mirror of https://github.com/llvm/torch-mlir
3060 lines
138 KiB
C++
3060 lines
138 KiB
C++
//===------------------------------------------------------------*- C++ -*-===//
|
|
//
|
|
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
// Also available under a BSD-style license. See LICENSE.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/IR/DialectResourceBlobManager.h"
|
|
#include "torch-mlir/Conversion/TorchOnnxToTorch/Patterns.h"
|
|
#include "torch-mlir/Conversion/TorchOnnxToTorch/Utils.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
|
|
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
|
|
#include "llvm/Support/FormatVariadic.h"
|
|
#include <numeric>
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::torch;
|
|
using namespace mlir::torch::onnx_c;
|
|
|
|
namespace {
|
|
LogicalResult windowFunctionImpl(OpBinder binder,
|
|
ConversionPatternRewriter &rewriter,
|
|
Value size, Value a0, Value a1, Value a2,
|
|
Torch::ValueTensorType resultType,
|
|
int64_t output_datatype, int64_t periodic) {
|
|
|
|
Location loc = binder.getLoc();
|
|
ImplicitLocOpBuilder b(loc, rewriter);
|
|
|
|
double isPeriodicFp = static_cast<double>(periodic);
|
|
|
|
Value zero = b.create<Torch::ConstantFloatOp>(rewriter.getF64FloatAttr(0.0));
|
|
Value one = b.create<Torch::ConstantFloatOp>(rewriter.getF64FloatAttr(1.0));
|
|
Value two = b.create<Torch::ConstantFloatOp>(rewriter.getF64FloatAttr(2.0));
|
|
|
|
constexpr double pi = llvm::numbers::pi;
|
|
Value tau = b.create<Torch::ConstantFloatOp>(
|
|
rewriter.getFloatAttr(rewriter.getF64Type(), 2.0 * pi));
|
|
|
|
Value noneVal = b.create<Torch::ConstantNoneOp>();
|
|
Value cstFalse = b.create<Torch::ConstantBoolOp>(false);
|
|
Value float32Type = b.create<Torch::ConstantIntOp>(
|
|
rewriter.getI64IntegerAttr(/*float32Type*/ 6));
|
|
|
|
// Create an f32 ValueTensorType with thse same size as size, the
|
|
// operand
|
|
auto shapeOfOperand =
|
|
dyn_cast<Torch::ValueTensorType>(size.getType()).getOptionalSizes();
|
|
auto f32ResultType = rewriter.getType<Torch::ValueTensorType>(
|
|
shapeOfOperand, rewriter.getF32Type());
|
|
Value periodicSizeFloat = b.create<Torch::AtenToDtypeOp>(
|
|
f32ResultType, size, float32Type, cstFalse, cstFalse, noneVal);
|
|
Value symmetricSizeFloat = b.create<Torch::AtenSubScalarOp>(
|
|
periodicSizeFloat.getType(), periodicSizeFloat, one, one);
|
|
|
|
Value isPeriodic =
|
|
b.create<Torch::ConstantFloatOp>(rewriter.getF64FloatAttr(isPeriodicFp));
|
|
Value isSymmetricFloat = b.create<Torch::ConstantFloatOp>(
|
|
rewriter.getF64FloatAttr(1.0 - isPeriodicFp));
|
|
|
|
Value periodicComponent = b.create<Torch::AtenMulScalarOp>(
|
|
periodicSizeFloat.getType(), periodicSizeFloat, isPeriodic);
|
|
Value symmetricComponent = b.create<Torch::AtenMulScalarOp>(
|
|
symmetricSizeFloat.getType(), symmetricSizeFloat, isSymmetricFloat);
|
|
Value sizeFloat = b.create<Torch::AtenAddTensorOp>(
|
|
symmetricComponent.getType(), symmetricComponent, periodicComponent, one);
|
|
|
|
// Here, size can be used in the place of periodicSizeFloat, as the
|
|
// latter is just a float representation of the former.
|
|
Value scalarLimit = getItemOp<Torch::IntType>(binder, rewriter, size);
|
|
|
|
Value rangeArr = b.create<Torch::AtenArangeStartStepOp>(
|
|
resultType, zero, scalarLimit, one, noneVal, noneVal, noneVal, noneVal);
|
|
|
|
Value rangeTimesTau =
|
|
b.create<Torch::AtenMulScalarOp>(resultType, rangeArr, tau);
|
|
Value rangeAngular =
|
|
b.create<Torch::AtenDivTensorOp>(resultType, rangeTimesTau, sizeFloat);
|
|
Value twoRangeAngular =
|
|
b.create<Torch::AtenMulScalarOp>(resultType, rangeAngular, two);
|
|
|
|
Value cosRangeAngular = b.create<Torch::AtenCosOp>(resultType, rangeAngular);
|
|
Value cosTwoRangeAngular =
|
|
b.create<Torch::AtenCosOp>(resultType, twoRangeAngular);
|
|
|
|
Value a1Component =
|
|
b.create<Torch::AtenMulScalarOp>(resultType, cosRangeAngular, a1);
|
|
Value a2Component =
|
|
b.create<Torch::AtenMulScalarOp>(resultType, cosTwoRangeAngular, a2);
|
|
|
|
// AtenSubScalarOp actually requires a tensor operand as the LHS, that
|
|
// is, operand #1. Therefore, to avoid errors, the onnx implementation
|
|
// has been modified. a1 has been changed to negative half, and the
|
|
// AtenSubScalarOp has been replaced with AtenAddScalarOp, as the add
|
|
// operation is commutative.
|
|
Value subA1Component =
|
|
b.create<Torch::AtenAddScalarOp>(resultType, a1Component, a0, one);
|
|
Value result = b.create<Torch::AtenAddTensorOp>(resultType, subA1Component,
|
|
a2Component, one);
|
|
|
|
std::optional<int64_t> dtypeIntTorch =
|
|
onnxDtypeIntToTorchDtypeInt(output_datatype);
|
|
if (!dtypeIntTorch.has_value()) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "unimplemented support for the given dtype conversion");
|
|
}
|
|
Value outputDtype = b.create<Torch::ConstantIntOp>(
|
|
rewriter.getType<Torch::IntType>(),
|
|
rewriter.getIntegerAttr(rewriter.getIntegerType(64),
|
|
dtypeIntTorch.value()));
|
|
|
|
rewriter.replaceOpWithNewOp<Torch::AtenToDtypeOp>(
|
|
binder.op, resultType, result, outputDtype,
|
|
/*non_blocking=*/cstFalse, /*copy=*/cstFalse,
|
|
/*memory_format=*/noneVal);
|
|
|
|
return success();
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// Simple rewrites for the default domain.
|
|
// See: https://onnx.ai/onnx/operators/
|
|
// For operators that are effectively version invariant, we register with
|
|
// sinceVersion==1. We interpret this to include the following spec
|
|
// diffs that are irrelevant to this level of lowering:
|
|
// * Supported element types.
|
|
// * Limited broadcasting to full broadcasting support.
|
|
//
|
|
// There are a lot of spec revisions that basically generalized elementwise
|
|
// to be more normal and a direct translation vs a special case. This
|
|
// results in a lot of ONNX test cases that all reduce to the exact same
|
|
// thing here, so we simplify.
|
|
void mlir::torch::onnx_c::populateDefaultDomainAtoF(
|
|
OnnxCustomOpConversionPattern &patterns) {
|
|
patterns.onOp("Abs", 1,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value operand;
|
|
if (binder.tensorOperand(operand) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
rewriter.replaceOpWithNewOp<Torch::AtenAbsOp>(
|
|
binder.op, resultType, operand);
|
|
return success();
|
|
});
|
|
// Add became forward compatible with Torch in version 7.
|
|
patterns.onOp("Add", 7,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value lhs, rhs;
|
|
if (binder.tensorOperands(lhs, rhs) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
Value const1 = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(),
|
|
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 1));
|
|
rewriter.replaceOpWithNewOp<Torch::AtenAddTensorOp>(
|
|
binder.op, resultType, lhs, rhs, const1);
|
|
return success();
|
|
});
|
|
// TODO: AffineGrid
|
|
patterns.onOp("And", 1,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value lhs, rhs;
|
|
if (binder.tensorOperands(lhs, rhs) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
rewriter.replaceOpWithNewOp<Torch::AtenLogicalAndOp>(
|
|
binder.op, resultType, lhs, rhs);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"ArgMax", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value operand;
|
|
bool keepDims;
|
|
int64_t axis;
|
|
bool selectLastIndex;
|
|
if (binder.tensorOperand(operand) ||
|
|
binder.tensorResultType(resultType) ||
|
|
binder.s64BoolAttr(keepDims, "keepdims", true) ||
|
|
binder.s64IntegerAttr(axis, "axis", 0) ||
|
|
binder.s64BoolAttr(selectLastIndex, "select_last_index", false))
|
|
return failure();
|
|
|
|
// ONNX allows negative axis.
|
|
auto operandSizes =
|
|
cast<Torch::ValueTensorType>(operand.getType()).getSizes();
|
|
if (axis < 0)
|
|
axis += operandSizes.size();
|
|
|
|
Value constAxis = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(),
|
|
rewriter.getIntegerAttr(rewriter.getIntegerType(64), axis));
|
|
Value constKeepDims = rewriter.create<Torch::ConstantBoolOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::BoolType>(),
|
|
rewriter.getBoolAttr(keepDims));
|
|
|
|
if (selectLastIndex) {
|
|
Value dims = createConstantIntList(binder, rewriter, {axis});
|
|
auto operandTy = dyn_cast<Torch::ValueTensorType>(operand.getType());
|
|
operand = rewriter.create<Torch::AtenFlipOp>(
|
|
binder.getLoc(), operandTy, operand, dims);
|
|
Value argmax = rewriter.create<Torch::AtenArgmaxOp>(
|
|
binder.getLoc(), resultType, operand, constAxis, constKeepDims);
|
|
Value offset = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(),
|
|
rewriter.getI64IntegerAttr(operandSizes[axis] - 1));
|
|
Value alpha = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(1));
|
|
Value sub = rewriter.create<Torch::AtenSubScalarOp>(
|
|
binder.getLoc(), resultType, argmax, offset, alpha);
|
|
rewriter.replaceOpWithNewOp<Torch::AtenAbsOp>(binder.op, resultType,
|
|
sub);
|
|
return success();
|
|
}
|
|
|
|
rewriter.replaceOpWithNewOp<Torch::AtenArgmaxOp>(
|
|
binder.op, resultType, operand, constAxis, constKeepDims);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"ArgMin", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value operand;
|
|
bool keepDims;
|
|
int64_t axis;
|
|
bool selectLastIndex;
|
|
if (binder.tensorOperand(operand) ||
|
|
binder.tensorResultType(resultType) ||
|
|
binder.s64BoolAttr(keepDims, "keepdims", true) ||
|
|
binder.s64IntegerAttr(axis, "axis", 0) ||
|
|
binder.s64BoolAttr(selectLastIndex, "select_last_index", false))
|
|
return failure();
|
|
|
|
// ONNX allows negative axis.
|
|
auto operandSizes =
|
|
cast<Torch::ValueTensorType>(operand.getType()).getSizes();
|
|
if (axis < 0)
|
|
axis += operandSizes.size();
|
|
|
|
Value constAxis = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(),
|
|
rewriter.getIntegerAttr(rewriter.getIntegerType(64), axis));
|
|
Value constKeepDims = rewriter.create<Torch::ConstantBoolOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::BoolType>(),
|
|
rewriter.getBoolAttr(keepDims));
|
|
|
|
if (selectLastIndex) {
|
|
Value dims = createConstantIntList(binder, rewriter, {axis});
|
|
auto operandTy = dyn_cast<Torch::ValueTensorType>(operand.getType());
|
|
operand = rewriter.create<Torch::AtenFlipOp>(
|
|
binder.getLoc(), operandTy, operand, dims);
|
|
Value argmin = rewriter.create<Torch::AtenArgminOp>(
|
|
binder.getLoc(), resultType, operand, constAxis, constKeepDims);
|
|
Value offset = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(),
|
|
rewriter.getI64IntegerAttr(operandSizes[axis] - 1));
|
|
Value alpha = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(1));
|
|
Value sub = rewriter.create<Torch::AtenSubScalarOp>(
|
|
binder.getLoc(), resultType, argmin, offset, alpha);
|
|
rewriter.replaceOpWithNewOp<Torch::AtenAbsOp>(binder.op, resultType,
|
|
sub);
|
|
return success();
|
|
}
|
|
|
|
rewriter.replaceOpWithNewOp<Torch::AtenArgminOp>(
|
|
binder.op, resultType, operand, constAxis, constKeepDims);
|
|
return success();
|
|
});
|
|
patterns.onOp("Asin", 7,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value operand;
|
|
if (binder.tensorOperand(operand) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
rewriter.replaceOpWithNewOp<Torch::AtenAsinOp>(
|
|
binder.op, resultType, operand);
|
|
return success();
|
|
});
|
|
patterns.onOp("Asinh", 9,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value operand;
|
|
if (binder.tensorOperand(operand) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
rewriter.replaceOpWithNewOp<Torch::AtenAsinhOp>(
|
|
binder.op, resultType, operand);
|
|
return success();
|
|
});
|
|
patterns.onOp("Atan", 7,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value operand;
|
|
if (binder.tensorOperand(operand) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
rewriter.replaceOpWithNewOp<Torch::AtenAtanOp>(
|
|
binder.op, resultType, operand);
|
|
return success();
|
|
});
|
|
patterns.onOp("Atanh", 9,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value operand;
|
|
if (binder.tensorOperand(operand) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
rewriter.replaceOpWithNewOp<Torch::AtenAtanhOp>(
|
|
binder.op, resultType, operand);
|
|
return success();
|
|
});
|
|
patterns.onOp("Acos", 7,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value operand;
|
|
if (binder.tensorOperand(operand) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
rewriter.replaceOpWithNewOp<Torch::AtenAcosOp>(
|
|
binder.op, resultType, operand);
|
|
return success();
|
|
});
|
|
patterns.onOp("Acosh", 9,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value operand;
|
|
if (binder.tensorOperand(operand) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
rewriter.replaceOpWithNewOp<Torch::AtenAcoshOp>(
|
|
binder.op, resultType, operand);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"BatchNormalization", 15,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value input, weight, bias, inputMean, inputVar;
|
|
bool training;
|
|
float momentum, eps;
|
|
if (binder.tensorOperandAtIndex(input, 0) ||
|
|
binder.tensorOperandAtIndex(weight, 1) ||
|
|
binder.tensorOperandAtIndex(bias, 2) ||
|
|
binder.tensorOperandAtIndex(inputMean, 3) ||
|
|
binder.tensorOperandAtIndex(inputVar, 4) ||
|
|
binder.f32FloatAttr(momentum, "momentum", 0.9f) ||
|
|
binder.f32FloatAttr(eps, "epsilon", 1e-05f) ||
|
|
binder.s64BoolAttr(training, "training_mode", 0) ||
|
|
binder.tensorResultTypeAtIndex(resultType, 0))
|
|
return failure();
|
|
|
|
Location loc = binder.getLoc();
|
|
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(loc, false);
|
|
Value cstMomentum = rewriter.create<Torch::ConstantFloatOp>(
|
|
loc, rewriter.getF64FloatAttr(momentum));
|
|
Value cstEps = rewriter.create<Torch::ConstantFloatOp>(
|
|
loc, rewriter.getF64FloatAttr(eps));
|
|
|
|
// When training_mode=False, the op outputs only Y, where
|
|
// Y = (X - input_mean) / sqrt(input_var + epsilon) * scale +
|
|
// B
|
|
if (!training) {
|
|
rewriter.replaceOpWithNewOp<Torch::AtenBatchNormOp>(
|
|
binder.op, resultType, input, weight, bias, inputMean, inputVar,
|
|
/*training=*/cstFalse, cstMomentum, cstEps,
|
|
/*cudnn_enabled=*/cstFalse);
|
|
return success();
|
|
}
|
|
|
|
Torch::ValueTensorType meanResultType, varResultType;
|
|
if (binder.tensorResultTypeAtIndex(meanResultType, 1) ||
|
|
binder.tensorResultTypeAtIndex(varResultType, 2))
|
|
return failure();
|
|
|
|
// When training_mode=True, the outputs are as follows:
|
|
// Y, running_mean, running_var.
|
|
// Y = (X - current_mean) / sqrt(current_var + epsilon) *
|
|
// scale + B
|
|
// running_mean = input_mean * momentum + current_mean * (1 -
|
|
// momentum)
|
|
// running_var = input_var * momentum + current_var * (1 -
|
|
// momentum)
|
|
// and
|
|
// current_mean = ReduceMean(X, axis=all_except_channel_index)
|
|
// current_var = ReduceVar(X, axis=all_except_channel_index)
|
|
|
|
Torch::ValueTensorType inputType =
|
|
cast<Torch::ValueTensorType>(input.getType());
|
|
if (!inputType.hasSizes())
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "unimplemented: expected input to have sizes");
|
|
|
|
// Computing current_mean and current_var.
|
|
int64_t inputRank = inputType.getSizes().size();
|
|
// Reduce all dimensions except channel dim.
|
|
SmallVector<Value> dimsToReduce;
|
|
for (int64_t i = 0; i < inputRank; i++) {
|
|
if (i != 1)
|
|
dimsToReduce.push_back(rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(i)));
|
|
}
|
|
Value reduceDimsList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
|
|
dimsToReduce);
|
|
Value noneVal = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
|
|
Value currentMean = rewriter.create<Torch::AtenMeanDimOp>(
|
|
loc, meanResultType, input, reduceDimsList,
|
|
/*keepdim=*/cstFalse,
|
|
/*dtype=*/noneVal);
|
|
Value currentVar = rewriter.create<Torch::AtenVarDimOp>(
|
|
loc, varResultType, input, reduceDimsList,
|
|
/*unbiased=*/cstFalse,
|
|
/*keepdim=*/cstFalse);
|
|
|
|
// Computing running_mean.
|
|
Value inputMeanMulMomentum = rewriter.create<Torch::AtenMulScalarOp>(
|
|
loc, meanResultType, inputMean, cstMomentum);
|
|
Value currentMeanMulMomentum = rewriter.create<Torch::AtenMulScalarOp>(
|
|
loc, varResultType, currentMean, cstMomentum);
|
|
Value constantOne = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(1));
|
|
Value inpMeanMMSubCurMeanMM = rewriter.create<Torch::AtenSubTensorOp>(
|
|
loc, meanResultType, inputMeanMulMomentum, currentMeanMulMomentum,
|
|
constantOne);
|
|
Value runningMean = rewriter.create<Torch::AtenAddTensorOp>(
|
|
loc, meanResultType, inpMeanMMSubCurMeanMM, currentMean,
|
|
constantOne);
|
|
|
|
// Computing running_var.
|
|
Value inputVarMulMomentum = rewriter.create<Torch::AtenMulScalarOp>(
|
|
loc, varResultType, inputVar, cstMomentum);
|
|
Value currentVarMulMomentum = rewriter.create<Torch::AtenMulScalarOp>(
|
|
loc, varResultType, currentVar, cstMomentum);
|
|
Value inpVarMMSubCurVarMM = rewriter.create<Torch::AtenSubTensorOp>(
|
|
loc, varResultType, inputVarMulMomentum, currentVarMulMomentum,
|
|
constantOne);
|
|
Value runningVar = rewriter.create<Torch::AtenAddTensorOp>(
|
|
loc, varResultType, inpVarMMSubCurVarMM, currentVar, constantOne);
|
|
|
|
// Computing Y.
|
|
Value y = rewriter.create<Torch::AtenBatchNormOp>(
|
|
loc, resultType, input, weight, bias, currentMean, currentVar,
|
|
/*training=*/cstFalse, cstMomentum, cstEps,
|
|
/*cudnn_enabled=*/cstFalse);
|
|
|
|
rewriter.replaceOp(binder.op, {y, runningMean, runningVar});
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"AveragePool", 11,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
std::string autoPad;
|
|
SmallVector<int64_t> dilations;
|
|
if (binder.customOpNameStringAttr(autoPad, "auto_pad", "NOTSET"))
|
|
return failure();
|
|
if (autoPad != "NOTSET") {
|
|
// TODO: Add support for `auto_pad` != "NOTSET"
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "unsupported conversion: auto_pad != NOTSET");
|
|
}
|
|
|
|
Torch::ValueTensorType resultType;
|
|
Value operand;
|
|
bool ceilMode, countIncludePad;
|
|
if (binder.tensorOperand(operand) ||
|
|
binder.s64BoolAttr(ceilMode, "ceil_mode", false) ||
|
|
binder.s64BoolAttr(countIncludePad, "count_include_pad", false) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
// Determine the rank of input tensor.
|
|
std::optional<unsigned> maybeRank = Torch::getTensorRank(operand);
|
|
if (!maybeRank)
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"Unimplemented: unranked tensor");
|
|
unsigned rank = *maybeRank;
|
|
|
|
SmallVector<int64_t> kernel, padding, strides;
|
|
if (binder.s64IntegerArrayAttr(kernel, "kernel_shape", {})) {
|
|
return failure();
|
|
}
|
|
if (kernel.size() != rank - 2) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "kernel list size does not match the number of axes");
|
|
}
|
|
SmallVector<int64_t> defaultPadding(2 * (rank - 2), 0);
|
|
if (binder.s64IntegerArrayAttr(padding, "pads", defaultPadding)) {
|
|
return failure();
|
|
}
|
|
if (padding.size() != 2 * (rank - 2)) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op,
|
|
"padding list size does not match twice the number of axes");
|
|
}
|
|
if (binder.s64IntegerArrayAttr(
|
|
strides, "strides", llvm::SmallVector<int64_t>(rank - 2, 1))) {
|
|
return failure();
|
|
}
|
|
if (strides.size() != 1 && strides.size() != rank - 2) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "strides list size does not match the number of axes");
|
|
}
|
|
|
|
SmallVector<Value> cstKernel, cstPadding, cstStridesDilations;
|
|
for (int64_t i : kernel) {
|
|
cstKernel.push_back(rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(i)));
|
|
}
|
|
// Onnx pads format: [x1_begin, x2_begin…x1_end, x2_end,…]
|
|
// Pytorch pads format: [x1, x2,...] or [x], assume begin==end for all
|
|
// axes x.
|
|
int64_t paddingSizeHalf = padding.size() / 2;
|
|
for (int64_t i = 0; i < paddingSizeHalf; ++i) {
|
|
// Check if onnx padding attribute is symmetric.
|
|
if (padding[i] != padding[i + paddingSizeHalf])
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "onnx padding attribute is not symmetric");
|
|
cstPadding.push_back(rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(padding[i])));
|
|
}
|
|
for (int64_t i : strides) {
|
|
cstStridesDilations.push_back(rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(i)));
|
|
}
|
|
|
|
// No dilations attribute in pytorch avgpool op, so use this trick to
|
|
// encode dilation into strides. Then in the following torchtolinalg
|
|
// lowering, decode strides into strides + dilation.
|
|
// [strideDim1,strideDim2,...,dilationDim1,dilationDim2,...]
|
|
if (binder.s64IntegerArrayAttr(
|
|
dilations, "dilations",
|
|
llvm::SmallVector<int64_t>(rank - 2, 1))) {
|
|
return failure();
|
|
}
|
|
for (auto dilation : dilations) {
|
|
cstStridesDilations.push_back(rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(dilation)));
|
|
}
|
|
|
|
Value kernelSizeList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
|
|
cstKernel);
|
|
Value paddingList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
|
|
cstPadding);
|
|
Value stridesDilationsList =
|
|
rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
Torch::ListType::get(
|
|
Torch::IntType::get(binder.op->getContext())),
|
|
cstStridesDilations);
|
|
Value cstCeilMode =
|
|
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), ceilMode);
|
|
Value cstCountIncludePad = rewriter.create<Torch::ConstantBoolOp>(
|
|
binder.getLoc(), countIncludePad);
|
|
Value cstNone = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
|
|
|
|
if (rank == 3) {
|
|
rewriter.replaceOpWithNewOp<Torch::AtenAvgPool1dOp>(
|
|
binder.op, resultType, operand, kernelSizeList,
|
|
stridesDilationsList, paddingList, cstCeilMode,
|
|
cstCountIncludePad);
|
|
return success();
|
|
} else if (rank == 4) {
|
|
rewriter.replaceOpWithNewOp<Torch::AtenAvgPool2dOp>(
|
|
binder.op, resultType, operand, kernelSizeList,
|
|
stridesDilationsList, paddingList, cstCeilMode,
|
|
cstCountIncludePad,
|
|
/*divisor_override=*/cstNone);
|
|
return success();
|
|
} else if (rank == 5) {
|
|
rewriter.replaceOpWithNewOp<Torch::AtenAvgPool3dOp>(
|
|
binder.op, resultType, operand, kernelSizeList,
|
|
stridesDilationsList, paddingList, cstCeilMode,
|
|
cstCountIncludePad,
|
|
/*divisor_override=*/cstNone);
|
|
return success();
|
|
}
|
|
return failure();
|
|
});
|
|
patterns.onOp(
|
|
"Bernoulli", 15,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value input;
|
|
int64_t dtypeIntOnnx;
|
|
if (binder.tensorOperand(input) ||
|
|
binder.s64IntegerAttr(dtypeIntOnnx, "dtype", -1) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
|
|
SmallString<64> name("torch.onnx.");
|
|
name.append("seed");
|
|
auto attr = binder.op->getAttr(name);
|
|
if (attr) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op,
|
|
"unimplemented: support not present for seed attribute");
|
|
}
|
|
|
|
Value none = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
|
|
Value bernoulli = rewriter.create<Torch::AtenBernoulliOp>(
|
|
binder.getLoc(), input.getType(), input, /*generator=*/none);
|
|
|
|
if (dtypeIntOnnx == -1) {
|
|
// True, if dtype attribute value is not present.
|
|
rewriter.replaceOp(binder.op, bernoulli);
|
|
return success();
|
|
}
|
|
std::optional<int64_t> dtypeIntTorch =
|
|
onnxDtypeIntToTorchDtypeInt(dtypeIntOnnx);
|
|
if (!dtypeIntTorch.has_value()) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op,
|
|
"unimplemented support for the given dtype conversion");
|
|
}
|
|
Value constDtype = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(dtypeIntTorch.value()));
|
|
Value cstFalse =
|
|
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), false);
|
|
rewriter.replaceOpWithNewOp<Torch::AtenToDtypeOp>(
|
|
binder.op, resultType, bernoulli, constDtype,
|
|
/*non_blocking=*/cstFalse, /*copy=*/cstFalse,
|
|
/*memory_format=*/none);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"BitShift", 11, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value lhs, rhs;
|
|
std::string direction;
|
|
if (binder.tensorOperands(lhs, rhs) ||
|
|
binder.tensorResultType(resultType) ||
|
|
binder.customOpNameStringAttr(direction, "direction", ""))
|
|
return failure();
|
|
if (direction == "LEFT") {
|
|
rewriter.replaceOpWithNewOp<Torch::AtenBitwiseLeftShiftTensorOp>(
|
|
binder.op, resultType, lhs, rhs);
|
|
} else {
|
|
rewriter.replaceOpWithNewOp<Torch::AtenBitwiseRightShiftTensorOp>(
|
|
binder.op, resultType, lhs, rhs);
|
|
}
|
|
return success();
|
|
});
|
|
patterns.onOp("BitwiseAnd", 18,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value lhs, rhs;
|
|
std::string direction;
|
|
if (binder.tensorOperands(lhs, rhs) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
rewriter.replaceOpWithNewOp<Torch::AtenBitwiseAndTensorOp>(
|
|
binder.op, resultType, lhs, rhs);
|
|
return success();
|
|
});
|
|
patterns.onOp("BitwiseOr", 18,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value lhs, rhs;
|
|
std::string direction;
|
|
if (binder.tensorOperands(lhs, rhs) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
rewriter.replaceOpWithNewOp<Torch::AtenBitwiseOrTensorOp>(
|
|
binder.op, resultType, lhs, rhs);
|
|
return success();
|
|
});
|
|
patterns.onOp("BitwiseNot", 18,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value operand;
|
|
if (binder.tensorOperand(operand) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
rewriter.replaceOpWithNewOp<Torch::AtenBitwiseNotOp>(
|
|
binder.op, resultType, operand);
|
|
return success();
|
|
});
|
|
patterns.onOp("BitwiseXor", 18,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value lhs, rhs;
|
|
std::string direction;
|
|
if (binder.tensorOperands(lhs, rhs) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
rewriter.replaceOpWithNewOp<Torch::AtenBitwiseXorTensorOp>(
|
|
binder.op, resultType, lhs, rhs);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"Cast", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value operand;
|
|
int64_t dtypeIntOnnx;
|
|
if (binder.tensorOperand(operand) ||
|
|
binder.s64IntegerAttr(dtypeIntOnnx, "to") ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
|
|
std::optional<int64_t> dtypeIntTorch =
|
|
onnxDtypeIntToTorchDtypeInt(dtypeIntOnnx);
|
|
if (!dtypeIntTorch.has_value()) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op,
|
|
"unimplemented support for the given dtype conversion");
|
|
}
|
|
Value constDtype = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(dtypeIntTorch.value()));
|
|
Value none = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
|
|
Value cstFalse =
|
|
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), false);
|
|
rewriter.replaceOpWithNewOp<Torch::AtenToDtypeOp>(
|
|
binder.op, resultType, operand, constDtype,
|
|
/*non_blocking=*/cstFalse, /*copy=*/cstFalse,
|
|
/*memory_format=*/none);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"CastLike", 15, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value input, target;
|
|
if (binder.tensorOperands(input, target) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
|
|
// TODO: Add support to handle the `saturate` attribute.
|
|
// Ignoring it right now, since it's only using during the float8
|
|
// conversions which are not supported in Torch-MLIR right now.
|
|
|
|
Torch::ValueTensorType targetTy =
|
|
cast<Torch::ValueTensorType>(target.getType());
|
|
if (!targetTy.hasDtype()) {
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"target tensor must have a dtype");
|
|
}
|
|
Type targetDtype = targetTy.getDtype();
|
|
Value constDtype = Torch::getDtypeIntValueForType(
|
|
rewriter, binder.getLoc(), targetDtype);
|
|
Value none = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
|
|
Value cstFalse =
|
|
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), false);
|
|
rewriter.replaceOpWithNewOp<Torch::AtenToDtypeOp>(
|
|
binder.op, resultType, input, constDtype,
|
|
/*non_blocking=*/cstFalse, /*copy=*/cstFalse,
|
|
/*memory_format=*/none);
|
|
return success();
|
|
});
|
|
patterns.onOp("Ceil", 13,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value operand;
|
|
if (binder.tensorOperand(operand) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
rewriter.replaceOpWithNewOp<Torch::AtenCeilOp>(
|
|
binder.op, resultType, operand);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"Celu", 12, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value operand;
|
|
float alpha;
|
|
if (binder.tensorOperand(operand) ||
|
|
binder.tensorResultType(resultType) ||
|
|
binder.f32FloatAttr(alpha, "alpha", 1.0f))
|
|
return failure();
|
|
// exp(x/alpha)
|
|
Value constAlpha = rewriter.create<Torch::ConstantFloatOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
|
|
rewriter.getF64FloatAttr(alpha));
|
|
Value xDivAlpha = rewriter.create<Torch::AtenDivScalarOp>(
|
|
binder.getLoc(), resultType, operand, constAlpha);
|
|
Value expXDivAlpha = rewriter.create<Torch::AtenExpOp>(
|
|
binder.getLoc(), resultType, xDivAlpha);
|
|
// alpha * (exp(x/alpha) - 1)
|
|
Value constantOne = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(1));
|
|
Value subOne = rewriter.create<Torch::AtenSubScalarOp>(
|
|
binder.getLoc(), resultType, expXDivAlpha, constantOne,
|
|
constantOne);
|
|
Value mulAlpha = rewriter.create<Torch::AtenMulScalarOp>(
|
|
binder.getLoc(), resultType, subOne, constAlpha);
|
|
Value constantZero = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(0));
|
|
Value zeroTensor = createRank0Tensor(rewriter, binder.getLoc(),
|
|
resultType, constantZero);
|
|
// min(0, alpha * (exp(x/alpha) - 1))
|
|
Value minExpression = rewriter.create<Torch::AtenMinimumOp>(
|
|
binder.getLoc(), resultType, zeroTensor, mulAlpha);
|
|
|
|
// max(0, x)
|
|
Value maxExpression = rewriter.create<Torch::AtenMaximumOp>(
|
|
binder.getLoc(), resultType, zeroTensor, operand);
|
|
// max(0,x) + min(0, alpha * (exp(x/alpha) - 1))
|
|
rewriter.replaceOpWithNewOp<Torch::AtenAddTensorOp>(
|
|
binder.op, resultType, maxExpression, minExpression, constantOne);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"CenterCropPad", 18,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value input, shape;
|
|
if (binder.tensorOperands(input, shape) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
|
|
auto inputTy = cast<Torch::ValueTensorType>(input.getType());
|
|
SmallVector<int64_t> inputShape(inputTy.getSizes());
|
|
SmallVector<int64_t> resultShape(resultType.getSizes());
|
|
int64_t rank = inputShape.size();
|
|
|
|
SmallVector<int64_t> axes, defaultAxes(rank);
|
|
std::iota(defaultAxes.begin(), defaultAxes.end(), 0);
|
|
if (binder.s64IntegerArrayAttr(axes, "axes", defaultAxes)) {
|
|
return failure();
|
|
}
|
|
int64_t axesSize = axes.size();
|
|
|
|
Value none = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
|
|
Value cstZero = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(0));
|
|
Value cstOne = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(1));
|
|
Value cstTwo = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(2));
|
|
auto scalarTensorType = rewriter.getType<Torch::ValueTensorType>(
|
|
ArrayRef<int64_t>{}, rewriter.getIntegerType(64, /*signed*/ 1));
|
|
auto selectTensorType = rewriter.getType<Torch::ValueTensorType>(
|
|
ArrayRef<int64_t>{1}, rewriter.getIntegerType(64, /*signed*/ 1));
|
|
|
|
int64_t lastChangeDim = 0;
|
|
llvm::SmallVector<int64_t> interShape(inputShape);
|
|
for (int i = 0; i < rank; i++) {
|
|
if (inputShape[i] != resultShape[i]) {
|
|
interShape[i] = -1;
|
|
lastChangeDim = i;
|
|
}
|
|
if (interShape[i] == ShapedType::kDynamic)
|
|
interShape[i] = Torch::kUnknownSize;
|
|
}
|
|
auto interType = rewriter.getType<Torch::ValueTensorType>(
|
|
interShape, resultType.getOptionalDtype());
|
|
|
|
Value modeVal = rewriter.create<Torch::ConstantStrOp>(
|
|
binder.getLoc(), rewriter.getStringAttr("floor"));
|
|
for (int i = 0; i < axesSize; i++) {
|
|
if (axes[i] < 0)
|
|
axes[i] += rank;
|
|
if (inputShape[axes[i]] == resultShape[axes[i]])
|
|
continue;
|
|
|
|
auto opType = axes[i] == lastChangeDim ? resultType : interType;
|
|
Value axis = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(axes[i]));
|
|
Value k = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(i));
|
|
Value kTensor = rewriter.create<Torch::PrimNumToTensorScalarOp>(
|
|
binder.getLoc(), scalarTensorType, k);
|
|
Value sel = rewriter.create<Torch::AtenIndexSelectOp>(
|
|
binder.getLoc(), selectTensorType, shape, cstZero, kTensor);
|
|
Value outputDimSize = rewriter.create<Torch::AtenItemOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(), sel);
|
|
Value inputDimSize = rewriter.create<Torch::AtenSizeIntOp>(
|
|
binder.getLoc(), input,
|
|
rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(axes[i])));
|
|
|
|
if (inputShape[axes[i]] > resultShape[axes[i]]) {
|
|
Value sub = rewriter.create<Torch::AtenSubIntOp>(
|
|
binder.getLoc(), inputDimSize, outputDimSize);
|
|
Value subTensor = rewriter.create<Torch::PrimNumToTensorScalarOp>(
|
|
binder.getLoc(), scalarTensorType, sub);
|
|
Value div = rewriter.create<Torch::AtenDivScalarModeOp>(
|
|
binder.getLoc(), scalarTensorType, subTensor, cstTwo, modeVal);
|
|
Value start = rewriter.create<Torch::AtenItemOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(), div);
|
|
Value end = rewriter.create<Torch::AtenAddIntOp>(
|
|
binder.getLoc(), start, outputDimSize);
|
|
input = rewriter.create<Torch::AtenSliceTensorOp>(
|
|
binder.getLoc(), opType, input, axis, start, end, cstOne);
|
|
} else {
|
|
Value sub = rewriter.create<Torch::AtenSubIntOp>(
|
|
binder.getLoc(), outputDimSize, inputDimSize);
|
|
Value subTensor = rewriter.create<Torch::PrimNumToTensorScalarOp>(
|
|
binder.getLoc(), scalarTensorType, sub);
|
|
Value div = rewriter.create<Torch::AtenDivScalarModeOp>(
|
|
binder.getLoc(), scalarTensorType, subTensor, cstTwo, modeVal);
|
|
Value start = rewriter.create<Torch::AtenItemOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(), div);
|
|
Value end = rewriter.create<Torch::AtenAddIntOp>(
|
|
binder.getLoc(), start, inputDimSize);
|
|
|
|
SmallVector<Value> zerosShapeValues;
|
|
for (int j = 0; j < rank; j++) {
|
|
if (j == axes[i]) {
|
|
zerosShapeValues.push_back(outputDimSize);
|
|
} else {
|
|
Value dimSize = rewriter.create<Torch::AtenSizeIntOp>(
|
|
binder.getLoc(), input,
|
|
rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(j)));
|
|
zerosShapeValues.push_back(dimSize);
|
|
}
|
|
}
|
|
Value zerosShapeList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
rewriter.getType<Torch::ListType>(
|
|
rewriter.getType<Torch::IntType>()),
|
|
zerosShapeValues);
|
|
Value zeros = rewriter.create<Torch::AtenZerosOp>(
|
|
binder.getLoc(), opType, zerosShapeList, none, none, none,
|
|
none);
|
|
input = rewriter.create<Torch::AtenSliceScatterOp>(
|
|
binder.getLoc(), opType, zeros, input, axis, start, end,
|
|
cstOne);
|
|
}
|
|
}
|
|
|
|
rewriter.replaceOp(binder.op, input);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"Clip", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
// https://onnx.ai/onnx/operators/onnx__Clip.html
|
|
|
|
// Inputs and outputs must be tensors.
|
|
Value source;
|
|
Torch::ValueTensorType resultType;
|
|
if (binder.tensorOperandAtIndex(source, 0) ||
|
|
binder.tensorResultType(resultType)) {
|
|
return failure();
|
|
}
|
|
|
|
// Min and max can be args (version 11+) or attributes (version 6-).
|
|
// They default to numeric_limits::lowest() and numeric_limits::max().
|
|
Value min;
|
|
Value max;
|
|
if (binder.op->getNumOperands() >= 2)
|
|
min = binder.op->getOperand(1);
|
|
if (binder.op->getNumOperands() == 3)
|
|
max = binder.op->getOperand(2);
|
|
|
|
// Note: attribute versions of the op only support float types.
|
|
auto resultDtype = resultType.getDtype();
|
|
if (!min && binder.op->hasAttr("torch.onnx.min")) {
|
|
float minValue;
|
|
if (binder.f32FloatAttr(minValue, "min",
|
|
std::numeric_limits<float>::lowest()))
|
|
return failure();
|
|
auto minSplatAttr = SplatElementsAttr::get(
|
|
resultType.toBuiltinTensor(),
|
|
rewriter.getFloatAttr(resultDtype, minValue));
|
|
min = rewriter.create<Torch::ValueTensorLiteralOp>(
|
|
binder.getLoc(), resultType, minSplatAttr);
|
|
}
|
|
if (!max && binder.op->hasAttr("torch.onnx.max")) {
|
|
float maxValue;
|
|
if (binder.f32FloatAttr(maxValue, "max",
|
|
std::numeric_limits<float>::max()))
|
|
return failure();
|
|
auto maxSplatAttr = SplatElementsAttr::get(
|
|
resultType.toBuiltinTensor(),
|
|
rewriter.getFloatAttr(resultDtype, maxValue));
|
|
max = rewriter.create<Torch::ValueTensorLiteralOp>(
|
|
binder.getLoc(), resultType, maxSplatAttr);
|
|
}
|
|
|
|
if (!min && !max) {
|
|
// Cliping with no limits is a no-op.
|
|
rewriter.replaceOp(binder.op, source);
|
|
return success();
|
|
}
|
|
|
|
if (!max) {
|
|
rewriter.replaceOpWithNewOp<Torch::AtenClampMinTensorOp>(
|
|
binder.op, resultType, source, min);
|
|
return success();
|
|
}
|
|
|
|
rewriter.replaceOpWithNewOp<Torch::AtenClampTensorOp>(
|
|
binder.op, resultType, source, min, max);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"Compress", 9, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value operand, conditionTensor;
|
|
int64_t axis;
|
|
if (binder.tensorOperands(operand, conditionTensor) ||
|
|
binder.s64IntegerAttr(axis, "axis", INT64_MAX) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
|
|
auto shapeSizes =
|
|
dyn_cast<Torch::ValueTensorType>(operand.getType()).getSizes();
|
|
auto resultSizes = resultType.getSizes();
|
|
|
|
// flatten input tensor if using default axis
|
|
if (axis == INT64_MAX) {
|
|
SmallVector<int64_t> nonzeroShape = {resultSizes[0]};
|
|
auto dtype =
|
|
dyn_cast<Torch::ValueTensorType>(conditionTensor.getType())
|
|
.getDtype();
|
|
auto nonzeroType =
|
|
rewriter.getType<Torch::ValueTensorType>(nonzeroShape, dtype);
|
|
Value indexVal = rewriter.create<Torch::AtenNonzeroOp>(
|
|
binder.getLoc(), nonzeroType, conditionTensor);
|
|
Value cstZero = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(0));
|
|
Value cstNegOne = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(-1));
|
|
int64_t numElements = 1;
|
|
for (auto i : shapeSizes) {
|
|
numElements *= i;
|
|
}
|
|
SmallVector<int64_t> flattenShape = {numElements};
|
|
auto flattenType = rewriter.getType<Torch::ValueTensorType>(
|
|
flattenShape, resultType.getDtype());
|
|
Value flattenTensor = rewriter.create<Torch::AtenFlattenUsingIntsOp>(
|
|
binder.getLoc(), flattenType, operand, cstZero, cstNegOne);
|
|
rewriter.replaceOpWithNewOp<Torch::AtenIndexSelectOp>(
|
|
binder.op, resultType, flattenTensor, cstZero, indexVal);
|
|
return success();
|
|
}
|
|
|
|
// Negative axis value means counting dimensions from the back
|
|
if (axis < 0)
|
|
axis += shapeSizes.size();
|
|
SmallVector<int64_t> nonzeroShape = {resultSizes[axis]};
|
|
auto dtype = dyn_cast<Torch::ValueTensorType>(conditionTensor.getType())
|
|
.getDtype();
|
|
auto nonzeroType =
|
|
rewriter.getType<Torch::ValueTensorType>(nonzeroShape, dtype);
|
|
Value indexVal = rewriter.create<Torch::AtenNonzeroOp>(
|
|
binder.getLoc(), nonzeroType, conditionTensor);
|
|
Value dimVal = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(axis));
|
|
rewriter.replaceOpWithNewOp<Torch::AtenIndexSelectOp>(
|
|
binder.op, resultType, operand, dimVal, indexVal);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"Concat", 11, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
SmallVector<Value> tensors;
|
|
int64_t dim;
|
|
if (binder.tensorOperands(tensors, binder.op->getNumOperands()) ||
|
|
binder.s64IntegerAttr(dim, "axis", 0) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
Type listElemType =
|
|
cast<Torch::BaseTensorType>(tensors[0].getType())
|
|
.getWithSizesAndDtype(/*optionalSizes=*/std::nullopt,
|
|
/*optionalDtype=*/nullptr);
|
|
Type listType = Torch::ListType::get(listElemType);
|
|
Value tensorList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.op->getLoc(), listType, tensors);
|
|
Value cstDim = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(dim));
|
|
rewriter.replaceOpWithNewOp<Torch::AtenCatOp>(binder.op, resultType,
|
|
tensorList, cstDim);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"Constant", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
if (binder.tensorResultType(resultType))
|
|
return failure();
|
|
auto dtype = resultType.getDtype();
|
|
|
|
float floatValue;
|
|
if (binder.op->hasAttr("torch.onnx.value_float") &&
|
|
!binder.f32FloatAttr(floatValue, "value_float", 0.0)) {
|
|
auto splatAttr =
|
|
SplatElementsAttr::get(resultType.toBuiltinTensor(),
|
|
rewriter.getFloatAttr(dtype, floatValue));
|
|
rewriter.replaceOpWithNewOp<Torch::ValueTensorLiteralOp>(
|
|
binder.op, resultType, splatAttr);
|
|
return success();
|
|
}
|
|
|
|
int64_t intValue;
|
|
if (binder.op->hasAttr("torch.onnx.value_int") &&
|
|
!binder.s64IntegerAttr(intValue, "value_int", 0)) {
|
|
auto splatAttr =
|
|
SplatElementsAttr::get(resultType.toBuiltinTensor(),
|
|
rewriter.getIntegerAttr(dtype, intValue));
|
|
rewriter.replaceOpWithNewOp<Torch::ValueTensorLiteralOp>(
|
|
binder.op, resultType, splatAttr);
|
|
return success();
|
|
}
|
|
|
|
if (DenseResourceElementsAttr attr =
|
|
dyn_cast_or_null<DenseResourceElementsAttr>(
|
|
binder.op->getAttr("torch.onnx.value"))) {
|
|
// Bytes are stored in little endian order. Big endian support will
|
|
// require swizzling.
|
|
if (!Endian::little) {
|
|
binder.op->emitError(
|
|
"unimplemented: importing on big endian systems");
|
|
return failure();
|
|
}
|
|
|
|
auto ty = cast<ShapedType>(attr.getType());
|
|
ElementsAttr denseAttr;
|
|
auto ptr = attr.getRawHandle().getBlob();
|
|
if (!ptr) {
|
|
denseAttr = DenseResourceElementsAttr::get(
|
|
ty, "__onnx_constant_not_found_possibly_due_to_being_elided__",
|
|
AsmResourceBlob());
|
|
rewriter.replaceOpWithNewOp<Torch::ValueTensorLiteralOp>(
|
|
binder.op, resultType, denseAttr);
|
|
return success();
|
|
}
|
|
auto data = ptr->getData();
|
|
if (cast<ShapedType>(attr.getType()).getElementType().isInteger(1)) {
|
|
llvm::SmallVector<APInt> newContents;
|
|
for (auto val : data) {
|
|
APInt apval(1, val);
|
|
newContents.push_back(apval);
|
|
}
|
|
denseAttr = DenseElementsAttr::get(ty, newContents);
|
|
} else {
|
|
denseAttr = DenseElementsAttr::getFromRawBuffer(ty, data);
|
|
}
|
|
|
|
rewriter.replaceOpWithNewOp<Torch::ValueTensorLiteralOp>(
|
|
binder.op, resultType, denseAttr);
|
|
return success();
|
|
}
|
|
|
|
if (ElementsAttr attr = dyn_cast_or_null<ElementsAttr>(
|
|
binder.op->getAttr("torch.onnx.value"))) {
|
|
rewriter.replaceOpWithNewOp<Torch::ValueTensorLiteralOp>(
|
|
binder.op, resultType, attr);
|
|
return success();
|
|
}
|
|
|
|
llvm::SmallVector<int64_t> intValues;
|
|
if (!binder.s64IntegerArrayAttr(intValues, "value_ints", {}) &&
|
|
!intValues.empty()) {
|
|
llvm::SmallVector<APInt> apValues;
|
|
for (auto intVal : intValues) {
|
|
apValues.push_back(APInt(dtype.getIntOrFloatBitWidth(), intVal));
|
|
}
|
|
auto attr =
|
|
DenseElementsAttr::get(resultType.toBuiltinTensor(), apValues);
|
|
rewriter.replaceOpWithNewOp<Torch::ValueTensorLiteralOp>(
|
|
binder.op, resultType, attr);
|
|
return success();
|
|
}
|
|
|
|
return failure();
|
|
});
|
|
patterns.onOp(
|
|
"Col2Im", 18, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value input, blockShape, imageShape;
|
|
SmallVector<int64_t> dilations, strides, pads;
|
|
|
|
// TODO: The length of dilations should be len(imageShape), and the same
|
|
// goes for strides. The length of pads should be 2 * len(imageShape).
|
|
// But, as at the moment we are only supporting 3D or 4D input,
|
|
// len(imageShape) must necessarily be 2, hence the lengths of the
|
|
// default values.
|
|
if (binder.tensorOperandAtIndex(input, 0) ||
|
|
binder.tensorOperandAtIndex(imageShape, 1) ||
|
|
binder.tensorOperandAtIndex(blockShape, 2) ||
|
|
binder.tensorResultType(resultType) ||
|
|
binder.s64IntegerArrayAttr(dilations, "dilations",
|
|
SmallVector<int64_t>{1, 1}) ||
|
|
binder.s64IntegerArrayAttr(strides, "strides",
|
|
SmallVector<int64_t>{1, 1}) ||
|
|
binder.s64IntegerArrayAttr(pads, "pads",
|
|
SmallVector<int64_t>{0, 0, 0, 0}))
|
|
return failure();
|
|
|
|
auto imageShapeTy = cast<Torch::ValueTensorType>(imageShape.getType());
|
|
auto imageShapeSizes = imageShapeTy.getSizes();
|
|
|
|
auto blockShapeTy = cast<Torch::ValueTensorType>(blockShape.getType());
|
|
auto blockShapeSizes = blockShapeTy.getSizes();
|
|
|
|
// Check that neither imageShape nor blockShape have dynamic shapes.
|
|
if (imageShapeSizes[0] == Torch::kUnknownSize ||
|
|
blockShapeSizes[0] == Torch::kUnknownSize) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op,
|
|
"Dynamic shapes are not allowed for imageShape and blockShape");
|
|
}
|
|
|
|
// TODO: Add support for 5D input tensors.
|
|
if (imageShapeSizes[0] != 2) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "Expected length of imageShape to be equal to 2");
|
|
}
|
|
if (blockShapeSizes[0] != 2) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "Expected length of blockShape to be equal to 2");
|
|
}
|
|
if (dilations.size() != 2) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "Expected length of dilations to be equal to 2");
|
|
}
|
|
if (strides.size() != 2) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "Expected length of strides to be equal to 2");
|
|
}
|
|
|
|
// TODO: Disable this check and add support for different
|
|
// paddings on lower and higher ends of each axis.
|
|
// Because we have already checked that imageShape has 2 elements,
|
|
// we can safely assume that len(padding) will be 4.
|
|
if (pads[0] != pads[2] || pads[1] != pads[3])
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "padding on the lower end and the higher end "
|
|
"on each axis should be the same");
|
|
|
|
// Since we know that the padding on the lower end and the higher
|
|
// end on each axis is the same, we can reduce the size of the
|
|
// padding list, and filter out the duplicate elements.
|
|
// (Also, Torch::AtenCol2imOp requires len(padding) to be 2).
|
|
SmallVector<int64_t> padOnEachAxis = {pads[0], pads[1]};
|
|
Value dilationsList =
|
|
createConstantIntList(binder, rewriter, dilations);
|
|
Value stridesList = createConstantIntList(binder, rewriter, strides);
|
|
Value paddingList =
|
|
createConstantIntList(binder, rewriter, padOnEachAxis);
|
|
|
|
Value zero = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(0));
|
|
|
|
// Index the imageShape and blockShape tensors, as AtenCol2imOp expects
|
|
// them to be int lists.
|
|
auto select = [&](Value v, Value k,
|
|
Torch::ValueTensorType ty) -> Value {
|
|
Value kTensor = rewriter.create<Torch::PrimNumToTensorScalarOp>(
|
|
binder.getLoc(),
|
|
Torch::ValueTensorType::get(
|
|
binder.op->getContext(), ArrayRef<int64_t>{1},
|
|
rewriter.getIntegerType(64, /*signed*/ 1)),
|
|
k);
|
|
|
|
auto sel = rewriter.create<Torch::AtenIndexSelectOp>(
|
|
binder.getLoc(),
|
|
Torch::ValueTensorType::get(ty.getContext(), ArrayRef<int64_t>{1},
|
|
ty.getOptionalDtype()),
|
|
v, zero, kTensor);
|
|
Value item = rewriter.create<Torch::AtenItemOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(), sel);
|
|
return item;
|
|
};
|
|
|
|
SmallVector<Value> imageShapeContainer, blockShapeContainer;
|
|
for (int64_t i = 0; i < imageShapeSizes[0]; ++i) {
|
|
Value k = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(i));
|
|
|
|
// Passing in the shapeType of each of these tensors avoids
|
|
// repeated casts, as these have already been calculated.
|
|
imageShapeContainer.push_back(select(imageShape, k, imageShapeTy));
|
|
blockShapeContainer.push_back(select(blockShape, k, blockShapeTy));
|
|
}
|
|
|
|
Value imageShapeAsList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
|
|
imageShapeContainer);
|
|
Value blockShapeAsList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
|
|
blockShapeContainer);
|
|
|
|
rewriter.replaceOpWithNewOp<Torch::AtenCol2imOp>(
|
|
binder.op, resultType, input, imageShapeAsList, blockShapeAsList,
|
|
dilationsList, paddingList, stridesList);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"Conv", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
std::string autoPad;
|
|
if (binder.customOpNameStringAttr(autoPad, "auto_pad", "NOTSET"))
|
|
return failure();
|
|
if (autoPad != "NOTSET") {
|
|
// TODO: Add support for `auto_pad` != "NOTSET"
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "unsupported conversion: auto_pad != NOTSET");
|
|
}
|
|
Torch::ValueTensorType resultType;
|
|
Value input, weight;
|
|
int64_t group;
|
|
if (binder.tensorOperandAtIndex(input, 0) ||
|
|
binder.tensorOperandAtIndex(weight, 1) ||
|
|
binder.s64IntegerAttr(group, "group", 1) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
|
|
auto weightTensorType = cast<Torch::ValueTensorType>(weight.getType());
|
|
if (!weightTensorType || !weightTensorType.hasSizes()) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "Expected weight type having sizes");
|
|
}
|
|
ArrayRef<int64_t> weightShape = weightTensorType.getSizes();
|
|
SmallVector<int64_t> kernelShape;
|
|
if (binder.s64IntegerArrayAttr(kernelShape, "kernel_shape", {}))
|
|
return failure();
|
|
if (kernelShape.size()) {
|
|
if (kernelShape.size() != weightShape.size() - 2) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op,
|
|
"unsupported conversion: kernel_shape list size should have "
|
|
"number of values equal to weight_rank - 2");
|
|
} else {
|
|
for (unsigned i = 0; i < kernelShape.size(); i++) {
|
|
if (weightShape[i + 2] != kernelShape[i]) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "unsupported conversion: kernel_shape value "
|
|
"should be equal to the weight tensor shape");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Determine the rank of input tensor.
|
|
std::optional<unsigned> maybeRank = Torch::getTensorRank(input);
|
|
if (!maybeRank)
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"Unimplemented: unranked tensor");
|
|
unsigned rank = *maybeRank;
|
|
|
|
SmallVector<int64_t> padding, strides, dilations;
|
|
SmallVector<int64_t> defaultPadding, defaultStrides, defaultDilations;
|
|
for (unsigned i = 0; i < rank - 2; i++) {
|
|
defaultPadding.push_back(0);
|
|
defaultStrides.push_back(1);
|
|
defaultDilations.push_back(1);
|
|
}
|
|
// Padding for the beginning and ending along each spatial axis, it can
|
|
// take any value greater than or equal to 0. The value represent the
|
|
// number of pixels added to the beginning and end part of the
|
|
// corresponding axis. pads format should be as follow [x1_begin,
|
|
// x2_begin…x1_end, x2_end,…], where xi_begin the number of pixels added
|
|
// at the beginning of axis i and xi_end, the number of pixels added at
|
|
// the end of axis i.
|
|
if (binder.s64IntegerArrayAttr(padding, "pads", defaultPadding)) {
|
|
return failure();
|
|
}
|
|
if (padding.size() != rank - 2 && padding.size() != 2 * (rank - 2)) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "padding list size does not match the number of axes");
|
|
}
|
|
if (binder.s64IntegerArrayAttr(dilations, "dilations",
|
|
defaultDilations)) {
|
|
return failure();
|
|
}
|
|
if (dilations.size() != rank - 2) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op,
|
|
"dilations list size does not match the number of axes");
|
|
}
|
|
if (binder.s64IntegerArrayAttr(strides, "strides", defaultStrides)) {
|
|
return failure();
|
|
}
|
|
if (strides.size() != rank - 2) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "strides list size does not match the number of axes");
|
|
}
|
|
|
|
SmallVector<Value> cstPadding, cstStrides, cstDilations,
|
|
cstOutputPadding;
|
|
Value paddedInput = input;
|
|
Value paddingList;
|
|
if (padding.size() != 2 * (rank - 2)) {
|
|
for (int64_t i : padding) {
|
|
cstPadding.push_back(rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(i)));
|
|
}
|
|
paddingList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
Torch::ListType::get(
|
|
Torch::IntType::get(binder.op->getContext())),
|
|
cstPadding);
|
|
} else {
|
|
// ONNX offers pads in the format listing all starting dims, then all
|
|
// ending dims, e.g. {t, l, b, r} for conv2d. Torch by default accepts
|
|
// only starting dims, e.g. {t, l}. However, we can support padding at
|
|
// the beginning and end of each dimension by first performing
|
|
// torch.nn.functional.pad on the input. But this requires the pad
|
|
// values to be rearranged since torch pad() takes pads in the order
|
|
// rightmost dim start and end, then next to last, and so on, e.g. {l,
|
|
// r, t, b}.
|
|
bool matchedPads = true;
|
|
for (unsigned i = 0; i < padding.size() / 2; i++) {
|
|
if (padding[i] != padding[i + (padding.size() / 2)]) {
|
|
matchedPads = false;
|
|
break;
|
|
}
|
|
}
|
|
if (matchedPads) {
|
|
for (unsigned i = 0; i < padding.size() / 2; i++) {
|
|
cstPadding.push_back(rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(padding[i])));
|
|
}
|
|
paddingList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
Torch::ListType::get(
|
|
Torch::IntType::get(binder.op->getContext())),
|
|
cstPadding);
|
|
} else {
|
|
SmallVector<Value> padsRearrange;
|
|
SmallVector<Value> inputPaddingList;
|
|
for (uint32_t i = 0; i < padding.size() / 2; i++) {
|
|
padsRearrange.emplace_back(rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(
|
|
padding[padding.size() / 2 - i - 1])));
|
|
padsRearrange.emplace_back(rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(),
|
|
rewriter.getI64IntegerAttr(padding[padding.size() - i - 1])));
|
|
inputPaddingList.emplace_back(
|
|
rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(0)));
|
|
}
|
|
// The conv op itself will have no padding since the actual padding
|
|
// is performed using the torch.pad preceding it.
|
|
paddingList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
Torch::ListType::get(
|
|
Torch::IntType::get(binder.op->getContext())),
|
|
inputPaddingList);
|
|
Value padsSizeList =
|
|
rewriter
|
|
.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
Torch::ListType::get(
|
|
rewriter.getType<Torch::IntType>()),
|
|
padsRearrange)
|
|
.getResult();
|
|
Value modeVal = rewriter.create<Torch::ConstantStrOp>(
|
|
binder.getLoc(), rewriter.getStringAttr("constant"));
|
|
Value constantValue;
|
|
auto inputTensorType =
|
|
cast<Torch::ValueTensorType>(input.getType());
|
|
if (isa<IntegerType>(inputTensorType.getDtype()))
|
|
constantValue = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(0));
|
|
if (isa<FloatType>(inputTensorType.getDtype()))
|
|
constantValue = rewriter.create<Torch::ConstantFloatOp>(
|
|
binder.getLoc(), rewriter.getF64FloatAttr(0.0f));
|
|
// Pad output shape must be computed explicitly from the pad values
|
|
SmallVector<int64_t> newInputShape(inputTensorType.getSizes());
|
|
for (uint32_t i = 0; i < padding.size() / 2; i++) {
|
|
newInputShape[2 + i] +=
|
|
padding[i] + padding[(padding.size() / 2) + i];
|
|
}
|
|
auto padTy = rewriter.getType<Torch::ValueTensorType>(
|
|
newInputShape, inputTensorType.getDtype());
|
|
paddedInput = rewriter.create<Torch::AtenPadOp>(
|
|
binder.getLoc(), padTy, input, padsSizeList, modeVal,
|
|
constantValue);
|
|
}
|
|
}
|
|
for (int64_t i : dilations) {
|
|
cstDilations.push_back(rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(i)));
|
|
}
|
|
for (int64_t i : strides) {
|
|
cstStrides.push_back(rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(i)));
|
|
}
|
|
Value cstZero = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(0));
|
|
cstOutputPadding = {cstZero, cstZero};
|
|
|
|
Value dilationsList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
|
|
cstDilations);
|
|
Value stridesList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
|
|
cstStrides);
|
|
Value outputPaddingList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
|
|
cstOutputPadding);
|
|
Value transposed =
|
|
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), false);
|
|
Value bias;
|
|
if (binder.op->getNumOperands() == 3) {
|
|
if (binder.tensorOperandAtIndex(bias, 2)) {
|
|
return failure();
|
|
}
|
|
} else {
|
|
bias = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
|
|
}
|
|
Value cstGroup = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(group));
|
|
|
|
rewriter.replaceOpWithNewOp<Torch::AtenConvolutionOp>(
|
|
binder.op, resultType, paddedInput, weight, bias, stridesList,
|
|
paddingList, dilationsList, transposed, outputPaddingList,
|
|
cstGroup);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"ConvInteger", 10,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
std::string autoPad;
|
|
if (binder.customOpNameStringAttr(autoPad, "auto_pad", "NOTSET"))
|
|
return failure();
|
|
if (autoPad != "NOTSET")
|
|
// TODO: Add support for `auto_pad` != "NOTSET"
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "unsupported conversion: auto_pad != NOTSET");
|
|
|
|
Torch::ValueTensorType resultType;
|
|
Value input, weight, inputZp, weightZp;
|
|
int64_t group;
|
|
if (binder.tensorOperandAtIndex(input, 0) ||
|
|
binder.tensorOperandAtIndex(weight, 1) ||
|
|
binder.s64IntegerAttr(group, "group", 1) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
|
|
auto inputTy = dyn_cast<Torch::ValueTensorType>(input.getType());
|
|
auto weightTy = dyn_cast<Torch::ValueTensorType>(weight.getType());
|
|
if (!weightTy || !weightTy.hasSizes())
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "Expected weight type having sizes");
|
|
ArrayRef<int64_t> weightShape = weightTy.getSizes();
|
|
SmallVector<int64_t> kernelShape;
|
|
if (binder.s64IntegerArrayAttr(kernelShape, "kernel_shape", {}))
|
|
return failure();
|
|
if (kernelShape.size()) {
|
|
if (kernelShape.size() != weightShape.size() - 2) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op,
|
|
"unsupported conversion: kernel_shape list size should have "
|
|
"number of values equal to weight_rank - 2");
|
|
} else {
|
|
for (unsigned i = 0; i < kernelShape.size(); i++) {
|
|
if (weightShape[i + 2] != kernelShape[i])
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "unsupported conversion: kernel_shape value "
|
|
"should be equal to the weight tensor shape");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Determine the rank of input tensor.
|
|
std::optional<unsigned> maybeRank = Torch::getTensorRank(input);
|
|
if (!maybeRank)
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"Unimplemented: unranked tensor");
|
|
unsigned rank = *maybeRank;
|
|
|
|
SmallVector<int64_t> padding, strides, dilations;
|
|
SmallVector<int64_t> defaultPadding(rank - 2, 0),
|
|
defaultStrides(rank - 2, 1), defaultDilations(rank - 2, 1);
|
|
// Padding for the beginning and ending along each spatial axis, it can
|
|
// take any value greater than or equal to 0. The value represent the
|
|
// number of pixels added to the beginning and end part of the
|
|
// corresponding axis. pads format should be as follow [x1_begin,
|
|
// x2_begin…x1_end, x2_end,…], where xi_begin the number of pixels added
|
|
// at the beginning of axis i and xi_end, the number of pixels added at
|
|
// the end of axis i.
|
|
if (binder.s64IntegerArrayAttr(padding, "pads", defaultPadding))
|
|
return failure();
|
|
if (padding.size() != rank - 2 && padding.size() != 2 * (rank - 2))
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "padding list size does not match the number of axes");
|
|
if (binder.s64IntegerArrayAttr(dilations, "dilations",
|
|
defaultDilations))
|
|
return failure();
|
|
if (dilations.size() != rank - 2)
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op,
|
|
"dilations list size does not match the number of axes");
|
|
if (binder.s64IntegerArrayAttr(strides, "strides", defaultStrides))
|
|
return failure();
|
|
if (strides.size() != rank - 2)
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "strides list size does not match the number of axes");
|
|
|
|
Value scale = rewriter.create<Torch::ConstantFloatOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
|
|
rewriter.getF64FloatAttr(1.0));
|
|
if (binder.tensorOperandAtIndex(inputZp, 2)) {
|
|
inputZp = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(0));
|
|
} else {
|
|
inputZp = rewriter.create<Torch::AtenItemOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(), inputZp);
|
|
}
|
|
if (binder.tensorOperandAtIndex(weightZp, 3))
|
|
weightZp = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(0));
|
|
// TODO: support per channel quantization if weightZp is a 1-D tensor
|
|
if (auto zpTy = dyn_cast<Torch::ValueTensorType>(weightZp.getType())) {
|
|
for (auto dim : zpTy.getSizes())
|
|
if (dim != 1)
|
|
return failure();
|
|
weightZp = rewriter.create<Torch::AtenItemOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(), weightZp);
|
|
}
|
|
|
|
SmallVector<Value> cstPadding;
|
|
if (padding.size() != 2 * (rank - 2)) {
|
|
for (int64_t i : padding) {
|
|
cstPadding.push_back(rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(i)));
|
|
}
|
|
} else {
|
|
for (unsigned i = 0; i < padding.size() / 2; i++) {
|
|
if (padding[i] != padding[i + (padding.size() / 2)])
|
|
// TODO: Add support for different padding values for the
|
|
// beginning and ending along each spatial axis
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op,
|
|
"unsupported conversion: padding values for the beginning "
|
|
"and ending along each spatial axis must be equal");
|
|
cstPadding.push_back(rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(padding[i])));
|
|
}
|
|
}
|
|
|
|
Value paddingList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
rewriter.getType<Torch::ListType>(
|
|
rewriter.getType<Torch::IntType>()),
|
|
cstPadding);
|
|
Value dilationsList =
|
|
createConstantIntList(binder, rewriter, dilations);
|
|
Value stridesList = createConstantIntList(binder, rewriter, strides);
|
|
Value outputPaddingList =
|
|
createConstantIntList(binder, rewriter, {0, 0});
|
|
Value transposed =
|
|
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), false);
|
|
Value bias = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
|
|
Value cstGroup = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(group));
|
|
|
|
Type inputQTy = getQTorchTypeFromTorchIntType(inputTy);
|
|
Type weightQTy = getQTorchTypeFromTorchIntType(weightTy);
|
|
input = rewriter.create<Torch::Aten_MakePerTensorQuantizedTensorOp>(
|
|
binder.getLoc(), inputQTy, input, scale, inputZp);
|
|
weight = rewriter.create<Torch::Aten_MakePerTensorQuantizedTensorOp>(
|
|
binder.getLoc(), weightQTy, weight, scale, weightZp);
|
|
|
|
rewriter.replaceOpWithNewOp<Torch::AtenConvolutionOp>(
|
|
binder.op, resultType, input, weight, bias, stridesList,
|
|
paddingList, dilationsList, transposed, outputPaddingList,
|
|
cstGroup);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"ConvTranspose", 11,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
std::string autoPad;
|
|
if (binder.customOpNameStringAttr(autoPad, "auto_pad", "NOTSET"))
|
|
return failure();
|
|
if (autoPad != "NOTSET") {
|
|
// TODO: Add support for `auto_pad` != "NOTSET"
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "unsupported conversion: auto_pad != NOTSET");
|
|
}
|
|
SmallVector<int64_t> outputShape;
|
|
if (binder.s64IntegerArrayAttr(outputShape, "output_shape", {}))
|
|
return failure();
|
|
if (outputShape.size()) {
|
|
// TODO: Add support for non-None output_shape value.
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op,
|
|
"unsupported conversion: output_shape should be absent");
|
|
}
|
|
Torch::ValueTensorType resultType;
|
|
Value input, weight;
|
|
int64_t group;
|
|
if (binder.tensorOperandAtIndex(input, 0) ||
|
|
binder.tensorOperandAtIndex(weight, 1) ||
|
|
binder.s64IntegerAttr(group, "group", 1) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
|
|
auto weightTensorType = cast<Torch::ValueTensorType>(weight.getType());
|
|
if (!weightTensorType || !weightTensorType.hasSizes()) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "Expected weight type having sizes");
|
|
}
|
|
ArrayRef<int64_t> weightShape = weightTensorType.getSizes();
|
|
SmallVector<int64_t> kernelShape;
|
|
if (binder.s64IntegerArrayAttr(kernelShape, "kernel_shape", {}))
|
|
return failure();
|
|
if (kernelShape.size()) {
|
|
if (kernelShape.size() != weightShape.size() - 2) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op,
|
|
"unsupported conversion: kernel_shape list size should have "
|
|
"number of values equal to weight_rank - 2");
|
|
} else {
|
|
for (unsigned i = 0; i < kernelShape.size(); i++) {
|
|
if (weightShape[i + 2] != kernelShape[i]) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "unsupported conversion: kernel_shape value "
|
|
"should be equal to the weight tensor shape");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Determine the rank of input tensor.
|
|
std::optional<unsigned> maybeRank = Torch::getTensorRank(input);
|
|
if (!maybeRank)
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"Unimplemented: unranked tensor");
|
|
unsigned rank = *maybeRank;
|
|
|
|
SmallVector<int64_t> padding, strides, dilations, outputPadding;
|
|
SmallVector<int64_t> defaultPadding, defaultStrides, defaultDilations,
|
|
defaultOutputPadding;
|
|
for (unsigned i = 0; i < rank - 2; i++) {
|
|
defaultPadding.push_back(0);
|
|
defaultStrides.push_back(1);
|
|
defaultDilations.push_back(1);
|
|
defaultOutputPadding.push_back(0);
|
|
}
|
|
// Padding for the beginning and ending along each spatial axis, it can
|
|
// take any value greater than or equal to 0. The value represent the
|
|
// number of pixels added to the beginning and end part of the
|
|
// corresponding axis. pads format should be as follow [x1_begin,
|
|
// x2_begin…x1_end, x2_end,…], where xi_begin the number of pixels added
|
|
// at the beginning of axis i and xi_end, the number of pixels added at
|
|
// the end of axis i.
|
|
if (binder.s64IntegerArrayAttr(padding, "pads", defaultPadding)) {
|
|
return failure();
|
|
}
|
|
if (padding.size() != rank - 2 && padding.size() != 2 * (rank - 2)) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "padding list size does not match the number of axes");
|
|
}
|
|
if (binder.s64IntegerArrayAttr(dilations, "dilations",
|
|
defaultDilations)) {
|
|
return failure();
|
|
}
|
|
if (dilations.size() != rank - 2) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op,
|
|
"dilations list size does not match the number of axes");
|
|
}
|
|
if (binder.s64IntegerArrayAttr(strides, "strides", defaultStrides)) {
|
|
return failure();
|
|
}
|
|
if (strides.size() != rank - 2) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "strides list size does not match the number of axes");
|
|
}
|
|
if (binder.s64IntegerArrayAttr(outputPadding, "output_padding",
|
|
defaultOutputPadding)) {
|
|
return failure();
|
|
}
|
|
if (outputPadding.size() != rank - 2) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op,
|
|
"output_padding list size does not match the number of axes");
|
|
}
|
|
|
|
SmallVector<Value> cstPadding, cstStrides, cstDilations,
|
|
cstOutputPadding;
|
|
if (padding.size() != 2 * (rank - 2)) {
|
|
for (int64_t i : padding) {
|
|
cstPadding.push_back(rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(i)));
|
|
}
|
|
} else {
|
|
for (unsigned i = 0; i < padding.size() / 2; i++) {
|
|
if (padding[i] != padding[i + (padding.size() / 2)]) {
|
|
// TODO: Add support for different padding values for the
|
|
// beginning and ending along each spatial axis
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op,
|
|
"unsupported conversion: padding values for the beginning "
|
|
"and ending along each spatial axis must be equal");
|
|
}
|
|
cstPadding.push_back(rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(padding[i])));
|
|
}
|
|
}
|
|
for (int64_t i : dilations) {
|
|
cstDilations.push_back(rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(i)));
|
|
}
|
|
for (int64_t i : strides) {
|
|
cstStrides.push_back(rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(i)));
|
|
}
|
|
for (int64_t i : outputPadding) {
|
|
cstOutputPadding.push_back(rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(i)));
|
|
}
|
|
|
|
Value paddingList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
|
|
cstPadding);
|
|
Value dilationsList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
|
|
cstDilations);
|
|
Value stridesList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
|
|
cstStrides);
|
|
Value outputPaddingList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
|
|
cstOutputPadding);
|
|
Value transposed =
|
|
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), true);
|
|
Value bias;
|
|
if (binder.op->getNumOperands() == 3) {
|
|
if (binder.tensorOperandAtIndex(bias, 2)) {
|
|
return failure();
|
|
}
|
|
} else {
|
|
bias = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
|
|
}
|
|
Value cstGroup = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(group));
|
|
|
|
rewriter.replaceOpWithNewOp<Torch::AtenConvolutionOp>(
|
|
binder.op, resultType, input, weight, bias, stridesList,
|
|
paddingList, dilationsList, transposed, outputPaddingList,
|
|
cstGroup);
|
|
return success();
|
|
});
|
|
patterns.onOp("Cos", 7,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value operand;
|
|
if (binder.tensorOperand(operand) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
rewriter.replaceOpWithNewOp<Torch::AtenCosOp>(
|
|
binder.op, resultType, operand);
|
|
return success();
|
|
});
|
|
patterns.onOp("Cosh", 9,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value operand;
|
|
if (binder.tensorOperand(operand) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
rewriter.replaceOpWithNewOp<Torch::AtenCoshOp>(
|
|
binder.op, resultType, operand);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"CumSum", 11, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value operand, axisTensor;
|
|
int64_t exclusive, reverse;
|
|
if (binder.tensorOperands(operand, axisTensor) ||
|
|
binder.s64IntegerAttr(exclusive, "exclusive", 0) ||
|
|
binder.s64IntegerAttr(reverse, "reverse", 0) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
|
|
Torch::BaseTensorType resultTensorType =
|
|
cast<Torch::BaseTensorType>(resultType);
|
|
if (!resultTensorType.hasDtype()) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "expected result type to have a dtype");
|
|
}
|
|
|
|
// deal with neg axis: if (axis < 0) axis += rank
|
|
int64_t rank =
|
|
cast<Torch::ValueTensorType>(operand.getType()).getSizes().size();
|
|
Value rankVal = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(),
|
|
rewriter.getIntegerAttr(rewriter.getIntegerType(64), rank));
|
|
Value cstZero = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(0));
|
|
Value cstOne = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(1));
|
|
|
|
Value axisScalar = rewriter.create<Torch::AtenItemOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(), axisTensor);
|
|
Value isNegative = rewriter.create<Torch::AtenLtIntOp>(
|
|
binder.getLoc(), axisScalar, cstZero);
|
|
isNegative =
|
|
rewriter.create<Torch::AtenIntBoolOp>(binder.getLoc(), isNegative);
|
|
Value finalOffset = rewriter.create<Torch::AtenMulIntOp>(
|
|
binder.getLoc(), isNegative, rankVal);
|
|
Value axis = rewriter.create<Torch::AtenAddIntOp>(
|
|
binder.getLoc(), axisScalar, finalOffset);
|
|
Value none = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
|
|
|
|
Value res;
|
|
if (reverse) {
|
|
Value dims = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
rewriter.getType<Torch::ListType>(
|
|
rewriter.getType<Torch::IntType>()),
|
|
SmallVector<Value>{axis});
|
|
Value flip = rewriter.create<Torch::AtenFlipOp>(
|
|
binder.getLoc(), resultType, operand, dims);
|
|
Value cumsum = rewriter.create<Torch::AtenCumsumOp>(
|
|
binder.getLoc(), resultType, flip, axis, none);
|
|
res = rewriter.create<Torch::AtenFlipOp>(binder.getLoc(), resultType,
|
|
cumsum, dims);
|
|
} else {
|
|
res = rewriter.create<Torch::AtenCumsumOp>(
|
|
binder.getLoc(), resultType, operand, axis, none);
|
|
}
|
|
|
|
if (exclusive)
|
|
res = rewriter.create<Torch::AtenSubTensorOp>(
|
|
binder.getLoc(), resultType, res, operand, cstOne);
|
|
rewriter.replaceOp(binder.op, res);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"DepthToSpace", 1,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value input;
|
|
int64_t blockSize;
|
|
std::string mode;
|
|
if (binder.tensorOperand(input) ||
|
|
binder.s64IntegerAttr(blockSize, "blocksize") ||
|
|
binder.customOpNameStringAttr(mode, "mode", "DCR") ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
auto inputTy = dyn_cast<Torch::BaseTensorType>(input.getType());
|
|
if (!inputTy || !inputTy.hasSizes()) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "Expected input type having sizes");
|
|
}
|
|
SmallVector<int64_t> inputSizes{inputTy.getSizes()};
|
|
if (inputSizes.size() != 4) {
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"Expected input rank to be 4");
|
|
}
|
|
Value b = rewriter.create<Torch::AtenSizeIntOp>(
|
|
binder.getLoc(), input,
|
|
rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(0)));
|
|
Value c = rewriter.create<Torch::AtenSizeIntOp>(
|
|
binder.getLoc(), input,
|
|
rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(1)));
|
|
Value h = rewriter.create<Torch::AtenSizeIntOp>(
|
|
binder.getLoc(), input,
|
|
rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(2)));
|
|
Value w = rewriter.create<Torch::AtenSizeIntOp>(
|
|
binder.getLoc(), input,
|
|
rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(3)));
|
|
Value cstBlockSize = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(blockSize));
|
|
Value cstBlockSizeSquare = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(blockSize * blockSize));
|
|
Value cDivBlockSizeSquare = rewriter.create<Torch::AtenDivIntOp>(
|
|
binder.getLoc(), c, cstBlockSizeSquare);
|
|
cDivBlockSizeSquare = rewriter.create<Torch::AtenIntFloatOp>(
|
|
binder.getLoc(), cDivBlockSizeSquare);
|
|
Value reshapeSizesList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
Torch::ListType::get(Torch::IntType::get(input.getContext())),
|
|
llvm::SmallVector<Value>{b, cstBlockSize, cstBlockSize,
|
|
cDivBlockSizeSquare, h, w});
|
|
int64_t cDivBlockSizeSquareInt =
|
|
inputSizes[1] == Torch::kUnknownSize
|
|
? Torch::kUnknownSize
|
|
: inputSizes[1] / (blockSize * blockSize);
|
|
SmallVector<int64_t, 6> reshapeSizesInt{
|
|
inputSizes[0], blockSize, blockSize,
|
|
cDivBlockSizeSquareInt, inputSizes[2], inputSizes[3]};
|
|
Value reshapedInput = rewriter.create<Torch::AtenReshapeOp>(
|
|
binder.getLoc(),
|
|
inputTy.getWithSizesAndDtype(reshapeSizesInt,
|
|
inputTy.getOptionalDtype()),
|
|
input, reshapeSizesList);
|
|
|
|
Value transposedInput;
|
|
if (mode == "DCR") {
|
|
if (failed(createTorchTransposeOp(
|
|
rewriter, binder.getLoc(), reshapedInput,
|
|
/*dimA=*/1, /*dimB=*/3, transposedInput)))
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "Failed to create TorchTranspose op");
|
|
if (failed(createTorchTransposeOp(
|
|
rewriter, binder.getLoc(), transposedInput,
|
|
/*dimA=*/2, /*dimB=*/4, transposedInput)))
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "Failed to create TorchTranspose op");
|
|
} else {
|
|
// mode == "CRD"
|
|
if (failed(createTorchTransposeOp(
|
|
rewriter, binder.getLoc(), reshapedInput,
|
|
/*dimA=*/2, /*dimB=*/4, transposedInput)))
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "Failed to create TorchTranspose op");
|
|
if (failed(createTorchTransposeOp(
|
|
rewriter, binder.getLoc(), transposedInput,
|
|
/*dimA=*/3, /*dimB=*/4, transposedInput)))
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "Failed to create TorchTranspose op");
|
|
}
|
|
if (failed(createTorchTransposeOp(
|
|
rewriter, binder.getLoc(), transposedInput,
|
|
/*dimA=*/4, /*dimB=*/5, transposedInput)))
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "Failed to create TorchTranspose op");
|
|
|
|
Value hMulBlockSize = rewriter.create<Torch::AtenMulIntOp>(
|
|
binder.getLoc(), h, cstBlockSize);
|
|
Value wMulBlockSize = rewriter.create<Torch::AtenMulIntOp>(
|
|
binder.getLoc(), w, cstBlockSize);
|
|
reshapeSizesList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
Torch::ListType::get(Torch::IntType::get(input.getContext())),
|
|
llvm::SmallVector<Value>{b, cDivBlockSizeSquare, hMulBlockSize,
|
|
wMulBlockSize});
|
|
rewriter.replaceOpWithNewOp<Torch::AtenReshapeOp>(
|
|
binder.op, resultType, transposedInput, reshapeSizesList);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"DeformConv", 19,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
auto loc = binder.getLoc();
|
|
|
|
// get operands
|
|
llvm::SmallVector<Value> operands;
|
|
Torch::ValueTensorType resultType;
|
|
if (binder.tensorOperandsList(operands) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
if (operands.size() < 3 || operands.size() > 5)
|
|
return failure();
|
|
auto inputType =
|
|
dyn_cast<Torch::ValueTensorType>(operands[0].getType());
|
|
if (!inputType || !inputType.hasSizes() ||
|
|
inputType.getSizes().size() != 4)
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "Unsupported: DeformConv with input rank != 4");
|
|
unsigned rank = inputType.getSizes().size();
|
|
auto weightType =
|
|
dyn_cast<Torch::ValueTensorType>(operands[1].getType());
|
|
if (!weightType || !weightType.hasSizes())
|
|
return failure();
|
|
auto offsetType =
|
|
dyn_cast<Torch::ValueTensorType>(operands[2].getType());
|
|
if (!offsetType || !offsetType.hasSizes())
|
|
return failure();
|
|
|
|
// get attributes
|
|
SmallVector<int64_t> dilations, kernelShape, pads, strides;
|
|
SmallVector<int64_t> defaultDilations(rank - 2, 0);
|
|
SmallVector<int64_t> defaultPads(2 * (rank - 2), 0);
|
|
SmallVector<int64_t> defaultStrides(rank - 2, 1);
|
|
int64_t group, offsetGroup;
|
|
if (binder.s64IntegerArrayAttr(dilations, "dilations",
|
|
defaultDilations) ||
|
|
binder.s64IntegerArrayAttr(kernelShape, "kernel_shape", {}) ||
|
|
binder.s64IntegerArrayAttr(pads, "pads", defaultPads) ||
|
|
binder.s64IntegerArrayAttr(strides, "strides", defaultStrides) ||
|
|
binder.s64IntegerAttr(group, "group", 1) ||
|
|
binder.s64IntegerAttr(offsetGroup, "offset_group", 1))
|
|
return failure();
|
|
|
|
for (unsigned i = 0; i < rank - 2; i++) {
|
|
if (pads[i] != pads[rank + i - 2])
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "unsupported: asymmetric padding");
|
|
}
|
|
|
|
// Identify and assign names to operands
|
|
Value input, weight, offset, bias, mask;
|
|
bool useMask = false;
|
|
input = operands[0];
|
|
weight = operands[1];
|
|
offset = operands[2];
|
|
if (operands.size() == 4) {
|
|
auto unknownOpdRank = Torch::getTensorRank(operands[3]);
|
|
if (!unknownOpdRank)
|
|
return failure();
|
|
if (*unknownOpdRank == 1)
|
|
bias = operands[3];
|
|
else if (*unknownOpdRank == rank) {
|
|
mask = operands[3];
|
|
useMask = true;
|
|
} else
|
|
llvm_unreachable("onnx.DeformConv: optional 4th operand of "
|
|
"unexpected rank encountered");
|
|
}
|
|
if (operands.size() == 5) {
|
|
bias = operands[3];
|
|
mask = operands[4];
|
|
useMask = true;
|
|
}
|
|
|
|
// assign default operand values if necessary
|
|
ArrayRef<int64_t> weightSizes = weightType.getSizes();
|
|
ArrayRef<int64_t> offsetSizes = offsetType.getSizes();
|
|
if (!bias) {
|
|
int64_t outputChannels = weightSizes[0];
|
|
SmallVector<int64_t> biasShape(1, outputChannels);
|
|
Value biasShapeList = mlir::torch::onnx_c::createConstantIntList(
|
|
binder, rewriter, biasShape);
|
|
Value cstZero = Torch::getConstantWithGivenDtypeAndValue(
|
|
rewriter, loc, 0.0f, inputType.getDtype());
|
|
bias =
|
|
Torch::createInitTensor(rewriter, loc,
|
|
rewriter.getType<Torch::ValueTensorType>(
|
|
biasShape, inputType.getDtype()),
|
|
cstZero, biasShapeList);
|
|
}
|
|
if (!mask) {
|
|
int64_t batchSize = inputType.getSizes()[0];
|
|
int64_t kernelHeight = weightSizes[2];
|
|
int64_t kernelWidth = weightSizes[3];
|
|
int64_t outputHeight = offsetSizes[2];
|
|
int64_t outputWidth = offsetSizes[3];
|
|
int64_t maskDimOne = offsetGroup * kernelHeight * kernelWidth;
|
|
SmallVector<int64_t> maskShape(
|
|
{batchSize, maskDimOne, outputHeight, outputWidth});
|
|
Value cstOne = Torch::getConstantWithGivenDtypeAndValue(
|
|
rewriter, loc, 1.0f, inputType.getDtype());
|
|
Value maskShapeList = mlir::torch::onnx_c::createConstantIntList(
|
|
binder, rewriter, maskShape);
|
|
mask =
|
|
Torch::createInitTensor(rewriter, loc,
|
|
rewriter.getType<Torch::ValueTensorType>(
|
|
maskShape, inputType.getDtype()),
|
|
cstOne, maskShapeList);
|
|
}
|
|
|
|
// get attributes as constant values
|
|
SmallVector<Value> dilationValues, padValues, strideValues;
|
|
for (auto i : dilations)
|
|
dilationValues.push_back(rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(i)));
|
|
for (auto i : pads)
|
|
padValues.push_back(rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(i)));
|
|
for (auto i : strides)
|
|
strideValues.push_back(rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(i)));
|
|
Value groupValue = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(group));
|
|
Value offsetGroupValue = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(offsetGroup));
|
|
Value useMaskValue = rewriter.create<Torch::ConstantBoolOp>(
|
|
loc, rewriter.getBoolAttr(useMask));
|
|
rewriter.replaceOpWithNewOp<Torch::TorchvisionDeformConv2dOp>(
|
|
binder.op, resultType, input, weight, offset, mask, bias,
|
|
strideValues[0], strideValues[1], padValues[0], padValues[1],
|
|
dilationValues[0], dilationValues[1], groupValue, offsetGroupValue,
|
|
useMaskValue);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"Det", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value input;
|
|
if (binder.tensorOperand(input) || binder.tensorResultType(resultType))
|
|
return failure();
|
|
rewriter.replaceOpWithNewOp<Torch::AtenLinalgDetOp>(binder.op,
|
|
resultType, input);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"DequantizeLinear", 1,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
llvm::SmallVector<Value> operands;
|
|
if (binder.tensorOperands(operands, 3) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
|
|
auto loc = binder.getLoc();
|
|
Value operand = operands[0];
|
|
Value scale = operands[1];
|
|
Value zeropoint = operands[2];
|
|
|
|
auto operandTy = cast<Torch::ValueTensorType>(operand.getType());
|
|
|
|
auto operandETy = operandTy.getDtype();
|
|
auto scaleTy = dyn_cast<Torch::ValueTensorType>(scale.getType());
|
|
if (!scaleTy || !scaleTy.hasSizes())
|
|
return rewriter.notifyMatchFailure(binder.op, "requires known rank");
|
|
if (!resultType.hasDtype())
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"requires known result dtype");
|
|
|
|
bool rank0 = scaleTy.getSizes().size() == 0;
|
|
bool length1 =
|
|
scaleTy.getSizes().size() == 1 && scaleTy.getSizes()[0] == 1;
|
|
|
|
if (!rank0 && !length1)
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"unimplemented: non-scalar scale");
|
|
auto qTensorTy = getQTorchTypeFromTorchIntType(operandTy);
|
|
if (!qTensorTy) {
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"unsupported result dtype");
|
|
}
|
|
|
|
scale = rewriter.create<Torch::AtenItemOp>(
|
|
loc, rewriter.getType<Torch::FloatType>(), scale);
|
|
|
|
bool fpOperand = isa<mlir::FloatType>(operandETy);
|
|
Type zeropointTy = rewriter.getType<Torch::IntType>();
|
|
if (fpOperand)
|
|
zeropointTy = rewriter.getType<Torch::FloatType>();
|
|
|
|
zeropoint =
|
|
rewriter.create<Torch::AtenItemOp>(loc, zeropointTy, zeropoint);
|
|
|
|
if (fpOperand) {
|
|
Value none = rewriter.create<Torch::ConstantNoneOp>(loc);
|
|
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(loc, false);
|
|
auto tyVal = Torch::getScalarTypeForType(resultType.getDtype());
|
|
Value tyConst = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getType<Torch::IntType>(),
|
|
rewriter.getIntegerAttr(rewriter.getIntegerType(64),
|
|
static_cast<int64_t>(tyVal)));
|
|
Value toDtype = rewriter.create<Torch::AtenToDtypeOp>(
|
|
loc, resultType, operand, tyConst,
|
|
/*non_blocking=*/cstFalse, /*copy=*/cstFalse,
|
|
/*memory_format=*/none);
|
|
|
|
Value one = rewriter.create<Torch::ConstantFloatOp>(
|
|
loc, rewriter.getF64FloatAttr(1.0));
|
|
Value sub = rewriter.create<Torch::AtenSubScalarOp>(
|
|
loc, resultType, toDtype, zeropoint, one);
|
|
rewriter.replaceOpWithNewOp<Torch::AtenMulScalarOp>(
|
|
binder.op, resultType, sub, scale);
|
|
return success();
|
|
}
|
|
|
|
auto quantize =
|
|
rewriter.create<Torch::Aten_MakePerTensorQuantizedTensorOp>(
|
|
loc, qTensorTy, operand, scale, zeropoint);
|
|
rewriter.replaceOpWithNewOp<Torch::AtenDequantizeSelfOp>(
|
|
binder.op, resultType, quantize);
|
|
return success();
|
|
});
|
|
patterns.onOp("Div", 7,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value lhs, rhs;
|
|
if (binder.tensorOperands(lhs, rhs) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
rewriter.replaceOpWithNewOp<Torch::AtenDivTensorOp>(
|
|
binder.op, resultType, lhs, rhs);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"Dropout", 12, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Location loc = binder.getLoc();
|
|
Torch::ValueTensorType resultType;
|
|
int64_t numOperands = binder.op->getNumOperands();
|
|
SmallVector<Value> operands;
|
|
int64_t seed;
|
|
if (binder.tensorOperands(operands, numOperands) ||
|
|
binder.s64IntegerAttr(seed, "seed", 0) ||
|
|
binder.tensorResultTypeAtIndex(resultType, 0))
|
|
return failure();
|
|
|
|
// Global Seed value is 0.
|
|
if (seed != 0) {
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"expected seed value to be 0");
|
|
}
|
|
|
|
Value ratio, trainingMode;
|
|
if (numOperands == 3) {
|
|
ratio = rewriter.create<Torch::AtenFloatImplicitOp>(loc, operands[1]);
|
|
Value trainVal = operands[2];
|
|
auto trainTensorType =
|
|
dyn_cast<Torch::BaseTensorType>(trainVal.getType());
|
|
if (!trainTensorType)
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"train tensor must have a type");
|
|
|
|
Type inputDtype = trainTensorType.getOptionalDtype();
|
|
if (!inputDtype || !inputDtype.isInteger(1))
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op,
|
|
"train tensor must have an integer dtype of width 1");
|
|
|
|
std::optional<unsigned> inputRank = Torch::getTensorRank(trainVal);
|
|
if (!inputRank || *inputRank != 0)
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"train tensor must have rank 0");
|
|
|
|
if (auto valueTensorLiteralOp =
|
|
trainVal.getDefiningOp<Torch::ValueTensorLiteralOp>()) {
|
|
auto val = cast<DenseElementsAttr>(valueTensorLiteralOp.getValue())
|
|
.getSplatValue<bool>();
|
|
trainingMode = rewriter.create<Torch::ConstantBoolOp>(loc, val);
|
|
} else {
|
|
Value trainingModeScalar =
|
|
rewriter.create<Torch::AtenIntImplicitOp>(loc, operands[2]);
|
|
Value cstOne = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(1));
|
|
trainingMode = rewriter.create<Torch::AtenEqIntOp>(
|
|
loc, trainingModeScalar, cstOne);
|
|
}
|
|
} else if (numOperands == 2) {
|
|
ratio = rewriter.create<Torch::AtenFloatImplicitOp>(loc, operands[1]);
|
|
trainingMode = rewriter.create<Torch::ConstantBoolOp>(loc, false);
|
|
} else {
|
|
ratio = rewriter.create<Torch::ConstantFloatOp>(
|
|
loc, rewriter.getF64FloatAttr(0.5));
|
|
trainingMode = rewriter.create<Torch::ConstantBoolOp>(loc, false);
|
|
}
|
|
|
|
Value dropout = rewriter.create<Torch::AtenDropoutOp>(
|
|
loc, resultType, /*input=*/operands[0], ratio, trainingMode);
|
|
|
|
if (binder.op->getNumResults() == 1) {
|
|
rewriter.replaceOp(binder.op, dropout);
|
|
return success();
|
|
}
|
|
Torch::ValueTensorType maskType;
|
|
if (binder.tensorResultTypeAtIndex(maskType, 1))
|
|
return failure();
|
|
Value dtype = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(
|
|
(int64_t)torch_upstream::ScalarType::Bool));
|
|
Value none = rewriter.create<Torch::ConstantNoneOp>(loc);
|
|
Value mask = rewriter.create<Torch::AtenOnesLikeOp>(
|
|
loc, maskType, operands[0], dtype, /*layout=*/none,
|
|
/*device=*/none, /*pin_memory=*/none, /*memory_format=*/none);
|
|
rewriter.replaceOp(binder.op, {dropout, mask});
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"DynamicQuantizeLinear", 11,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Location loc = binder.getLoc();
|
|
Value input;
|
|
Torch::ValueTensorType resultType, scaleType, zeroPointType;
|
|
if (binder.tensorOperand(input) ||
|
|
binder.tensorResultTypeAtIndex(resultType, 0) ||
|
|
binder.tensorResultTypeAtIndex(scaleType, 1) ||
|
|
binder.tensorResultTypeAtIndex(zeroPointType, 2))
|
|
return failure();
|
|
|
|
Value scale, zeroPoint;
|
|
|
|
// scale = ( max(0, max(input)) - min(0, min(input)) ) / 255
|
|
Value inputMax =
|
|
rewriter.create<Torch::AtenMaxOp>(loc, scaleType, input);
|
|
Value inputMin =
|
|
rewriter.create<Torch::AtenMinOp>(loc, scaleType, input);
|
|
Value constantZero = rewriter.create<Torch::ConstantFloatOp>(
|
|
loc, rewriter.getF64FloatAttr(0));
|
|
Value constantOne = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(1));
|
|
Value zeroTensor =
|
|
createRank0Tensor(rewriter, loc, scaleType, constantZero);
|
|
Value inputMaxW0 = rewriter.create<Torch::AtenMaximumOp>(
|
|
loc, scaleType, inputMax, zeroTensor);
|
|
Value inputMinW0 = rewriter.create<Torch::AtenMinimumOp>(
|
|
loc, scaleType, inputMin, zeroTensor);
|
|
Value scaleTensor = rewriter.create<Torch::AtenSubTensorOp>(
|
|
loc, scaleType, inputMaxW0, inputMinW0, constantOne);
|
|
// Note: the following is hard-coded for ui8
|
|
Value width = rewriter.create<Torch::ConstantFloatOp>(
|
|
loc, rewriter.getF64FloatAttr(255));
|
|
Value widthTensor = createRank0Tensor(rewriter, loc, scaleType, width);
|
|
scaleTensor = rewriter.create<Torch::AtenDivTensorOp>(
|
|
loc, scaleType, scaleTensor, widthTensor);
|
|
// compute the preZeroPoint = 0 - (inputMin/scale)
|
|
// compute the zeroPoint = cast ( round (clip or saturate
|
|
// (preZeroPoint)))
|
|
Value preZeroPoint = rewriter.create<Torch::AtenDivTensorOp>(
|
|
loc, scaleType, inputMin, scaleTensor);
|
|
preZeroPoint = rewriter.create<Torch::AtenSubTensorOp>(
|
|
loc, scaleType, zeroTensor, preZeroPoint, constantOne);
|
|
// saturate to interval [0, 255]
|
|
preZeroPoint = rewriter.create<Torch::AtenClampOp>(
|
|
loc, scaleType, preZeroPoint, /*min=*/constantZero, /*max=*/width);
|
|
// round, then cast to uint8
|
|
preZeroPoint =
|
|
rewriter.create<Torch::AtenRoundOp>(loc, scaleType, preZeroPoint);
|
|
Type qTy = rewriter.getType<Torch::QUInt8Type>();
|
|
auto qTensorTy = rewriter.getType<Torch::ValueTensorType>(
|
|
resultType.getOptionalSizes(), qTy);
|
|
auto torchqTy = Torch::getScalarTypeForType(qTy);
|
|
Value tyConst = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(),
|
|
rewriter.getIntegerAttr(rewriter.getIntegerType(64),
|
|
static_cast<int64_t>(torchqTy)));
|
|
Value none = rewriter.create<Torch::ConstantNoneOp>(loc);
|
|
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(loc, false);
|
|
Value zeroPointTensor = rewriter.create<Torch::AtenToDtypeOp>(
|
|
loc, zeroPointType, preZeroPoint, tyConst,
|
|
/*non_blocking=*/cstFalse, /*copy=*/cstFalse,
|
|
/*memory_format=*/none);
|
|
// extract scale and zeroPoint scalars to pass to
|
|
// AtenQuantizePerTensorOp
|
|
zeroPoint = rewriter.create<Torch::AtenItemOp>(
|
|
loc, rewriter.getType<Torch::IntType>(), zeroPointTensor);
|
|
scale = rewriter.create<Torch::AtenItemOp>(
|
|
loc, rewriter.getType<Torch::FloatType>(), scaleTensor);
|
|
Value quantizedTensor = rewriter.create<Torch::AtenQuantizePerTensorOp>(
|
|
loc, qTensorTy, input, scale, zeroPoint, tyConst);
|
|
// get uint8 tensor output
|
|
Value output = rewriter.create<Torch::AtenIntReprOp>(loc, resultType,
|
|
quantizedTensor);
|
|
rewriter.replaceOp(binder.op, {output, scaleTensor, zeroPointTensor});
|
|
return success();
|
|
});
|
|
patterns.onOp("Equal", 1,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value lhs, rhs;
|
|
std::string direction;
|
|
if (binder.tensorOperands(lhs, rhs) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
rewriter.replaceOpWithNewOp<Torch::AtenEqTensorOp>(
|
|
binder.op, resultType, lhs, rhs);
|
|
return success();
|
|
});
|
|
patterns.onOp("Elu", 6,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Location loc = binder.getLoc();
|
|
Torch::ValueTensorType resultType;
|
|
Value input;
|
|
float alpha;
|
|
if (binder.tensorOperand(input) ||
|
|
binder.f32FloatAttr(alpha, "alpha", 1.0) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
Value cstAlpha = rewriter.create<Torch::ConstantFloatOp>(
|
|
loc, rewriter.getF64FloatAttr(alpha));
|
|
Value cstOne = rewriter.create<Torch::ConstantFloatOp>(
|
|
loc, rewriter.getF64FloatAttr(1.0));
|
|
rewriter.replaceOpWithNewOp<Torch::AtenEluOp>(
|
|
binder.op, resultType, input, cstAlpha, /*scale=*/cstOne,
|
|
/*input_scale=*/cstOne);
|
|
return success();
|
|
});
|
|
patterns.onOp("Erf", 13,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value operand;
|
|
std::string direction;
|
|
if (binder.tensorOperand(operand) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
rewriter.replaceOpWithNewOp<Torch::AtenErfOp>(
|
|
binder.op, resultType, operand);
|
|
return success();
|
|
});
|
|
patterns.onOp("Exp", 6,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value operand;
|
|
if (binder.tensorOperand(operand) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
rewriter.replaceOpWithNewOp<Torch::AtenExpOp>(
|
|
binder.op, resultType, operand);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"Expand", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
// uses ideas and code from onnx.Reshape
|
|
auto loc = binder.getLoc();
|
|
Torch::ValueTensorType resultType;
|
|
Value data, shape;
|
|
if (binder.tensorOperands(data, shape) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
|
|
auto dataType = cast<Torch::BaseTensorType>(data.getType());
|
|
auto shapeType = cast<Torch::BaseTensorType>(shape.getType());
|
|
if (!dataType.hasSizes() || !shapeType.hasSizes())
|
|
return failure();
|
|
|
|
auto shapeSizes = shapeType.getSizes();
|
|
int64_t dataRank = dataType.getSizes().size();
|
|
int64_t shapeRank = shapeSizes.size();
|
|
if (shapeRank != 1 || shapeSizes[0] == Torch::kUnknownSize)
|
|
return failure();
|
|
|
|
auto rankDifference = dataRank - shapeSizes[0];
|
|
|
|
SmallVector<int64_t> selectSizes;
|
|
Type selectResultType = shapeType.getWithSizesAndDtype(
|
|
llvm::ArrayRef(selectSizes), shapeType.getOptionalDtype());
|
|
// Variable to store 1-D onnx shape tensor, shapeSizes[0] has the
|
|
// dimension size
|
|
// A constant zero value
|
|
Value zero = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(0));
|
|
// Variable to store pytorch int list of shape (dimension)
|
|
SmallVector<Value> dimList;
|
|
|
|
// Convert the shape tensor from vector of int64_t to torch int list as
|
|
// we are using torch implementation Torch::AtenBroadcastToOp which
|
|
// takes list of int
|
|
for (int i = 0; i < shapeSizes[0]; i++) {
|
|
Value selectIndex = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getType<Torch::IntType>(),
|
|
rewriter.getIntegerAttr(rewriter.getIntegerType(64), i));
|
|
Value extract = rewriter.create<Torch::AtenSelectIntOp>(
|
|
loc, selectResultType, shape, zero, selectIndex);
|
|
Value dim = rewriter.create<Torch::AtenItemOp>(
|
|
loc, rewriter.getType<Torch::IntType>(), extract);
|
|
|
|
if (i + rankDifference >= 0) {
|
|
Value iv =
|
|
rewriter.create<Torch::ConstantIntOp>(loc, i + rankDifference);
|
|
auto sz = rewriter.create<Torch::AtenSizeIntOp>(
|
|
loc, rewriter.getType<Torch::IntType>(), data, iv);
|
|
dim = rewriter.create<Torch::PrimMaxIntOp>(loc, dim, sz);
|
|
}
|
|
|
|
dimList.push_back(dim);
|
|
}
|
|
Value dimValueList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
|
|
dimList);
|
|
rewriter.replaceOpWithNewOp<Torch::AtenBroadcastToOp>(
|
|
binder.op, resultType, data, dimValueList);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"EyeLike", 9, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value operand;
|
|
int64_t dtypeIntOnnx, diagonalIndex;
|
|
if (binder.tensorOperand(operand) ||
|
|
binder.s64IntegerAttr(dtypeIntOnnx, "dtype", 1) ||
|
|
binder.s64IntegerAttr(diagonalIndex, "k", 0) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
|
|
auto operandTy = cast<Torch::ValueTensorType>(operand.getType());
|
|
SmallVector<int64_t> shape(operandTy.getSizes());
|
|
for (unsigned i = 0; i < shape.size(); i++) {
|
|
if (shape[i] == ShapedType::kDynamic)
|
|
shape[i] = Torch::kUnknownSize;
|
|
}
|
|
|
|
Value cst0 = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(0));
|
|
Value cst1 = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(1));
|
|
Value nVal = rewriter.create<Torch::AtenSizeIntOp>(binder.getLoc(),
|
|
operand, cst0);
|
|
Value mVal = rewriter.create<Torch::AtenSizeIntOp>(binder.getLoc(),
|
|
operand, cst1);
|
|
Value noneVal = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
|
|
std::optional<int64_t> dtypeIntTorch =
|
|
onnxDtypeIntToTorchDtypeInt(dtypeIntOnnx);
|
|
if (!dtypeIntTorch.has_value()) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op,
|
|
"unimplemented support for the given dtype conversion");
|
|
}
|
|
Value dtypeVal = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(dtypeIntTorch.value()));
|
|
|
|
// diagonalIndex = 0 populates the main diagonal
|
|
// diagonalIndex > 0 populates an upper diagonal
|
|
// diagonalIndex < 0 populates a lower diagonal
|
|
if (diagonalIndex == 0) {
|
|
rewriter.replaceOpWithNewOp<Torch::AtenEyeMOp>(
|
|
binder.op, resultType, nVal, mVal, dtypeVal, noneVal, noneVal,
|
|
noneVal);
|
|
return success();
|
|
}
|
|
|
|
Value diagVal = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(),
|
|
rewriter.getI64IntegerAttr(std::abs(diagonalIndex)));
|
|
Value newN, newM, dimVal, startVal;
|
|
// get shapes of main diag eye op and zeros op
|
|
if (diagonalIndex > 0) {
|
|
newN = nVal;
|
|
newM = rewriter.create<Torch::AtenSubIntOp>(binder.getLoc(), mVal,
|
|
diagVal);
|
|
if (shape[1] != Torch::kUnknownSize) {
|
|
shape[1] -= diagonalIndex;
|
|
}
|
|
dimVal = cst1;
|
|
startVal = mVal;
|
|
} else {
|
|
newN = rewriter.create<Torch::AtenSubIntOp>(binder.getLoc(), nVal,
|
|
diagVal);
|
|
newM = mVal;
|
|
if (shape[0] != Torch::kUnknownSize) {
|
|
shape[0] += diagonalIndex;
|
|
}
|
|
dimVal = cst0;
|
|
startVal = nVal;
|
|
}
|
|
|
|
// create main diag eye op
|
|
auto eyeResultType = rewriter.getType<Torch::ValueTensorType>(
|
|
shape, resultType.getOptionalDtype());
|
|
Value eyeOp = rewriter.create<Torch::AtenEyeMOp>(
|
|
binder.getLoc(), eyeResultType, newN, newM, dtypeVal, noneVal,
|
|
noneVal, noneVal);
|
|
// create zeros op
|
|
SmallVector<Value> zerosShapeValues = {nVal, mVal};
|
|
Value zerosShapeList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
rewriter.getType<Torch::ListType>(
|
|
rewriter.getType<Torch::IntType>()),
|
|
zerosShapeValues);
|
|
Value zerosOp = rewriter.create<Torch::AtenZerosOp>(
|
|
binder.getLoc(), resultType, zerosShapeList, dtypeVal, noneVal,
|
|
noneVal, noneVal);
|
|
|
|
// embeds the values of the eye matrix into zeros
|
|
rewriter.replaceOpWithNewOp<Torch::AtenSliceScatterOp>(
|
|
binder.op, resultType, zerosOp, eyeOp, dimVal,
|
|
/*start=*/diagVal, /*end=*/startVal, /*step=*/cst1);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"Flatten", 11, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
// Flatten means to partition the input tensor's dimensions
|
|
// into a "left range" spanning 0 to axis - 1 and a "right range"
|
|
// spanning axis to rank - 1. Each range is then collapsed
|
|
// into a single dimension, resulting in a 2-D tensor.
|
|
// If either range is empty, it is replaced with a single
|
|
// dimension of size 1.
|
|
//
|
|
// For example, for a 4-D input tensor of shape (a, b, c, d)
|
|
// and axis==2, flatten produces a 2-D tensor of shape
|
|
// (a*b, c*d).
|
|
//
|
|
// If instead axis==0, the left range is empty, and the result
|
|
// is (1, a*b*c*d).
|
|
|
|
Torch::ValueTensorType resultType;
|
|
Value operand;
|
|
int64_t axis;
|
|
if (binder.tensorOperand(operand) ||
|
|
binder.s64IntegerAttr(axis, "axis", 1) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
|
|
auto operandTy = cast<Torch::ValueTensorType>(operand.getType());
|
|
llvm::SmallVector<int64_t> shape(operandTy.getSizes());
|
|
int64_t rank = shape.size();
|
|
|
|
// If axis is negative, count from the right instead of left
|
|
if (axis < 0)
|
|
axis = rank + axis;
|
|
|
|
// We collapse in the dimensions to the right of the axis.
|
|
for (int i = axis + 1; i < rank; ++i) {
|
|
bool dynamic = shape[axis] == Torch::kUnknownSize ||
|
|
shape[i] == Torch::kUnknownSize;
|
|
if (dynamic) {
|
|
shape[axis] = Torch::kUnknownSize;
|
|
} else {
|
|
shape[axis] = shape[axis] * shape[i];
|
|
}
|
|
}
|
|
|
|
shape.resize(axis + 1, 1);
|
|
|
|
auto baseType = rewriter.getType<Torch::ValueTensorType>(
|
|
shape, operandTy.getDtype());
|
|
Value collapsedRight;
|
|
if (axis >= rank) {
|
|
// If the right range is empty, add a dim of size 1 to the
|
|
// right side of the shape:
|
|
// cr = torch.unsqueeze(x, x.ndim)
|
|
Value rankConst = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(rank));
|
|
collapsedRight = rewriter.create<Torch::AtenUnsqueezeOp>(
|
|
binder.getLoc(), baseType, operand, rankConst);
|
|
} else {
|
|
// Otherwise, collapse the right range into a single dimension:
|
|
// cr = torch._prims.collapse(x, axis, x.ndim - 1)
|
|
Value axisConst = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(axis));
|
|
Value rankLess1Const = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(rank - 1));
|
|
collapsedRight = rewriter.create<Torch::PrimsCollapseOp>(
|
|
binder.getLoc(), baseType, operand, axisConst, rankLess1Const);
|
|
}
|
|
|
|
Value zero = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(0));
|
|
|
|
if (axis <= 0) {
|
|
// If the left range is empty, add a dim of size 1 to the
|
|
// left side of the shape:
|
|
// torch.unsqueeze(cr, 0)
|
|
rewriter.replaceOpWithNewOp<Torch::AtenUnsqueezeOp>(
|
|
binder.op, resultType, collapsedRight, zero);
|
|
return success();
|
|
}
|
|
|
|
// Otherwise, collapse the left range into a single dimension:
|
|
// torch._prims.collapse(cr, 0, axis - 1)
|
|
Value axisLess1Const = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(axis - 1));
|
|
rewriter.replaceOpWithNewOp<Torch::PrimsCollapseOp>(
|
|
binder.op, resultType, collapsedRight, zero, axisLess1Const);
|
|
return success();
|
|
});
|
|
patterns.onOp("Floor", 13,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value operand;
|
|
if (binder.tensorOperand(operand) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
rewriter.replaceOpWithNewOp<Torch::AtenFloorOp>(
|
|
binder.op, resultType, operand);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"ConstantOfShape", 1,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value shape;
|
|
if (binder.tensorOperand(shape) || binder.tensorResultType(resultType))
|
|
return failure();
|
|
|
|
// convert shape tensor to list of ints
|
|
auto shapeSizes =
|
|
dyn_cast<Torch::ValueTensorType>(shape.getType()).getSizes();
|
|
SmallVector<Value> dimList;
|
|
Torch::BaseTensorType shapeType =
|
|
cast<Torch::BaseTensorType>(shape.getType());
|
|
Type selectResultType = rewriter.getType<Torch::ValueTensorType>(
|
|
ArrayRef<int64_t>({}), shapeType.getOptionalDtype());
|
|
Value zero = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(),
|
|
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0));
|
|
|
|
for (int i = 0; i < shapeSizes[0]; i++) {
|
|
Value selectIndex = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(),
|
|
rewriter.getIntegerAttr(rewriter.getIntegerType(64), i));
|
|
Value extract = rewriter.create<Torch::AtenSelectIntOp>(
|
|
binder.getLoc(), selectResultType, shape, zero, selectIndex);
|
|
Value dim = rewriter.create<Torch::AtenItemOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(), extract);
|
|
dimList.push_back(dim);
|
|
}
|
|
|
|
Value dimValueList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
|
|
dimList);
|
|
Value noneVal = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
|
|
|
|
// Get fill_value if it is present.
|
|
// Assumption : resultDType and value attr type match.
|
|
auto attr = binder.op->getAttr("torch.onnx.value");
|
|
auto resultDType = resultType.getDtype();
|
|
|
|
// Extract the fill value and dtype
|
|
// ONNX requires value attr to be a tensor
|
|
if (!attr) {
|
|
attr =
|
|
DenseElementsAttr::get(resultType.toBuiltinTensor(),
|
|
rewriter.getFloatAttr(resultDType, 0.0));
|
|
}
|
|
|
|
// If its a dense resource attr we need to convert to a dense type:
|
|
if (DenseResourceElementsAttr rattr =
|
|
dyn_cast_or_null<DenseResourceElementsAttr>(attr)) {
|
|
// Bytes are stored in little endian order. Big endian support will
|
|
// require swizzling.
|
|
if (!Endian::little) {
|
|
binder.op->emitError(
|
|
"unimplemented: importing on big endian systems");
|
|
return failure();
|
|
}
|
|
|
|
auto ty = cast<ShapedType>(rattr.getType());
|
|
auto ptr = rattr.getRawHandle().getBlob()->getData();
|
|
auto denseAttr = DenseElementsAttr::getFromRawBuffer(ty, ptr);
|
|
attr = dyn_cast_or_null<SplatElementsAttr>(denseAttr);
|
|
}
|
|
|
|
Attribute splattr;
|
|
if (isa<SplatElementsAttr>(attr)) {
|
|
auto denseAttr = cast<DenseElementsAttr>(attr);
|
|
splattr = denseAttr.getSplatValue<Attribute>();
|
|
}
|
|
|
|
if (!isa<FloatAttr, IntegerAttr>(splattr)) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op,
|
|
"`value` attr tensor only supports types int and float for now.");
|
|
}
|
|
|
|
Value splatvalue;
|
|
if (auto intattr = dyn_cast<IntegerAttr>(splattr)) {
|
|
IntegerType intty = cast<IntegerType>(intattr.getType());
|
|
int64_t value;
|
|
if (intty.isUnsignedInteger()) {
|
|
value = intattr.getUInt();
|
|
} else if (intty.isSignedInteger()) {
|
|
value = intattr.getSInt();
|
|
} else {
|
|
value = intattr.getInt();
|
|
}
|
|
splatvalue =
|
|
rewriter.create<Torch::ConstantIntOp>(binder.getLoc(), value);
|
|
}
|
|
|
|
if (auto fpattr = dyn_cast<FloatAttr>(splattr))
|
|
splatvalue = rewriter.create<Torch::ConstantFloatOp>(
|
|
binder.getLoc(),
|
|
rewriter.getF64FloatAttr(fpattr.getValueAsDouble()));
|
|
|
|
rewriter.replaceOpWithNewOp<Torch::AtenFullOp>(
|
|
binder.op, resultType, dimValueList, splatvalue, /*dtype=*/noneVal,
|
|
/*layout=*/noneVal, /*device=*/noneVal, /*pin_memory=*/noneVal);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"Einsum", 12, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
SmallVector<Value> tensors;
|
|
std::string equation;
|
|
if (binder.tensorOperands(tensors, binder.op->getNumOperands()) ||
|
|
binder.customOpNameStringAttr(equation, "equation") ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
Type listElemType =
|
|
cast<Torch::BaseTensorType>(tensors[0].getType())
|
|
.getWithSizesAndDtype(/*optionalSizes=*/std::nullopt,
|
|
/*optionalDtype=*/nullptr);
|
|
Type listType = Torch::ListType::get(listElemType);
|
|
Value tensorList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.op->getLoc(), listType, tensors);
|
|
Value cstEquation = rewriter.create<Torch::ConstantStrOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::StringType>(),
|
|
rewriter.getStringAttr(equation));
|
|
Value cstNone = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
|
|
rewriter.replaceOpWithNewOp<Torch::AtenEinsumOp>(
|
|
binder.op, resultType, cstEquation, tensorList, /*path=*/cstNone);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"BlackmanWindow", 17,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Value size;
|
|
Torch::ValueTensorType resultType;
|
|
int64_t periodic, output_datatype;
|
|
if (binder.tensorOperand(size) ||
|
|
binder.s64IntegerAttr(output_datatype, "output_datatype", 1) ||
|
|
binder.s64IntegerAttr(periodic, "periodic", 1) ||
|
|
binder.tensorResultType(resultType)) {
|
|
return failure();
|
|
}
|
|
|
|
Location loc = binder.getLoc();
|
|
Value a0 = rewriter.create<Torch::ConstantFloatOp>(
|
|
loc, rewriter.getF64FloatAttr(0.42));
|
|
Value a1 = rewriter.create<Torch::ConstantFloatOp>(
|
|
loc, rewriter.getF64FloatAttr(-0.5));
|
|
Value a2 = rewriter.create<Torch::ConstantFloatOp>(
|
|
loc, rewriter.getF64FloatAttr(0.08));
|
|
|
|
auto windowFunctionResult =
|
|
windowFunctionImpl(binder, rewriter, size, a0, a1, a2, resultType,
|
|
output_datatype, periodic);
|
|
|
|
if (failed(windowFunctionResult))
|
|
return failure();
|
|
|
|
return success();
|
|
});
|
|
|
|
patterns.onOp(
|
|
"HannWindow", 17,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Value size;
|
|
Torch::ValueTensorType resultType;
|
|
int64_t periodic, output_datatype;
|
|
if (binder.tensorOperand(size) ||
|
|
binder.s64IntegerAttr(output_datatype, "output_datatype", 1) ||
|
|
binder.s64IntegerAttr(periodic, "periodic", 1) ||
|
|
binder.tensorResultType(resultType)) {
|
|
return failure();
|
|
}
|
|
|
|
Location loc = binder.getLoc();
|
|
Value a0 = rewriter.create<Torch::ConstantFloatOp>(
|
|
loc, rewriter.getF64FloatAttr(0.5));
|
|
Value a1 = rewriter.create<Torch::ConstantFloatOp>(
|
|
loc, rewriter.getF64FloatAttr(-0.5));
|
|
Value a2 = rewriter.create<Torch::ConstantFloatOp>(
|
|
loc, rewriter.getF64FloatAttr(0.0));
|
|
|
|
auto windowFunctionResult =
|
|
windowFunctionImpl(binder, rewriter, size, a0, a1, a2, resultType,
|
|
output_datatype, periodic);
|
|
|
|
if (failed(windowFunctionResult))
|
|
return failure();
|
|
|
|
return success();
|
|
});
|
|
|
|
patterns.onOp(
|
|
"HammingWindow", 17,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Value size;
|
|
Torch::ValueTensorType resultType;
|
|
int64_t periodic, output_datatype;
|
|
if (binder.tensorOperand(size) ||
|
|
binder.s64IntegerAttr(output_datatype, "output_datatype", 1) ||
|
|
binder.s64IntegerAttr(periodic, "periodic", 1) ||
|
|
binder.tensorResultType(resultType)) {
|
|
return failure();
|
|
}
|
|
|
|
Location loc = binder.getLoc();
|
|
Value a0 = rewriter.create<Torch::ConstantFloatOp>(
|
|
loc, rewriter.getF64FloatAttr(0.543478));
|
|
Value a1 = rewriter.create<Torch::ConstantFloatOp>(
|
|
loc, rewriter.getF64FloatAttr(-0.456522));
|
|
Value a2 = rewriter.create<Torch::ConstantFloatOp>(
|
|
loc, rewriter.getF64FloatAttr(0.0));
|
|
|
|
auto windowFunctionResult =
|
|
windowFunctionImpl(binder, rewriter, size, a0, a1, a2, resultType,
|
|
output_datatype, periodic);
|
|
|
|
if (failed(windowFunctionResult))
|
|
return failure();
|
|
|
|
return success();
|
|
});
|
|
|
|
patterns.onOp(
|
|
"DFT", 20, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Value inTensor, dftLength, axis;
|
|
Torch::ValueTensorType resultType;
|
|
int64_t inverse, onesided;
|
|
if (binder.tensorOperandAtIndex(inTensor, 0) ||
|
|
binder.s64IntegerAttr(inverse, "inverse", 0) ||
|
|
binder.s64IntegerAttr(onesided, "onesided", 0) ||
|
|
binder.tensorResultType(resultType))
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "Input Tensor / attrs / resultType bind failed");
|
|
if (!binder.tensorOperandAtIndex(dftLength, 1)) {
|
|
// Convert to int and pass as n
|
|
dftLength = rewriter.create<Torch::AtenItemOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(), dftLength);
|
|
} else {
|
|
// Default for torch is None
|
|
dftLength = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
|
|
}
|
|
// Default is same for onnx and torch
|
|
if (!binder.tensorOperandAtIndex(axis, 2)) {
|
|
// convert to int and pass to dims
|
|
axis = rewriter.create<Torch::AtenItemOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(), axis);
|
|
} else {
|
|
// Default in torch is -1 and onnx is -2 (since -1 is for real / img)
|
|
axis = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(-2));
|
|
}
|
|
|
|
if (onesided == 1)
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"Unsupported option : onesided");
|
|
// norm default string attr
|
|
Value norm = rewriter.create<Torch::ConstantStrOp>(
|
|
binder.getLoc(), rewriter.getStringAttr(Twine("backward")));
|
|
// Convert from [....., 2] complex number repr for fft consumption.
|
|
Torch::ValueTensorType inType =
|
|
binder.toValidTensorType(inTensor.getType());
|
|
int64_t lastIndex = inType.getSizes().back();
|
|
if (lastIndex != 1 && lastIndex != 2)
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op,
|
|
"Expected input tensor to have dims [..., 1] or [..., 2]");
|
|
|
|
// concat with zeros to make it [..., 2]
|
|
Value inForComplexVal = inTensor;
|
|
ArrayRef<int64_t> inForComplexSizes = inType.getSizes().drop_back();
|
|
if (lastIndex == 1) {
|
|
Value constZeroVal = rewriter.create<Torch::ConstantFloatOp>(
|
|
binder.getLoc(), rewriter.getF64FloatAttr(0));
|
|
Value constOne = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(1));
|
|
Value constZero = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(0));
|
|
Value padSizeList =
|
|
rewriter
|
|
.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
Torch::ListType::get(rewriter.getType<Torch::IntType>()),
|
|
SmallVector<Value>({constZero, constOne}))
|
|
.getResult();
|
|
Value modeVal = rewriter.create<Torch::ConstantStrOp>(
|
|
binder.getLoc(), rewriter.getStringAttr("constant"));
|
|
SmallVector<int64_t> resSize(inForComplexSizes);
|
|
resSize.push_back(2);
|
|
inForComplexVal = rewriter.create<Torch::AtenPadOp>(
|
|
binder.getLoc(),
|
|
inType.getWithSizesAndDtype(resSize, inType.getOptionalDtype()),
|
|
inTensor, padSizeList, modeVal, constZeroVal);
|
|
}
|
|
Type inComplexTensorType = Torch::ValueTensorType::get(
|
|
binder.op->getContext(), inForComplexSizes,
|
|
mlir::ComplexType::get(inType.getDtype()));
|
|
Value inComplexTensor = rewriter.create<Torch::AtenViewAsComplexOp>(
|
|
binder.getLoc(), inComplexTensorType, inForComplexVal);
|
|
Value ftOp;
|
|
if (inverse == 0) {
|
|
ftOp = rewriter.create<Torch::AtenFftFftOp>(
|
|
binder.getLoc(), inComplexTensorType, inComplexTensor,
|
|
/*n = */ dftLength, /*dim = */ axis, /*norm = */ norm);
|
|
} else {
|
|
ftOp = rewriter.create<Torch::AtenFftIfftOp>(
|
|
binder.getLoc(), inComplexTensorType, inComplexTensor,
|
|
/*n = */ dftLength, /*dim = */ axis, /*norm = */ norm);
|
|
}
|
|
rewriter.replaceOpWithNewOp<Torch::AtenViewAsRealOp>(binder.op,
|
|
resultType, ftOp);
|
|
return success();
|
|
});
|
|
}
|