mirror of https://github.com/llvm/torch-mlir
207 lines
7.9 KiB
C++
207 lines
7.9 KiB
C++
//===- func_builder.cpp ---------------------------------------------------===//
|
|
//
|
|
// This file is licensed under a pytorch-style license
|
|
// See frontends/pytorch/LICENSE for license information.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "func_builder.h"
|
|
|
|
#include "op_builder.h"
|
|
|
|
#include "mlir-c/BuiltinAttributes.h"
|
|
#include "mlir-c/BuiltinTypes.h"
|
|
#include "mlir-c/Diagnostics.h"
|
|
#include "npcomp-c/Types.h"
|
|
|
|
using namespace torch_mlir;
|
|
|
|
KernelCallBuilder::KernelCallBuilder(MlirContext context, MlirLocation loc,
|
|
const std::string &kernelName,
|
|
const c10::FunctionSchema &schema)
|
|
: context(context), loc(loc), state("torch.kernel_call", loc),
|
|
schema(schema) {
|
|
(void)this->context; // Preserve for future.
|
|
MlirNamedAttribute kernelNameAttr = toMlirNamedAttribute(
|
|
"kernelName",
|
|
mlirStringAttrGet(
|
|
context, mlirStringRefCreate(kernelName.data(), kernelName.size())));
|
|
mlirOperationStateAddAttributes(state, 1, &kernelNameAttr);
|
|
addSchemaAttrs();
|
|
}
|
|
|
|
void KernelCallBuilder::addSchemaAttrs() {
|
|
// Map the op schema to the kernel_call attributes:
|
|
// sigArgTypes
|
|
// sigRetTypes
|
|
// sigIsVararg
|
|
// sigIsVarret
|
|
// sigIsMutable
|
|
std::vector<MlirNamedAttribute> attrs;
|
|
attrs.push_back(toMlirNamedAttribute(
|
|
"sigIsMutable", mlirBoolAttrGet(context, schema.is_mutable())));
|
|
attrs.push_back(toMlirNamedAttribute(
|
|
"sigIsVararg", mlirBoolAttrGet(context, schema.is_vararg())));
|
|
attrs.push_back(toMlirNamedAttribute(
|
|
"sigIsVarret", mlirBoolAttrGet(context, schema.is_varret())));
|
|
|
|
// Arg types.
|
|
std::vector<MlirAttribute> args;
|
|
for (auto &arg : schema.arguments()) {
|
|
const std::string &typeStr = arg.type()->str();
|
|
args.push_back(mlirStringAttrGet(
|
|
context, mlirStringRefCreate(typeStr.data(), typeStr.size())));
|
|
}
|
|
attrs.push_back(toMlirNamedAttribute(
|
|
"sigArgTypes", mlirArrayAttrGet(context, args.size(), args.data())));
|
|
|
|
// Return types.
|
|
std::vector<MlirAttribute> returns;
|
|
for (auto &ret : schema.returns()) {
|
|
const std::string &typeStr = ret.type()->str();
|
|
returns.push_back(mlirStringAttrGet(
|
|
context, mlirStringRefCreate(typeStr.data(), typeStr.size())));
|
|
}
|
|
attrs.push_back(toMlirNamedAttribute(
|
|
"sigRetTypes",
|
|
mlirArrayAttrGet(context, returns.size(), returns.data())));
|
|
|
|
// Add attrs to op.
|
|
mlirOperationStateAddAttributes(state, attrs.size(), attrs.data());
|
|
}
|
|
|
|
void KernelCallBuilder::addOperand(MlirValue operand) {
|
|
mlirOperationStateAddOperands(state, 1, &operand);
|
|
}
|
|
|
|
void KernelCallBuilder::addResultType(MlirType resultType) {
|
|
mlirOperationStateAddResults(state, 1, &resultType);
|
|
}
|
|
|
|
MlirOperation KernelCallBuilder::create() { return state.createOperation(); }
|
|
|
|
std::unique_ptr<FuncBuilder>
|
|
FuncBuilder::createFunction(FuncBuilder::Inserter &inserter,
|
|
MlirLocation location, const std::string &name,
|
|
std::vector<MlirType> &inputTypes) {
|
|
auto context = mlirLocationGetContext(location);
|
|
// TODO: Create a dedicated API upstream for creating/manipulating func ops.
|
|
// (this is fragile and reveals details that are not guaranteed).
|
|
std::vector<MlirNamedAttribute> funcAttrs;
|
|
funcAttrs.push_back(toMlirNamedAttribute(
|
|
"type", mlirTypeAttrGet(mlirFunctionTypeGet(
|
|
context, inputTypes.size(), inputTypes.data(),
|
|
/*numResults=*/0, /*results=*/nullptr))));
|
|
funcAttrs.push_back(toMlirNamedAttribute(
|
|
"sym_name", mlirStringAttrGet(
|
|
context, mlirStringRefCreate(name.data(), name.size()))));
|
|
|
|
MlirOperationState state =
|
|
mlirOperationStateGet(toMlirStringRef("func"), location);
|
|
mlirOperationStateAddAttributes(&state, funcAttrs.size(), funcAttrs.data());
|
|
{
|
|
// Don't access these once ownership transferred.
|
|
MlirRegion newBodyRegion = mlirRegionCreate();
|
|
MlirBlock newEntryBlock =
|
|
mlirBlockCreate(inputTypes.size(), inputTypes.data());
|
|
mlirRegionInsertOwnedBlockAfter(newBodyRegion, {nullptr}, newEntryBlock);
|
|
mlirOperationStateAddOwnedRegions(&state, 1, &newBodyRegion);
|
|
}
|
|
|
|
// Need to re-lookup the region/block because we relinquished ownership above.
|
|
MlirOperation funcOp = mlirOperationCreate(&state);
|
|
MlirRegion bodyRegion = mlirOperationGetRegion(funcOp, 0);
|
|
MlirBlock entryBlock = mlirRegionGetFirstBlock(bodyRegion);
|
|
|
|
inserter(funcOp);
|
|
return std::unique_ptr<FuncBuilder>(new FuncBuilder(
|
|
context, funcOp, BlockBuilder(entryBlock, /*returnOp=*/{nullptr}, true)));
|
|
}
|
|
|
|
void FuncBuilder::rewriteFuncReturnTypes(std::vector<MlirType> &resultTypes) {
|
|
// Get inputs from current function type.
|
|
MlirAttribute funcTypeAttr =
|
|
mlirOperationGetAttributeByName(funcOp, toMlirStringRef("type"));
|
|
assert(!mlirAttributeIsNull(funcTypeAttr) &&
|
|
"function missing 'type' attribute");
|
|
assert(mlirAttributeIsAType(funcTypeAttr) &&
|
|
"function type is not a TypeAttr");
|
|
MlirType funcType = mlirTypeAttrGetValue(funcTypeAttr);
|
|
std::vector<MlirType> inputTypes;
|
|
for (intptr_t i = 0, e = mlirFunctionTypeGetNumInputs(funcType); i < e; ++i) {
|
|
inputTypes.push_back(mlirFunctionTypeGetInput(funcType, i));
|
|
}
|
|
|
|
// Make new function type.
|
|
MlirType newFuncType =
|
|
mlirFunctionTypeGet(context, inputTypes.size(), inputTypes.data(),
|
|
resultTypes.size(), resultTypes.data());
|
|
MlirAttribute newFuncTypeAttr = mlirTypeAttrGet(newFuncType);
|
|
mlirOperationSetAttributeByName(funcOp, toMlirStringRef("type"),
|
|
newFuncTypeAttr);
|
|
(void)newFuncTypeAttr;
|
|
}
|
|
|
|
MlirValue FuncBuilder::insertConstantOp(MlirOperation op) {
|
|
mlirBlockInsertOwnedOperationAfter(entryBlock.getBlock(), prevConstantOp, op);
|
|
prevConstantOp = op;
|
|
return mlirOperationGetResult(op, 0);
|
|
}
|
|
|
|
MlirValue FuncBuilder::lookupTensor(at::Tensor tensor) {
|
|
for (auto it = tensorValueMap.rbegin(), e = tensorValueMap.rend(); it != e;
|
|
++it) {
|
|
if (it->first.is_same(tensor))
|
|
return it->second;
|
|
}
|
|
return {nullptr};
|
|
}
|
|
|
|
MlirValue FuncBuilder::getScalarConstant(MlirLocation loc, at::Scalar s) {
|
|
// Note that interpreter "scalars" match the Python semantics and are
|
|
// represented as one of double or int64_t, with a special tag for whether
|
|
// it should be interpreted as a bool.
|
|
if (s.isIntegral(/*includeBool=*/false)) {
|
|
// TODO: Switch to a basicpy.constant that works properly with signed
|
|
// integers and then switch this to a signed integer.
|
|
MlirType t = mlirIntegerTypeGet(context, 64);
|
|
MlirAttribute value = mlirIntegerAttrGet(t, s.to<int64_t>());
|
|
return getGeneralConstant(loc, value);
|
|
}
|
|
if (s.isFloatingPoint()) {
|
|
MlirType t = mlirF64TypeGet(context);
|
|
MlirAttribute value = mlirFloatAttrDoubleGet(context, t, s.to<double>());
|
|
return getGeneralConstant(loc, value);
|
|
}
|
|
if (s.isBoolean()) {
|
|
return getBoolConstant(loc, s.to<bool>());
|
|
}
|
|
// TODO: s.isComplex()
|
|
|
|
throw std::invalid_argument("TODO: Scalar of unknown kind");
|
|
}
|
|
|
|
MlirValue FuncBuilder::getBoolConstant(MlirLocation loc, bool v) {
|
|
return insertConstantOp(OpBuilder(context).createBoolConstant(loc, v));
|
|
}
|
|
|
|
MlirValue FuncBuilder::getNoneConstant(MlirLocation loc) {
|
|
return insertConstantOp(OpBuilder(context).createNoneConstant(loc));
|
|
}
|
|
|
|
MlirValue FuncBuilder::getGeneralConstant(MlirLocation loc,
|
|
MlirAttribute value) {
|
|
return insertConstantOp(OpBuilder(context).createStdConstant(loc, value));
|
|
}
|
|
|
|
MlirValue FuncBuilder::buildList(MlirLocation loc,
|
|
std::vector<MlirValue> &elements) {
|
|
MlirType resultType = npcompListTypeGet(context);
|
|
OperationStateHolder state{"basicpy.build_list", loc};
|
|
mlirOperationStateAddResults(state, 1, &resultType);
|
|
mlirOperationStateAddOperands(state, elements.size(), elements.data());
|
|
MlirOperation op = state.createOperation();
|
|
entryBlock.insertBeforeTerminator(op);
|
|
return mlirOperationGetResult(op, 0);
|
|
}
|