mirror of https://github.com/llvm/torch-mlir
259 lines
11 KiB
C++
259 lines
11 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
// Also available under a BSD-style license. See LICENSE.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Utils.h"
|
|
|
|
#include "../PassDetail.h"
|
|
#include "PopulatePatterns.h"
|
|
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
|
|
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
|
|
#include "mlir/Dialect/Linalg/IR/Linalg.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/Dialect/Tensor/Utils/Utils.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "torch-mlir/Conversion/Utils/Utils.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchDialect.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
|
|
#include "torch-mlir/Dialect/Torch/Utils/TorchUpstream.h"
|
|
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::torch;
|
|
using namespace mlir::torch::Torch;
|
|
|
|
static SmallVector<OpFoldResult>
|
|
getIndexIntsAsOpFoldResult(OpBuilder &b, SmallVectorImpl<int64_t> &ints) {
|
|
return llvm::to_vector<4>(llvm::map_range(
|
|
ints, [&](int64_t val) -> OpFoldResult { return b.getIndexAttr(val); }));
|
|
}
|
|
|
|
// Helper function to get the padding tensor given the padding int values.
|
|
Value torch_to_linalg::getPaddedTensor(
|
|
Operation *op, OpBuilder &b, Value &input,
|
|
SmallVectorImpl<int64_t> &lowPaddingInts,
|
|
SmallVectorImpl<int64_t> &highPaddingInts, Value pad) {
|
|
Location loc = op->getLoc();
|
|
Type rankedTensorType =
|
|
tensor::PadOp::inferResultType(input.getType().cast<RankedTensorType>(),
|
|
lowPaddingInts, highPaddingInts);
|
|
SmallVector<OpFoldResult> lowPaddings =
|
|
getIndexIntsAsOpFoldResult(b, lowPaddingInts);
|
|
SmallVector<OpFoldResult> highPaddings =
|
|
getIndexIntsAsOpFoldResult(b, highPaddingInts);
|
|
Value paddedInput = tensor::createPadScalarOp(
|
|
rankedTensorType, input, pad, /*low=*/lowPaddings, /*high=*/highPaddings,
|
|
/*packing=*/false, loc, b);
|
|
return paddedInput;
|
|
}
|
|
|
|
// Helper function to get the padding tensor given the padding int values.
|
|
// It's assumed that the padding on the low end and high end are the same,
|
|
// and that zero padding is required.
|
|
Value torch_to_linalg::getZeroPaddedTensor(
|
|
Operation *op, OpBuilder &b, Value &input,
|
|
SmallVectorImpl<int64_t> &paddingInts) {
|
|
assert(input.getType().isa<RankedTensorType>() &&
|
|
"input must be RankedTensorType");
|
|
Location loc = op->getLoc();
|
|
Value c0 = b.create<arith::ConstantOp>(
|
|
loc,
|
|
b.getZeroAttr(input.getType().cast<RankedTensorType>().getElementType()));
|
|
return getPaddedTensor(op, b, input, paddingInts, paddingInts, c0);
|
|
}
|
|
|
|
Value torch_to_linalg::getOutputDimForConvOps(OpBuilder &b, Location loc,
|
|
Value in, Value paddingInt,
|
|
Value dilationInt,
|
|
Value kernelSizeInt,
|
|
Value strideInt, bool ceilMode) {
|
|
Value c1 = b.create<arith::ConstantOp>(loc, b.getI64IntegerAttr(1));
|
|
Value c2 = b.create<arith::ConstantOp>(loc, b.getI64IntegerAttr(2));
|
|
|
|
Value doublePadding = b.create<arith::MulIOp>(loc, paddingInt, c2);
|
|
// in + 2 * padding
|
|
Value inAddDoublePadding =
|
|
b.create<arith::AddIOp>(loc, castIndexToInt64(b, loc, in), doublePadding);
|
|
|
|
// dilation * (kernelSize - 1)
|
|
Value kernelSizeSub1 = b.create<arith::SubIOp>(loc, kernelSizeInt, c1);
|
|
Value dilationTimesKernelSize =
|
|
b.create<arith::MulIOp>(loc, dilationInt, kernelSizeSub1);
|
|
|
|
Value temp =
|
|
b.create<arith::SubIOp>(loc, inAddDoublePadding, dilationTimesKernelSize);
|
|
Value dividend = b.create<arith::SubIOp>(loc, temp, c1);
|
|
Value division;
|
|
if (ceilMode)
|
|
division = b.create<arith::CeilDivSIOp>(loc, dividend, strideInt);
|
|
else
|
|
division = b.create<arith::FloorDivSIOp>(loc, dividend, strideInt);
|
|
Value out = b.create<arith::AddIOp>(loc, division, c1);
|
|
return castIntToIndex(b, loc, out);
|
|
}
|
|
|
|
Value torch_to_linalg::createReductionLinalgGeneric(
|
|
OpBuilder &b, Location loc, const ReductionOpInfo &opInfo, Value initElem,
|
|
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild) {
|
|
auto inputType = opInfo.tensorOperand.getType().cast<RankedTensorType>();
|
|
|
|
// Get the result shape by obtaining the size of each
|
|
// dimension in the input tensor that is not getting reduced.
|
|
// If `opInfo.keepDim` is true, the rank of the output tensor
|
|
// is kept the same as the rank of the input tensor, and the
|
|
// reduced dimensions are set to have size 1.
|
|
auto c1 = b.create<arith::ConstantIndexOp>(loc, /*value=*/1);
|
|
SmallVector<Value> resultShape;
|
|
for (int64_t i = 0; i < inputType.getRank(); i++) {
|
|
auto currentDimSize = b.create<tensor::DimOp>(loc, opInfo.tensorOperand, i);
|
|
if (!opInfo.dimSet.contains(i))
|
|
resultShape.push_back(currentDimSize);
|
|
else if (opInfo.keepDim)
|
|
resultShape.push_back(c1);
|
|
}
|
|
|
|
// Create the affine expressions that will be used to
|
|
// iterate over the input and output tensors.
|
|
// Here we also set the type of iterator: parallel or reduction.
|
|
SmallVector<AffineExpr> exprs;
|
|
SmallVector<StringRef> iteratorTypes;
|
|
SmallVector<AffineExpr> resultExprs;
|
|
for (auto size : llvm::enumerate(inputType.getShape())) {
|
|
exprs.push_back(b.getAffineDimExpr(size.index()));
|
|
|
|
if (opInfo.dimSet.contains(size.index())) {
|
|
iteratorTypes.push_back(getReductionIteratorTypeName());
|
|
// If `opInfo.keepDim`, create affine map to the first element
|
|
// in the current dimension.
|
|
if (opInfo.keepDim)
|
|
resultExprs.push_back(b.getAffineConstantExpr(0));
|
|
} else {
|
|
iteratorTypes.push_back(getParallelIteratorTypeName());
|
|
resultExprs.push_back(b.getAffineDimExpr(size.index()));
|
|
}
|
|
}
|
|
|
|
auto indexingMaps = AffineMap::inferFromExprList({exprs, resultExprs});
|
|
Value accumulator =
|
|
createInitTensor(b, loc, resultShape, initElem.getType(), initElem);
|
|
|
|
return b
|
|
.create<linalg::GenericOp>(
|
|
loc, /*resultTensorTypes=*/accumulator.getType(),
|
|
/*inputs=*/opInfo.tensorOperand,
|
|
/*outputs=*/accumulator, indexingMaps, iteratorTypes, bodyBuild)
|
|
.getResult(0);
|
|
}
|
|
|
|
Value torch_to_linalg::createElementwiseLinalgGeneric(
|
|
OpBuilder &b, Location loc, ValueRange tensorOperands,
|
|
Type resultElementType,
|
|
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild) {
|
|
// The overall error handling strategy here is best viewed by thinking about
|
|
// what happens for a single result dimension. This loop not structured that
|
|
// way because it is hard to create the affine maps for each operand unless
|
|
// we structure the loop to iterate over tensor operands as the outer loop
|
|
// instead of inner loop. This pseudocode gives better intuition:
|
|
// ```
|
|
// for each result dimension:
|
|
// for each tensor operand:
|
|
// if it doesn't even have high enough rank relative to the result:
|
|
// continue
|
|
// if it is a static size-1 along this result dimension:
|
|
// continue
|
|
// if this is the first tensor operand that didn't continue above:
|
|
// take its dimension size as the size of the non-broadcasted
|
|
// traversal along this dimension (this may include a dynamic size-1,
|
|
// **non-broadcasted** traversal!)
|
|
// emit error check "if the size does not match the non-broadcasted
|
|
// traversal size along this dimension, error"
|
|
// ```
|
|
SmallVector<int64_t> operandRanks;
|
|
operandRanks.resize(tensorOperands.size());
|
|
llvm::transform(tensorOperands, operandRanks.begin(), [](Value tensor) {
|
|
return tensor.getType().dyn_cast<RankedTensorType>().getRank();
|
|
});
|
|
|
|
auto resultRankIt =
|
|
std::max_element(operandRanks.begin(), operandRanks.end());
|
|
assert(resultRankIt != operandRanks.end() && "Unable to get result rank.");
|
|
int64_t resultRank = *resultRankIt;
|
|
|
|
// Initialize the resultShape to all 1's, as a fallback in case
|
|
// all sizes along that result dimension are statically 1.
|
|
auto c1 = b.create<arith::ConstantIndexOp>(loc, /*value=*/1);
|
|
SmallVector<Value> resultShape(resultRank, c1);
|
|
SmallVector<AffineMap> indexingMaps;
|
|
for (Value tensorOperand : tensorOperands) {
|
|
SmallVector<AffineExpr> exprs;
|
|
auto type = tensorOperand.getType().cast<RankedTensorType>();
|
|
for (auto size : llvm::enumerate(type.getShape())) {
|
|
// If the size is statically known to be 1, we don't want any
|
|
// error guards to be spuriously emitted, since we are specifically
|
|
// allowing size-1 broadcasts in this case, as they correspond to a
|
|
// constant-0 indexing map.
|
|
if (size.value() == 1) {
|
|
exprs.push_back(b.getAffineConstantExpr(0));
|
|
continue;
|
|
}
|
|
|
|
// The rank of this operand might be smaller than the overall rank of
|
|
// the broadcast. Add an offset to correlate it to the correct
|
|
// dimension of the result.
|
|
auto resultDim = size.index() + (resultRank - type.getRank());
|
|
|
|
// The generated linalg op will now be iterating along the full size
|
|
// of this dimension. Record that fact.
|
|
exprs.push_back(b.getAffineDimExpr(resultDim));
|
|
|
|
// Now, we need to ensure that such iteration is not going to trigger
|
|
// undefined behavior, by doing appropriate checks against the current
|
|
// dimension size.
|
|
auto currentDimSize = getDimOp(b, loc, tensorOperand, size.index());
|
|
|
|
// If the result size of this dimension has so far only hit the
|
|
// statically-known-to-be-1 case above (i.e., we have not yet assigned a
|
|
// new Value to `resultShape[resultDim]`), then we have no other dynamic
|
|
// values to check against, and merely need to record the current
|
|
// dimension size.
|
|
if (resultShape[resultDim] == c1) {
|
|
resultShape[resultDim] = currentDimSize;
|
|
continue;
|
|
}
|
|
|
|
// We prohibit the size-1 dynamic broadcasting scenario, so just check
|
|
// for exact equality with the running result size.
|
|
// This is the check which protects against the undefined behavior of
|
|
// the generated linalg op in the case of iterating two operands with
|
|
// dimensions sizes that are expected to match.
|
|
auto equalToRunning =
|
|
b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
|
|
resultShape[resultDim], currentDimSize);
|
|
b.create<cf::AssertOp>(loc, equalToRunning,
|
|
"mismatched size for broadcast");
|
|
}
|
|
indexingMaps.push_back(AffineMap::get(
|
|
/*dimCount=*/resultRank, /*symbolCount=*/0, exprs, b.getContext()));
|
|
}
|
|
|
|
SmallVector<StringRef> iteratorTypes(resultRank,
|
|
getParallelIteratorTypeName());
|
|
// Add the indexing map for the outs init tensor.
|
|
indexingMaps.push_back(b.getMultiDimIdentityMap(resultRank));
|
|
|
|
Value initTensor = b.create<linalg::InitTensorOp>(
|
|
loc, getAsOpFoldResult(resultShape), resultElementType);
|
|
return b
|
|
.create<linalg::GenericOp>(loc,
|
|
/*resultTensorTypes=*/initTensor.getType(),
|
|
/*inputs=*/tensorOperands,
|
|
/*outputs=*/initTensor, indexingMaps,
|
|
iteratorTypes, bodyBuild)
|
|
.getResult(0);
|
|
}
|