mirror of https://github.com/llvm/torch-mlir
274 lines
9.5 KiB
Python
274 lines
9.5 KiB
Python
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
# See https://llvm.org/LICENSE.txt for license information.
|
|
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
# Also available under a BSD-style license. See LICENSE.
|
|
|
|
# Script for generating the torch-mlir wheel.
|
|
# ```
|
|
# $ python setup.py bdist_wheel
|
|
# ```
|
|
# Environment variables you are probably interested in:
|
|
#
|
|
# TORCH_MLIR_PYTHON_PACKAGE_VERSION:
|
|
# specify the version of torch-mlir, for example, this can be "20220330.357"
|
|
# for a snapshot release on 2022-03-30 with build number 357.
|
|
#
|
|
# TORCH_MLIR_ENABLE_LTC:
|
|
# enables the Lazy Tensor Core Backend
|
|
#
|
|
# LLVM_INSTALL_DIR:
|
|
# build the project *out-of-tree* using the built llvm-project
|
|
#
|
|
# CMAKE_BUILD_TYPE:
|
|
# specify the build type: DEBUG/RelWithDebInfo/Release
|
|
#
|
|
# TORCH_MLIR_CMAKE_BUILD_DIR:
|
|
# specify the cmake build directory
|
|
#
|
|
# TORCH_MLIR_CMAKE_ALREADY_BUILT:
|
|
# the `TORCH_MLIR_CMAKE_BUILD_DIR` directory has already been compiled,
|
|
# and the CMake compilation process will not be executed again.
|
|
# On CIs, it is often advantageous to re-use/control the CMake build directory.
|
|
#
|
|
# MAX_JOBS:
|
|
# maximum number of compile jobs we should use to compile your code
|
|
#
|
|
# It is recommended to build with Ninja and ccache. To do so, set environment
|
|
# variables by prefixing to above invocations:
|
|
# ```
|
|
# CMAKE_GENERATOR=Ninja CMAKE_C_COMPILER_LAUNCHER=ccache CMAKE_CXX_COMPILER_LAUNCHER=ccache
|
|
# ```
|
|
#
|
|
# Implementation notes:
|
|
# The contents of the wheel is just the contents of the `python_packages`
|
|
# directory that our CMake build produces. We go through quite a bit of effort
|
|
# on the CMake side to organize that directory already, so we avoid duplicating
|
|
# that here, and just package up its contents.
|
|
import os
|
|
import pathlib
|
|
import shutil
|
|
import subprocess
|
|
import sys
|
|
import multiprocessing
|
|
|
|
from distutils.command.build import build as _build
|
|
from setuptools import setup, Extension
|
|
from setuptools.command.build_ext import build_ext
|
|
from setuptools.command.build_py import build_py
|
|
|
|
|
|
if "develop" in sys.argv:
|
|
print("Warning: The setup.py script is only used for building the wheel package.")
|
|
print(
|
|
"For initializing the development environment,"
|
|
"please use the cmake commands introduced in the docs/development.md."
|
|
)
|
|
sys.exit(1)
|
|
|
|
|
|
def _check_env_flag(name: str, default=None) -> bool:
|
|
return str(os.getenv(name, default)).upper() in ["ON", "1", "YES", "TRUE", "Y"]
|
|
|
|
|
|
PACKAGE_VERSION = os.getenv("TORCH_MLIR_PYTHON_PACKAGE_VERSION", "0.0.1")
|
|
|
|
# If true, enable LTC build by default
|
|
TORCH_MLIR_ENABLE_LTC = _check_env_flag("TORCH_MLIR_ENABLE_LTC", True)
|
|
TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS = _check_env_flag(
|
|
"TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS", False
|
|
)
|
|
LLVM_INSTALL_DIR = os.getenv("LLVM_INSTALL_DIR", None)
|
|
SRC_DIR = pathlib.Path(__file__).parent.absolute()
|
|
CMAKE_BUILD_TYPE = os.getenv("CMAKE_BUILD_TYPE", "Release")
|
|
|
|
TORCH_MLIR_CMAKE_ALREADY_BUILT = _check_env_flag(
|
|
"TORCH_MLIR_CMAKE_ALREADY_BUILT", False
|
|
)
|
|
TORCH_MLIR_CMAKE_BUILD_DIR = os.getenv("TORCH_MLIR_CMAKE_BUILD_DIR")
|
|
MAX_JOBS = os.getenv("MAX_JOBS", str(multiprocessing.cpu_count()))
|
|
|
|
|
|
# Build phase discovery is unreliable. Just tell it what phases to run.
|
|
class CustomBuild(_build):
|
|
def initialize_options(self):
|
|
_build.initialize_options(self)
|
|
# Make setuptools not steal the build directory name,
|
|
# because the mlir c++ developers are quite
|
|
# used to having build/ be for cmake
|
|
self.build_base = "setup_build"
|
|
|
|
def run(self):
|
|
self.run_command("build_py")
|
|
self.run_command("build_ext")
|
|
self.run_command("build_scripts")
|
|
|
|
|
|
class CMakeBuild(build_py):
|
|
def cmake_build(self, cmake_build_dir):
|
|
llvm_dir = str(SRC_DIR / "externals" / "llvm-project" / "llvm")
|
|
|
|
cmake_config_args = [
|
|
f"cmake",
|
|
f"-DCMAKE_BUILD_TYPE={CMAKE_BUILD_TYPE}",
|
|
f"-DPython3_EXECUTABLE={sys.executable}",
|
|
f"-DPython3_FIND_VIRTUALENV=ONLY",
|
|
f"-DMLIR_ENABLE_BINDINGS_PYTHON=ON",
|
|
f"-DLLVM_TARGETS_TO_BUILD=host",
|
|
f"-DLLVM_ENABLE_ZSTD=OFF",
|
|
# Optimization options for building wheels.
|
|
f"-DCMAKE_VISIBILITY_INLINES_HIDDEN=ON",
|
|
f"-DCMAKE_C_VISIBILITY_PRESET=hidden",
|
|
f"-DCMAKE_CXX_VISIBILITY_PRESET=hidden",
|
|
f"-DTORCH_MLIR_ENABLE_LTC={'ON' if TORCH_MLIR_ENABLE_LTC else 'OFF'}",
|
|
f"-DTORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS={'OFF' if TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS else 'ON'}",
|
|
]
|
|
if LLVM_INSTALL_DIR:
|
|
cmake_config_args += [
|
|
f"-DMLIR_DIR='{LLVM_INSTALL_DIR}/lib/cmake/mlir/'",
|
|
f"-DLLVM_DIR='{LLVM_INSTALL_DIR}/lib/cmake/llvm/'",
|
|
f"{SRC_DIR}",
|
|
]
|
|
else:
|
|
cmake_config_args += [
|
|
f"-DLLVM_ENABLE_PROJECTS=mlir",
|
|
f"-DLLVM_EXTERNAL_PROJECTS='torch-mlir'",
|
|
f"-DLLVM_EXTERNAL_TORCH_MLIR_SOURCE_DIR={SRC_DIR}",
|
|
f"{llvm_dir}",
|
|
]
|
|
cmake_build_args = [
|
|
f"cmake",
|
|
f"--build",
|
|
f".",
|
|
f"--config",
|
|
f"{CMAKE_BUILD_TYPE}",
|
|
f"--target",
|
|
f"TorchMLIRPythonModules",
|
|
f"--",
|
|
f"-j{MAX_JOBS}",
|
|
]
|
|
try:
|
|
subprocess.check_call(cmake_config_args, cwd=cmake_build_dir)
|
|
subprocess.check_call(cmake_build_args, cwd=cmake_build_dir)
|
|
except subprocess.CalledProcessError as e:
|
|
print("cmake build failed with\n", e)
|
|
print("debug by follow cmake command:")
|
|
sys.exit(e.returncode)
|
|
finally:
|
|
print(f"cmake config: {' '.join(cmake_config_args)}")
|
|
print(f"cmake build: {' '.join(cmake_build_args)}")
|
|
print(f"cmake workspace: {cmake_build_dir}")
|
|
|
|
def run(self):
|
|
target_dir = self.build_lib
|
|
cmake_build_dir = TORCH_MLIR_CMAKE_BUILD_DIR
|
|
if not cmake_build_dir:
|
|
cmake_build_dir = os.path.abspath(
|
|
os.path.join(target_dir, "..", "cmake_build")
|
|
)
|
|
if LLVM_INSTALL_DIR:
|
|
python_package_dir = os.path.join(
|
|
cmake_build_dir, "python_packages", "torch_mlir"
|
|
)
|
|
else:
|
|
python_package_dir = os.path.join(
|
|
cmake_build_dir, "tools", "torch-mlir", "python_packages", "torch_mlir"
|
|
)
|
|
if not TORCH_MLIR_CMAKE_ALREADY_BUILT:
|
|
os.makedirs(cmake_build_dir, exist_ok=True)
|
|
cmake_cache_file = os.path.join(cmake_build_dir, "CMakeCache.txt")
|
|
if os.path.exists(cmake_cache_file):
|
|
os.remove(cmake_cache_file)
|
|
# NOTE: With repeated builds for different Python versions, the
|
|
# prior version binaries will continue to accumulate. IREE uses
|
|
# a separate install step and cleans the install directory to
|
|
# keep this from happening. That is the most robust. Here we just
|
|
# delete the directory where we build native extensions to keep
|
|
# this from happening but still take advantage of most of the
|
|
# build cache.
|
|
mlir_libs_dir = os.path.join(python_package_dir, "torch_mlir", "_mlir_libs")
|
|
if os.path.exists(mlir_libs_dir):
|
|
print(f"Removing _mlir_mlibs dir to force rebuild: {mlir_libs_dir}")
|
|
shutil.rmtree(mlir_libs_dir)
|
|
else:
|
|
print(f"Not removing _mlir_libs dir (does not exist): {mlir_libs_dir}")
|
|
self.cmake_build(cmake_build_dir)
|
|
|
|
if os.path.exists(target_dir):
|
|
shutil.rmtree(target_dir, ignore_errors=False, onerror=None)
|
|
|
|
shutil.copytree(python_package_dir, target_dir, symlinks=False)
|
|
|
|
|
|
class CMakeExtension(Extension):
|
|
def __init__(self, name, sourcedir=""):
|
|
Extension.__init__(self, name, sources=[])
|
|
self.sourcedir = os.path.abspath(sourcedir)
|
|
|
|
|
|
class NoopBuildExtension(build_ext):
|
|
def build_extension(self, ext):
|
|
pass
|
|
|
|
|
|
with open("README.md", "r", encoding="utf-8") as fh:
|
|
long_description = fh.read()
|
|
|
|
|
|
# Requires and extension modules depend on whether building PyTorch
|
|
# extensions.
|
|
INSTALL_REQUIRES = [
|
|
"numpy",
|
|
"packaging",
|
|
]
|
|
EXT_MODULES = [
|
|
CMakeExtension("torch_mlir._mlir_libs._torchMlir"),
|
|
]
|
|
NAME = "torch-mlir-core"
|
|
|
|
# If building PyTorch extensions, customize.
|
|
if not TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS:
|
|
import torch
|
|
|
|
NAME = "torch-mlir"
|
|
INSTALL_REQUIRES.extend(
|
|
[
|
|
f"torch=={torch.__version__}".split("+", 1)[0],
|
|
]
|
|
)
|
|
EXT_MODULES.extend(
|
|
[
|
|
CMakeExtension("torch_mlir._mlir_libs._jit_ir_importer"),
|
|
]
|
|
)
|
|
|
|
|
|
setup(
|
|
name=NAME,
|
|
version=f"{PACKAGE_VERSION}",
|
|
author="Sean Silva",
|
|
author_email="silvasean@google.com",
|
|
description="First-class interop between PyTorch and MLIR",
|
|
long_description=long_description,
|
|
long_description_content_type="text/markdown",
|
|
include_package_data=True,
|
|
cmdclass={
|
|
"build": CustomBuild,
|
|
"built_ext": NoopBuildExtension,
|
|
"build_py": CMakeBuild,
|
|
},
|
|
ext_modules=EXT_MODULES,
|
|
python_requires=">=3.8",
|
|
install_requires=INSTALL_REQUIRES,
|
|
extras_require={
|
|
"onnx": [
|
|
"onnx>=1.15.0",
|
|
],
|
|
},
|
|
entry_points={
|
|
"console_scripts": [
|
|
"torch-mlir-import-onnx = torch_mlir.tools.import_onnx:_cli_main",
|
|
],
|
|
},
|
|
zip_safe=False,
|
|
)
|