RankedTensorType lhsTy = lhs.getType().dyn_cast<RankedTensorType>();
|
|
RankedTensorType rhsTy = rhs.getType().dyn_cast<RankedTensorType>();
|
|
|
|
if (!lhsTy)
|
|
return op.emitError("only Tensor types supported in MHLO");
|
|
|
|
RankedTensorType outType = OpConversionPattern<AtenOpT>::getTypeConverter()
|
|
->convertType(op.getType())
|
|
.template cast<RankedTensorType>();
|
|
|
|
Type lhsElemTy = lhsTy.getElementType();
|
|
if (!lhsElemTy.isIntOrFloat()) {
|
|
return op.emitError(
|
|
"only floating-point or integer datatype legalization supported");
|
|
}
|
|
|
|
if (!rhsTy) {
|
|
rhs = mhlo::scalarToMhloTensor(rewriter, op, adaptor.other(), lhsElemTy);
|
|
}
|
|
|
|
// TODO: what is the PyTorch default type promotion?
|
|
rhs = mhlo::promoteType(rewriter, rhs, lhsTy);
|
|
|
|
mhlo::ComparisonTypeAttr compareTypeAttr;
|
|
mhlo::ComparisonDirectionAttr compareDirectionAttr;
|
|
|
|
if (lhsElemTy.isa<mlir::FloatType>()) {
|
|
compareTypeAttr = mhlo::ComparisonTypeAttr::get(
|
|
op->getContext(), mhlo::ComparisonType::FLOAT);
|
|
} else if (lhsElemTy.isa<mlir::IntegerType>()) {
|
|
compareTypeAttr = mhlo::ComparisonTypeAttr::get(
|
|
op->getContext(), mhlo::ComparisonType::SIGNED);
|
|
}
|
|
|
|
if (std::is_same<AtenOpT, AtenLtTensorOp>() ||
|
|
std::is_same<AtenOpT, AtenLtScalarOp>()) {
|
|
compareDirectionAttr = mhlo::ComparisonDirectionAttr::get(
|
|
op->getContext(), mhlo::ComparisonDirection::LT);
|
|
} else if (std::is_same<AtenOpT, AtenGtTensorOp>() ||
|
|
std::is_same<AtenOpT, AtenGtScalarOp>()) {
|
|
compareDirectionAttr = mhlo::ComparisonDirectionAttr::get(
|
|
op->getContext(), mhlo::ComparisonDirection::GT);
|
|
} else if (std::is_same<AtenOpT, AtenEqTensorOp>() ||
|
|
std::is_same<AtenOpT, AtenEqScalarOp>()) {
|
|
compareDirectionAttr = mhlo::ComparisonDirectionAttr::get(
|
|
op->getContext(), mhlo::ComparisonDirection::EQ);
|
|
} else if (std::is_same<AtenOpT, AtenNeTensorOp>() ||
|
|
std::is_same<AtenOpT, AtenNeScalarOp>()) {
|
|
compareDirectionAttr = mhlo::ComparisonDirectionAttr::get(
|
|
op->getContext(), mhlo::ComparisonDirection::NE);
|
|
}
|
|
DenseIntElementsAttr bcastDimensions;
|
|
rewriter.replaceOpWithNewOp<chlo::BroadcastCompareOp>(
|
|
op, outType, lhs, rhs, bcastDimensions, compareDirectionAttr,
|
|
compareTypeAttr);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
// AtenTransposeIntOp
|
|
namespace {
|
|
class ConvertAtenTransposeIntOp
|
|
: public OpConversionPattern<AtenTransposeIntOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(AtenTransposeIntOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Value self = adaptor.self();
|
|
int64_t dim0;
|
|
if (!matchPattern(op.dim0(), m_TorchConstantInt(&dim0))) {
|
|
return rewriter.notifyMatchFailure(op, "dim0 must be constant");
|
|
}
|
|
int64_t dim1;
|
|
if (!matchPattern(op.dim1(), m_TorchConstantInt(&dim1))) {
|
|
return rewriter.notifyMatchFailure(op, "dim1 must be constant");
|
|
}
|
|
|
|
auto inType = self.getType().cast<RankedTensorType>();
|
|
auto inputRank = inType.getRank();
|
|
auto outType = getTypeConverter()
|
|
->convertType(op->getResult(0).getType())
|
|
.cast<RankedTensorType>();
|
|
|
|
dim0 = toPositiveDim(dim0, inputRank);
|
|
if (!isValidDim(dim0, inputRank)) {
|
|
return rewriter.notifyMatchFailure(op, "dim0 out of range");
|
|
}
|
|
dim1 = toPositiveDim(dim1, inputRank);
|
|
if (!isValidDim(dim1, inputRank)) {
|
|
return rewriter.notifyMatchFailure(op, "dim1 out of range");
|
|
}
|
|
|
|
SmallVector<int64_t> permValues(inputRank);
|
|
std::iota(std::begin(permValues), std::end(permValues), 0);
|
|
std::swap(permValues[dim0], permValues[dim1]);
|
|
DenseIntElementsAttr permutation = DenseIntElementsAttr::get(
|
|
RankedTensorType::get({static_cast<long int>(permValues.size())},
|
|
rewriter.getI64Type()),
|
|
permValues);
|
|
rewriter.replaceOpWithNewOp<mhlo::TransposeOp>(op, outType, self,
|
|
permutation);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// AtenBroadcastToOp
|
|
namespace {
|
|
class ConvertAtenBroadcastToOp : public OpConversionPattern<AtenBroadcastToOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(AtenBroadcastToOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Value self = adaptor.self();
|
|
auto selfTy = self.getType().cast<RankedTensorType>();
|
|
auto outType = getTypeConverter()
|
|
->convertType(op->getResult(0).getType())
|
|
.cast<RankedTensorType>();
|
|
|
|
#ifdef TORCH_MLIR_ENABLE_MHLO_STATIC_SHAPE
|
|
if (selfTy.hasStaticShape()) {
|
|
Value bcastOp = mhlo::promoteAndBroadcast(rewriter, self, outType);
|
|
rewriter.replaceOp(op, bcastOp);
|
|
return success();
|
|
}
|
|
#endif
|
|
|
|
SmallVector<Value> shape;
|
|
if (!(getListConstructElements(adaptor.size(), shape))) {
|
|
return op->emitError("desired shape must be a list of scalar");
|
|
}
|
|
SmallVector<Value> bcastShapeVec;
|
|
int64_t totalRank = shape.size();
|
|
int64_t selfRank = selfTy.getRank();
|
|
int64_t leadingRank = totalRank - selfRank;
|
|
|
|
for (int64_t i = 0; i < totalRank; ++i) {
|
|
Value dValue = shape[i];
|
|
Value newD;
|
|
int64_t dInt;
|
|
if (!(matchPattern(dValue, m_TorchConstantInt(&dInt)))) {
|
|
return op->emitError("element of desired shape must be a scalar");
|
|
}
|
|
if (i >= leadingRank && dInt == -1) {
|
|
newD = rewriter.create<mlir::tensor::DimOp>(op->getLoc(), self,
|
|
i - leadingRank);
|
|
} else {
|
|
dValue = rewriter.create<torch::TorchConversion::ToI64Op>(op->getLoc(),
|
|
dValue);
|
|
newD = rewriter.create<mlir::arith::IndexCastOp>(
|
|
op->getLoc(), rewriter.getIndexType(), dValue);
|
|
}
|
|
bcastShapeVec.push_back(newD);
|
|
}
|
|
|
|
#ifdef TORCH_MLIR_ENABLE_MHLO_TRUNC_DIMSIZE_TO_I32
|
|
for (auto &dsize : bcastShapeVec) {
|
|
auto dsizeI64 = rewriter.create<mlir::arith::IndexCastOp>(
|
|
op->getLoc(), rewriter.getI64Type(), dsize);
|
|
dsize = rewriter.create<arith::TruncIOp>(op->getLoc(),
|
|
rewriter.getI32Type(), dsizeI64);
|
|
}
|
|
#endif
|
|
|
|
Value bcastShapeTensor = rewriter.create<mlir::tensor::FromElementsOp>(
|
|
op->getLoc(), ValueRange{bcastShapeVec});
|
|
auto dimensionNumbers =
|
|
llvm::to_vector<4>(llvm::seq<int64_t>(leadingRank, totalRank));
|
|
rewriter.replaceOpWithNewOp<mhlo::DynamicBroadcastInDimOp>(
|
|
op, outType, self, bcastShapeTensor,
|
|
rewriter.getI64TensorAttr(dimensionNumbers));
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// AtenPermuteOp
|
|
namespace {
|
|
class ConvertAtenPermuteOp : public OpConversionPattern<AtenPermuteOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(AtenPermuteOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Value self = adaptor.self();
|
|
// Not a ranked tensor type
|
|
auto inType = self.getType().dyn_cast<RankedTensorType>();
|
|
auto outType = getTypeConverter()
|
|
->convertType(op->getResult(0).getType())
|
|
.cast<RankedTensorType>();
|
|
if (!inType)
|
|
return op.emitError("only ranked tensor types with static shapes are "
|
|
"currently supported");
|
|
|
|
SmallVector<int64_t> permValues;
|
|
if (!matchPattern(adaptor.dims(), m_TorchConstantIntList(permValues)))
|
|
return rewriter.notifyMatchFailure(
|
|
op, "only constant dimensions are currently supported");
|
|
|
|
int64_t inRank = inType.getRank();
|
|
for (auto &d : permValues) {
|
|
d = toPositiveDim(d, inRank);
|
|
if (!isValidDim(d, inRank))
|
|
return op.emitError("not all dims are valid");
|
|
}
|
|
|
|
DenseIntElementsAttr permutation = DenseIntElementsAttr::get(
|
|
RankedTensorType::get({static_cast<long int>(permValues.size())},
|
|
rewriter.getI64Type()),
|
|
permValues);
|
|
rewriter.replaceOpWithNewOp<mhlo::TransposeOp>(op, outType, self,
|
|
permutation);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
namespace {
|
|
template <typename AtenOpT>
|
|
class ConvertAtenOp : public OpConversionPattern<AtenOpT> {
|
|
public:
|
|
using OpConversionPattern<AtenOpT>::OpConversionPattern;
|
|
using OpAdaptor = typename AtenOpT::Adaptor;
|
|
LogicalResult
|
|
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override;
|
|
};
|
|
} // namespace
|
|
|
|
// AtenTanhOp
|
|
namespace {
|
|
template <>
|
|
LogicalResult ConvertAtenOp<AtenTanhOp>::matchAndRewrite(
|
|
AtenTanhOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
Value self = adaptor.self();
|
|
auto selfTy = self.getType().cast<TensorType>();
|
|
if (selfTy && selfTy.getElementType().isa<mlir::FloatType>()) {
|
|
rewriter.replaceOpWithNewOp<mhlo::TanhOp>(
|
|
op, getTypeConverter()->convertType(op.getType()), self);
|
|
return success();
|
|
} else {
|
|
return op.emitError(
|
|
"only floating-point datatype legalization currently supported");
|
|
}
|
|
}
|
|
} // namespace
|
|
|
|
// ValueTensorLiteralOp
|
|
namespace {
|
|
template <>
|
|
LogicalResult ConvertAtenOp<ValueTensorLiteralOp>::matchAndRewrite(
|
|
ValueTensorLiteralOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
RankedTensorType resultType = getTypeConverter()
|
|
->convertType(op->getResult(0).getType())
|
|
.cast<RankedTensorType>();
|
|
|
|
// Tensors with integer types need to be converted to signless integer
|
|
// element type. All tensors with element types other than integer can reuse
|
|
// existing elements attribute.
|
|
// TODO: what about unsigned integer?
|
|
if (auto elements = op.valueAttr().dyn_cast<DenseIntElementsAttr>()) {
|
|
Type builtinTensorElemTy = resultType.getElementType();
|
|
unsigned bitWidth = builtinTensorElemTy.getIntOrFloatBitWidth();
|
|
|
|
DenseElementsAttr valueAttr =
|
|
elements.mapValues(builtinTensorElemTy, [&](const APInt &v) {
|
|
return APInt(bitWidth, v.getSExtValue());
|
|
});
|
|
rewriter.replaceOpWithNewOp<mhlo::ConstantOp>(op, resultType, valueAttr);
|
|
return success();
|
|
}
|
|
|
|
rewriter.replaceOpWithNewOp<mhlo::ConstantOp>(op, resultType,
|
|
adaptor.value());
|
|
return success();
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// AtenReciprocalOp
|
|
// Reciprocal(x) = Div(1, x)
|
|
namespace {
|
|
template <>
|
|
LogicalResult ConvertAtenOp<AtenReciprocalOp>::matchAndRewrite(
|
|
AtenReciprocalOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
Value input = adaptor.self();
|
|
auto inputTy = input.getType().cast<RankedTensorType>();
|
|
auto outTy =
|
|
getTypeConverter()->convertType(op.getType()).cast<RankedTensorType>();
|
|
if (!inputTy.getElementType().isa<mlir::FloatType>()) {
|
|
return op.emitError("only floating-point datatype legalization supported "
|
|
"for AtenReciprocalOp");
|
|
}
|
|
|
|
Value oneTensor = chlo::getConstantLike(rewriter, op->getLoc(), 1, input);
|
|
rewriter.replaceOpWithNewOp<mhlo::DivOp>(op, outTy, oneTensor, input);
|
|
return success();
|
|
}
|
|
} // namespace
|
|
|
|
// PrimNumToTensorScalarOp
|
|
namespace {
|
|
template <>
|
|
LogicalResult ConvertAtenOp<PrimNumToTensorScalarOp>::matchAndRewrite(
|
|
PrimNumToTensorScalarOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
RankedTensorType outputType = getTypeConverter()
|
|
->convertType(op->getResult(0).getType())
|
|
.cast<RankedTensorType>();
|
|
auto outputElemType = outputType.getElementType();
|
|
Value mhloTensor =
|
|
mhlo::scalarToMhloTensor(rewriter, op, adaptor.a(), outputElemType);
|
|
rewriter.replaceOp(op, mhloTensor);
|
|
return success();
|
|
}
|
|
} // namespace
|
|
|
|
// AtenContiguousOp
|
|
// Ref: TosaToTosa.cpp for implementation details
|
|
namespace {
|
|
template <>
|
|
LogicalResult ConvertAtenOp<AtenContiguousOp>::matchAndRewrite(
|
|
AtenContiguousOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
|
|
// Not a tensor type.
|
|
auto selfType = adaptor.self().getType().dyn_cast<TensorType>();
|
|
if (!selfType)
|
|
return op.emitError("only tensor types are currently supported");
|
|
|
|
// FIXME: memory_format is not handled.
|
|
|
|
rewriter.replaceOp(op, adaptor.self());
|
|
|
|
return success();
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// AtenReluOp
|
|
// Relu(x) = Max(0, x)
|
|
namespace {
|
|
template <>
|
|
LogicalResult ConvertAtenOp<AtenReluOp>::matchAndRewrite(
|
|
AtenReluOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
Value lhs = adaptor.self();
|
|
auto lhsTy = lhs.getType().cast<RankedTensorType>();
|
|
auto lhsElemTy = lhsTy.getElementType();
|
|
|
|
if (!lhsElemTy.isa<mlir::FloatType>()) {
|
|
return op->emitError("only float tensor in relu op is supported");
|
|
}
|
|
|
|
Value zeroTensor;
|
|
zeroTensor = chlo::getConstantLike(
|
|
rewriter, op->getLoc(),
|
|
APFloat::getZero(lhsElemTy.cast<mlir::FloatType>().getFloatSemantics(),
|
|
false),
|
|
lhs);
|
|
rewriter.replaceOpWithNewOp<mhlo::MaxOp>(op, lhs, zeroTensor);
|
|
return success();
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// Convert a Aten::GELU to HLO
|
|
// Gelu(x) = x * 1/2 * [1 + erf(x/(sqrt(2)))]
|
|
namespace {
|
|
template <>
|
|
LogicalResult ConvertAtenOp<AtenGeluOp>::matchAndRewrite(
|
|
AtenGeluOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
Location loc = op.getLoc();
|
|
Value input = adaptor.self();
|
|
auto inputTy = input.getType().template dyn_cast<RankedTensorType>();
|
|
if (!inputTy) {
|
|
return op.emitError("only ranked tensor type is supported.");
|
|
}
|
|
|
|
Value one = chlo::getConstantLike(rewriter, loc, 1.0, input);
|
|
Value two = chlo::getConstantLike(rewriter, loc, 2.0, input);
|
|
Value half = chlo::getConstantLike(rewriter, loc, 0.5, input);
|
|
auto rsqrtTwo = rewriter.create<mlir::mhlo::RsqrtOp>(loc, two);
|
|
auto erfElement = rewriter.create<mhlo::MulOp>(loc, input, rsqrtTwo);
|
|
auto erf = rewriter.create<mlir::chlo::ErfOp>(loc, erfElement);
|
|
auto erfAdd = rewriter.create<mhlo::AddOp>(loc, erf, one);
|
|
auto halfMul = rewriter.create<mhlo::MulOp>(loc, erfAdd, half);
|
|
rewriter.replaceOpWithNewOp<mhlo::MulOp>(op, input, halfMul);
|
|
return success();
|
|
}
|
|
} // namespace
|
|
|
|
// AtenErfOp
|
|
namespace {
|
|
template <>
|
|
LogicalResult ConvertAtenOp<AtenErfOp>::matchAndRewrite(
|
|
AtenErfOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
Value input = adaptor.self();
|
|
auto inputType = input.getType().cast<TensorType>();
|
|
if (!inputType.getElementType().isa<mlir::FloatType>()) {
|
|
return rewriter.notifyMatchFailure(op, "only float tensor is supported");
|
|
}
|
|
rewriter.replaceOpWithNewOp<chlo::ErfOp>(
|
|
op, getTypeConverter()->convertType(op.getType()), input);
|
|
return success();
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// AtenBatchNormOp
|
|
namespace {
|
|
template <>
|
|
LogicalResult ConvertAtenOp<AtenBatchNormOp>::matchAndRewrite(
|
|
AtenBatchNormOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
Value input = adaptor.input();
|
|
// shape = [N, C, H, W]
|
|
auto inputTy = input.getType().cast<RankedTensorType>();
|
|
Value weight = adaptor.weight();
|
|
Value bias = adaptor.bias();
|
|
Value runningMean = adaptor.running_mean();
|
|
Value runningVar = adaptor.running_var();
|
|
// momentum is ignored
|
|
Value momentum = adaptor.momentum();
|
|
(void)momentum;
|
|
|
|
if (inputTy.getRank() <= 2) {
|
|
return rewriter.notifyMatchFailure(op,
|
|
"input should have rank larger than 2");
|
|
}
|
|
if (!inputTy.getElementType().template isa<mlir::FloatType>()) {
|
|
return op.emitError("only input tensor of float type is supported");
|
|
}
|
|
auto inputElemTy = inputTy.getElementType().cast<mlir::FloatType>();
|
|
|
|
Value channelDim = rewriter.create<tensor::DimOp>(op->getLoc(), input, 1);
|
|
|
|
#ifdef TORCH_MLIR_ENABLE_MHLO_TRUNC_DIMSIZE_TO_I32
|
|
auto channelDimI64 = rewriter.create<mlir::arith::IndexCastOp>(
|
|
op->getLoc(), rewriter.getI64Type(), channelDim);
|
|
channelDim = rewriter.create<arith::TruncIOp>(
|
|
op->getLoc(), rewriter.getI32Type(), channelDimI64);
|
|
#endif
|
|
|
|
Value channelShape = rewriter.create<tensor::FromElementsOp>(
|
|
op->getLoc(), ValueRange{channelDim});
|
|
if (failed(checkNotNone(rewriter, op, weight))) {
|
|
weight = mhlo::getConstantOfShape(
|
|
rewriter, op->getLoc(), APFloat(inputElemTy.getFloatSemantics(), 1),
|
|
channelShape,
|
|
RankedTensorType::get({inputTy.getShape()[1]},
|
|
inputTy.getElementType()));
|
|
}
|
|
if (failed(checkNotNone(rewriter, op, bias))) {
|
|
bias = mhlo::getConstantOfShape(
|
|
rewriter, op->getLoc(), APFloat(inputElemTy.getFloatSemantics(), 0),
|
|
channelShape,
|
|
RankedTensorType::get({inputTy.getShape()[1]},
|
|
inputTy.getElementType()));
|
|
}
|
|
if (failed(checkNotNone(rewriter, op, runningVar))) {
|
|
runningVar = mhlo::getConstantOfShape(
|
|
rewriter, op->getLoc(), APFloat(inputElemTy.getFloatSemantics(), 1),
|
|
channelShape,
|
|
RankedTensorType::get({inputTy.getShape()[1]},
|
|
inputTy.getElementType()));
|
|
}
|
|
if (failed(checkNotNone(rewriter, op, runningMean))) {
|
|
runningMean = mhlo::getConstantOfShape(
|
|
rewriter, op->getLoc(), APFloat(inputElemTy.getFloatSemantics(), 0),
|
|
channelShape,
|
|
RankedTensorType::get({inputTy.getShape()[1]},
|
|
inputTy.getElementType()));
|
|
}
|
|
|
|
auto weightTy = weight.getType().cast<RankedTensorType>();
|
|
auto biasTy = bias.getType().cast<RankedTensorType>();
|
|
auto runningMeanTy = runningMean.getType().cast<RankedTensorType>();
|
|
auto runningVarTy = runningVar.getType().cast<RankedTensorType>();
|
|
|
|
if (weightTy.getRank() != 1 || biasTy.getRank() != 1 ||
|
|
runningMeanTy.getRank() != 1 || runningVarTy.getRank() != 1) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "expect weight, bias, running_mean and running_var to be rank 1");
|
|
}
|
|
if (!weightTy.getElementType().template isa<mlir::FloatType>() ||
|
|
!biasTy.getElementType().template isa<mlir::FloatType>() ||
|
|
!runningMeanTy.getElementType().template isa<mlir::FloatType>() ||
|
|
!runningVarTy.getElementType().template isa<mlir::FloatType>()) {
|
|
return op.emitError("only float weight/bias/runningMean/runningVar tensor "
|
|
"of float type is supported");
|
|
}
|
|
|
|
double eps = 0.0;
|
|
if (!matchPattern(op.eps(), m_TorchConstantFloat(&eps))) {
|
|
return rewriter.notifyMatchFailure(op, "non-float(double) eps unsupported");
|
|
}
|
|
bool training = false;
|
|
if (!matchPattern(op.training(), m_TorchConstantBool(&training))) {
|
|
return rewriter.notifyMatchFailure(op, "non-bool training unsupported");
|
|
}
|
|
// TODO: handle cudnnEnabled parameter. Here, we just ignore it!
|
|
bool cudnnEnabled = false;
|
|
if (!matchPattern(op.cudnn_enabled(), m_TorchConstantBool(&cudnnEnabled))) {
|
|
return rewriter.notifyMatchFailure(op,
|
|
"non-bool cudnn_enabled unsupported");
|
|
}
|
|
if (training) {
|
|
Type outputTy = getTypeConverter()->convertType(op.getType());
|
|
Type batchMeanOrVarTy =
|
|
RankedTensorType::get(weightTy.getShape(), inputTy.getElementType());
|
|
auto batchNormTrainingResult = rewriter.create<mhlo::BatchNormTrainingOp>(
|
|
op.getLoc(), outputTy, batchMeanOrVarTy, batchMeanOrVarTy, input,
|
|
weight, bias, rewriter.getF32FloatAttr(eps),
|
|
rewriter.getI64IntegerAttr(1));
|
|
rewriter.replaceOp(op, batchNormTrainingResult.getResult(0));
|
|
return success();
|
|
} else {
|
|
Type outputTy = getTypeConverter()->convertType(op.getType());
|
|
rewriter.replaceOpWithNewOp<mhlo::BatchNormInferenceOp>(
|
|
op, outputTy, input, weight, bias, runningMean, runningVar,
|
|
rewriter.getFloatAttr(inputTy.getElementType(), eps),
|
|
rewriter.getI64IntegerAttr(1));
|
|
return success();
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// AtenNativeLayerNormOp
|
|
namespace {
|
|
template <>
|
|
LogicalResult ConvertAtenOp<AtenNativeLayerNormOp>::matchAndRewrite(
|
|
AtenNativeLayerNormOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
Value input = adaptor.input();
|
|
auto inputTy = input.getType().cast<RankedTensorType>();
|
|
auto inputShape = inputTy.getShape();
|
|
auto inputRank = inputTy.getRank();
|
|
Value weight = adaptor.weight();
|
|
Value bias = adaptor.bias();
|
|
|
|
if (!inputTy.hasStaticShape()) {
|
|
return op->emitError("dynamic shaped input is not supported");
|
|
}
|
|
|
|
SmallVector<int64_t> normalizedShape;
|
|
if (!matchPattern(op.normalized_shape(),
|
|
m_TorchConstantIntList(normalizedShape))) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "normalized_shape must be a list of const int");
|
|
}
|
|
double eps = 0;
|
|
if (!matchPattern(op.eps(), m_TorchConstantFloat(&eps))) {
|
|
return rewriter.notifyMatchFailure(op,
|
|
"non const float eps is unsupported");
|
|
}
|
|
if (failed(checkNotNone(rewriter, op, weight)) ||
|
|
failed(checkNotNone(rewriter, op, bias))) {
|
|
return op->emitError("none weight or bias is unsupported");
|
|
}
|
|
auto weightTy = weight.getType().cast<RankedTensorType>();
|
|
auto biasTy = bias.getType().cast<RankedTensorType>();
|
|
|
|
if (!inputTy.getElementType().isa<mlir::FloatType>() ||
|
|
!biasTy.getElementType().isa<mlir::FloatType>() ||
|
|
!weightTy.getElementType().isa<mlir::FloatType>()) {
|
|
return op->emitError("currently only float data type are supported");
|
|
}
|
|
int64_t normalizedShapeRank = normalizedShape.size();
|
|
if (weightTy.getRank() != normalizedShapeRank ||
|
|
biasTy.getRank() != normalizedShapeRank ||
|
|
inputRank < normalizedShapeRank || normalizedShapeRank < 1) {
|
|
return rewriter.notifyMatchFailure(op, "input or weight or bias shape or"
|
|
"normalized shape not compatible");
|
|
}
|
|
for (int64_t i = 1; i <= normalizedShapeRank; i++) {
|
|
if (inputShape[inputRank - i] != normalizedShape[normalizedShapeRank - i] ||
|
|
weightTy.getShape()[normalizedShapeRank - i] !=
|
|
normalizedShape[normalizedShapeRank - i] ||
|
|
biasTy.getShape()[normalizedShapeRank - i] !=
|
|
normalizedShape[normalizedShapeRank - i]) {
|
|
return op.emitError("mismatching contracting dimension");
|
|
}
|
|
}
|
|
|
|
// Flatten dims to fit batch_norm operation.
|
|
int64_t numFeatureDimSize = 1;
|
|
int64_t numEmbeddingDimSize = 1;
|
|
for (int64_t i = 0; i < inputRank - normalizedShapeRank; i++) {
|
|
numFeatureDimSize *= inputShape[i];
|
|
}
|
|
for (int64_t i = 0; i < normalizedShapeRank; i++) {
|
|
numEmbeddingDimSize *= normalizedShape[i];
|
|
}
|
|
SmallVector<int64_t> inputFlattenShape{1, numFeatureDimSize,
|
|
numEmbeddingDimSize};
|
|
SmallVector<int64_t> meanOrVarMhloOutShape{numFeatureDimSize};
|
|
|
|
auto mhloBatchNormOutTy =
|
|
RankedTensorType::get(inputFlattenShape, inputTy.getElementType());
|
|
auto mhloBathNormOutMeanOrVarTy =
|
|
RankedTensorType::get(meanOrVarMhloOutShape, inputTy.getElementType());
|
|
|
|
// Reshape input
|
|
auto mhloInput = rewriter.create<mhlo::DynamicReshapeOp>(
|
|
op->getLoc(), mhloBatchNormOutTy, input,
|
|
mhlo::getConstTensor(rewriter, op, llvm::makeArrayRef(inputFlattenShape),
|
|
{static_cast<int64_t>(inputFlattenShape.size())})
|
|
.value());
|
|
|
|
// Generate "scale" and "offset" Value for mhlo.BatchNormTrainingOp.
|
|
SmallVector<APFloat> zeroConstVec(
|
|
numFeatureDimSize, APFloat::getZero(inputTy.getElementType()
|
|
.cast<mlir::FloatType>()
|
|
.getFloatSemantics()));
|
|
SmallVector<APFloat> oneConstVec(
|
|
numFeatureDimSize,
|
|
APFloat(
|
|
inputTy.getElementType().cast<mlir::FloatType>().getFloatSemantics(),
|
|
1));
|
|
auto oneOrZeroConstType =
|
|
RankedTensorType::get({numFeatureDimSize}, inputTy.getElementType());
|
|
|
|
Value scale = rewriter.create<mhlo::ConstantOp>(
|
|
op->getLoc(), oneOrZeroConstType,
|
|
DenseElementsAttr::get(oneOrZeroConstType, oneConstVec));
|
|
Value offset = rewriter.create<mhlo::ConstantOp>(
|
|
op->getLoc(), oneOrZeroConstType,
|
|
DenseElementsAttr::get(oneOrZeroConstType, zeroConstVec));
|
|
auto batchNormTrainingResult = rewriter.create<mhlo::BatchNormTrainingOp>(
|
|
op->getLoc(), mhloBatchNormOutTy, mhloBathNormOutMeanOrVarTy,
|
|
mhloBathNormOutMeanOrVarTy, mhloInput, scale, offset,
|
|
rewriter.getF32FloatAttr(eps), rewriter.getI64IntegerAttr(1));
|
|
|
|
// Reshape back
|
|
auto outputTy =
|
|
getTypeConverter()->convertType(op.getType(0)).cast<RankedTensorType>();
|
|
auto outputMeanOrVarTy =
|
|
getTypeConverter()->convertType(op.getType(1)).cast<RankedTensorType>();
|
|
|
|
auto output = rewriter.create<mhlo::DynamicReshapeOp>(
|
|
op->getLoc(), outputTy, batchNormTrainingResult.getResult(0),
|
|
mhlo::getConstTensor(rewriter, op, outputTy.getShape(),
|
|
{static_cast<int64_t>(outputTy.getShape().size())})
|
|
.value());
|
|
auto mean = rewriter.create<mhlo::DynamicReshapeOp>(
|
|
op->getLoc(), outputMeanOrVarTy, batchNormTrainingResult.getResult(1),
|
|
mhlo::getConstTensor(
|
|
rewriter, op, outputMeanOrVarTy.getShape(),
|
|
{static_cast<int64_t>(outputMeanOrVarTy.getShape().size())})
|
|
.value());
|
|
auto var = rewriter.create<mhlo::DynamicReshapeOp>(
|
|
op->getLoc(), outputMeanOrVarTy, batchNormTrainingResult.getResult(2),
|
|
mhlo::getConstTensor(
|
|
rewriter, op, outputMeanOrVarTy.getShape(),
|
|
{static_cast<int64_t>(outputMeanOrVarTy.getShape().size())})
|
|
.value());
|
|
|
|
// Apply affine transform: output x weight + bias [element-wise]
|
|
auto bcastedWeight = mhlo::promoteAndBroadcast(rewriter, weight, outputTy);
|
|
auto bcastedBias = mhlo::promoteAndBroadcast(rewriter, bias, outputTy);
|
|
auto outputMulWeight =
|
|
rewriter.create<mhlo::MulOp>(op->getLoc(), output, bcastedWeight);
|
|
auto finalOuput =
|
|
rewriter.create<mhlo::AddOp>(op->getLoc(), outputMulWeight, bcastedBias);
|
|
rewriter.replaceOp(op, {finalOuput, mean, var});
|
|
return success();
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// AtenCatOp
|
|
namespace {
|
|
template <>
|
|
LogicalResult ConvertAtenOp<AtenCatOp>::matchAndRewrite(
|
|
AtenCatOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
auto outType =
|
|
getTypeConverter()->convertType(op.getType()).cast<RankedTensorType>();
|
|
int64_t dim;
|
|
if (!matchPattern(op.dim(), m_TorchConstantInt(&dim))) {
|
|
return rewriter.notifyMatchFailure(op,
|
|
"only constant dim param is supported");
|
|
}
|
|
|
|
SmallVector<Value> torchTensors;
|
|
if (!getListConstructElements(op.tensors(), torchTensors)) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "input should comes from a PrimListConstructOp");
|
|
}
|
|
SmallVector<Value> builtinTensors = getTypeConvertedValues(
|
|
rewriter, op->getLoc(), getTypeConverter(), torchTensors);
|
|
|
|
// Promote type
|
|
for (auto &v : builtinTensors) {
|
|
v = mhlo::promoteType(rewriter, v, outType);
|
|
}
|
|
|
|
rewriter.replaceOpWithNewOp<mhlo::ConcatenateOp>(
|
|
op, ValueRange(builtinTensors), static_cast<uint64_t>(dim));
|
|
return success();
|
|
}
|
|
} // namespace
|
|
|
|
void mlir::torch::torch_to_mhlo::populateBasicOpPatternsAndLegality(
|
|
TypeConverter &typeConverter, RewritePatternSet &patterns,
|
|
ConversionTarget &target) {
|
|
MLIRContext *context = patterns.getContext();
|
|
|
|
target.addIllegalOp<AtenTransposeIntOp>();
|
|
patterns.add<ConvertAtenTransposeIntOp>(typeConverter, context);
|
|
|
|
target.addIllegalOp<AtenBroadcastToOp>();
|
|
patterns.add<ConvertAtenBroadcastToOp>(typeConverter, context);
|
|
|
|
target.addIllegalOp<AtenPermuteOp>();
|
|
patterns.add<ConvertAtenPermuteOp>(typeConverter, context);
|
|
|
|
#define INSERT_UNARY_FPONLY_PATTERN(AtenOp, MhloOp) \
|
|
target.addIllegalOp<AtenOp>(); \
|
|
patterns.add<ConvertAtenUnaryFPOnlyOp<AtenOp, MhloOp>>(typeConverter, \
|
|
context);
|
|
INSERT_UNARY_FPONLY_PATTERN(AtenLogOp, mhlo::LogOp);
|
|
INSERT_UNARY_FPONLY_PATTERN(AtenExpOp, mhlo::ExpOp);
|
|
INSERT_UNARY_FPONLY_PATTERN(AtenCloneOp, mhlo::CopyOp);
|
|
INSERT_UNARY_FPONLY_PATTERN(AtenSqrtOp, mhlo::SqrtOp);
|
|
INSERT_UNARY_FPONLY_PATTERN(AtenNegOp, mhlo::NegOp);
|
|
#undef INSERT_UNARY_FPONLY_PATTERN
|
|
|
|
#define INSERT_CONSTANT_FILL_PATTERN(AtenOp, fillVal) \
|
|
target.addIllegalOp<AtenOp>(); \
|
|
patterns.add<ConvertAtenConstPatternOp<AtenOp, fillVal>>(typeConverter, \
|
|
context);
|
|
INSERT_CONSTANT_FILL_PATTERN(AtenOnesOp, 1);
|
|
INSERT_CONSTANT_FILL_PATTERN(AtenZerosOp, 0);
|
|
#undef INSERT_CONSTANT_FILL_PATTERN
|
|
|
|
#define INSERT_BINARY_ADDSUB_PATTERN(AtenOp, ChloOp) \
|
|
target.addIllegalOp<AtenOp>(); \
|
|
patterns.add<ConvertAtenAddSubOp<AtenOp, ChloOp>>(typeConverter, context);
|
|
INSERT_BINARY_ADDSUB_PATTERN(AtenAddTensorOp, chlo::BroadcastAddOp);
|
|
INSERT_BINARY_ADDSUB_PATTERN(AtenAddScalarOp, chlo::BroadcastAddOp);
|
|
INSERT_BINARY_ADDSUB_PATTERN(AtenSubTensorOp, chlo::BroadcastSubOp);
|
|
INSERT_BINARY_ADDSUB_PATTERN(AtenSubScalarOp, chlo::BroadcastSubOp);
|
|
#undef INSERT_BINARY_ADDSUB_PATTERN
|
|
|
|
#define INSERT_BINARY_MULDIV_PATTERN(AtenOp, ChloOp) \
|
|
target.addIllegalOp<AtenOp>(); \
|
|
patterns.add<ConvertAtenMulDivOp<AtenOp, ChloOp>>(typeConverter, context);
|
|
INSERT_BINARY_MULDIV_PATTERN(AtenMulTensorOp, chlo::BroadcastMulOp);
|
|
INSERT_BINARY_MULDIV_PATTERN(AtenMulScalarOp, chlo::BroadcastMulOp);
|
|
INSERT_BINARY_MULDIV_PATTERN(AtenDivTensorOp, chlo::BroadcastDivOp);
|
|
INSERT_BINARY_MULDIV_PATTERN(AtenDivTensorModeOp, chlo::BroadcastDivOp);
|
|
INSERT_BINARY_MULDIV_PATTERN(AtenDivScalarOp, chlo::BroadcastDivOp);
|
|
#undef INSERT_BINARY_MULDIV_PATTERN
|
|
|
|
#define INSERT_BINARY_COMPARE_PATTERN(AtenOp) \
|
|
target.addIllegalOp<AtenOp>(); \
|
|
patterns.add<ConvertAtenCompareOp<AtenOp>>(typeConverter, context);
|
|
|
|
INSERT_BINARY_COMPARE_PATTERN(AtenGtTensorOp);
|
|
INSERT_BINARY_COMPARE_PATTERN(AtenGtScalarOp);
|
|
INSERT_BINARY_COMPARE_PATTERN(AtenLtTensorOp);
|
|
INSERT_BINARY_COMPARE_PATTERN(AtenLtScalarOp);
|
|
INSERT_BINARY_COMPARE_PATTERN(AtenEqTensorOp);
|
|
INSERT_BINARY_COMPARE_PATTERN(AtenEqScalarOp);
|
|
INSERT_BINARY_COMPARE_PATTERN(AtenNeTensorOp);
|
|
INSERT_BINARY_COMPARE_PATTERN(AtenNeScalarOp);
|
|
#undef INSERT_BINARY_COMPARE_PATTERN
|
|
|
|
#define INSERT_ATENOP_PATTERN(AtenOp) \
|
|
target.addIllegalOp<AtenOp>(); \
|
|
patterns.add<ConvertAtenOp<AtenOp>>(typeConverter, context);
|
|
INSERT_ATENOP_PATTERN(AtenTanhOp);
|
|
INSERT_ATENOP_PATTERN(ValueTensorLiteralOp);
|
|
INSERT_ATENOP_PATTERN(AtenReciprocalOp);
|
|
INSERT_ATENOP_PATTERN(PrimNumToTensorScalarOp);
|
|
INSERT_ATENOP_PATTERN(AtenContiguousOp);
|
|
|
|
INSERT_ATENOP_PATTERN(AtenReluOp);
|
|
INSERT_ATENOP_PATTERN(AtenGeluOp);
|
|
INSERT_ATENOP_PATTERN(AtenErfOp);
|
|
|
|
INSERT_ATENOP_PATTERN(AtenCatOp);
|
|
|
|
INSERT_ATENOP_PATTERN(AtenBatchNormOp);
|
|
INSERT_ATENOP_PATTERN(AtenNativeLayerNormOp);
|
|
#undef INSERT_ATENOP_PATTERN
|
|
}
|