torch-mlir/lib/Conversion/TCFToTCP/TCFToTCP.cpp

84 lines
3.2 KiB
C++

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "npcomp/Conversion/TCFToTCP/TCFToTCP.h"
#include "../PassDetail.h"
#include "mlir/Dialect/Shape/IR/Shape.h"
#include "mlir/Dialect/Traits.h"
#include "mlir/Transforms/DialectConversion.h"
#include "npcomp/Dialect/TCF/IR/TCFOps.h"
#include "npcomp/Dialect/TCP/IR/TCPOps.h"
using namespace mlir;
using namespace mlir::NPCOMP;
namespace {
RankedTensorType getExtentTensorType(Builder &builder) {
return RankedTensorType::get({ShapedType::kDynamicSize},
builder.getIndexType());
}
class ConvertAdd : public OpRewritePattern<tcf::AddOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(tcf::AddOp op,
PatternRewriter &rewriter) const override {
auto lhsType = op.lhs().getType().dyn_cast<RankedTensorType>();
auto rhsType = op.rhs().getType().dyn_cast<RankedTensorType>();
if (!lhsType || !rhsType) {
return rewriter.notifyMatchFailure(op, "requires ranked tensors");
}
Value lhsShape = rewriter.create<shape::ShapeOfOp>(op.getLoc(), op.lhs());
Value rhsShape = rewriter.create<shape::ShapeOfOp>(op.getLoc(), op.rhs());
Value broadcastedShape = rewriter.create<shape::BroadcastOp>(
op.getLoc(), lhsShape, rhsShape, /*error=*/nullptr);
rewriter.create<tcp::ShapeObserveErrorOp>(op.getLoc(), broadcastedShape);
Value broadcastedExtents = rewriter.create<shape::ToExtentTensorOp>(
op.getLoc(), getExtentTensorType(rewriter), broadcastedShape);
// TODO: It's annoying to do the dynamic broadcast above then
// do the static transfer function here. Would be nice if they could
// somehow be unified.
SmallVector<int64_t, 6> broadcastedStaticShape;
OpTrait::util::getBroadcastedShape(lhsType.getShape(), rhsType.getShape(),
broadcastedStaticShape);
auto resultType =
RankedTensorType::get(broadcastedStaticShape, lhsType.getElementType());
Value lhsBroadcasted = rewriter.create<tcp::BroadcastToOp>(
op.getLoc(), resultType, op.lhs(), broadcastedExtents);
Value rhsBroadcasted = rewriter.create<tcp::BroadcastToOp>(
op.getLoc(), resultType, op.rhs(), broadcastedExtents);
Value add = rewriter.create<tcp::AddOp>(op.getLoc(), op.getType(),
lhsBroadcasted, rhsBroadcasted);
rewriter.replaceOp(op, add);
return success();
}
};
} // namespace
namespace {
class ConvertTCFToTCP : public ConvertTCFToTCPBase<ConvertTCFToTCP> {
public:
void runOnOperation() {
ModuleOp module = getOperation();
MLIRContext *context = &getContext();
OwningRewritePatternList patterns;
patterns.insert<ConvertAdd>(context);
(void)applyPatternsAndFoldGreedily(module, patterns);
}
};
} // namespace
std::unique_ptr<OperationPass<ModuleOp>>
mlir::NPCOMP::createConvertTCFToTCPPass() {
return std::make_unique<ConvertTCFToTCP>();
}