torch-mlir/lib/Conversion/TorchToTosa/TorchToTosa.cpp

800 lines
30 KiB
C++

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#include "torch-mlir/Conversion/TorchToTosa/TorchToTosa.h"
#include "torch-mlir/Conversion/TorchToTosa/TosaLegalizeCommon.h"
#include "torch-mlir/Conversion/TorchToTosa/TosaLegalizeUtils.h"
#include "../PassDetail.h"
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tosa/IR/TosaOps.h"
#include "mlir/Dialect/Traits.h"
#include "mlir/IR/Matchers.h"
#include "mlir/Transforms/DialectConversion.h"
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
#include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionDialect.h"
#include "torch-mlir/Dialect/TorchConversion/Transforms/BackendTypeConversion.h"
using namespace mlir;
using namespace mlir::torch;
using namespace mlir::torch::Torch;
namespace {
// These legalizations are for unary ops with only for floating point datatypes.
// There is no supported quantized integer mode for these.
template <typename AtenOpT, typename TosaOpT>
class ConvertAtenUnaryFPOnlyOp : public OpConversionPattern<AtenOpT> {
public:
using OpConversionPattern<AtenOpT>::OpConversionPattern;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Value self = adaptor.self();
auto selfTy = self.getType().cast<TensorType>();
if (!selfTy)
return op.emitError("Only Tensor types supported in TOSA");
if (selfTy.getElementType().isa<mlir::FloatType>()) {
rewriter.replaceOpWithNewOp<TosaOpT>(
op,
OpConversionPattern<AtenOpT>::getTypeConverter()->convertType(
op.getType()),
self);
return success();
} else {
return op.emitError(
"Only floating-point datatype legalization supported");
}
}
};
// These unary op legalizations are identical for floating-point
// or quantized types
template <typename AtenOpT, typename TosaOpT>
class ConvertAtenUnaryOp : public OpConversionPattern<AtenOpT> {
public:
using OpConversionPattern<AtenOpT>::OpConversionPattern;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<TosaOpT>(
op,
OpConversionPattern<AtenOpT>::getTypeConverter()->convertType(
op.getType()),
adaptor.self());
return success();
}
};
// These binary op legalizations are identical for floating-point
// or quantized types
template <typename AtenOpT, typename TosaOpT>
class ConvertAtenBinaryOp : public OpConversionPattern<AtenOpT> {
public:
using OpConversionPattern<AtenOpT>::OpConversionPattern;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Value lhs = adaptor.self();
auto lhsTy = lhs.getType().cast<TensorType>();
Value rhs = adaptor.other();
auto rhsTy = rhs.getType().cast<TensorType>();
if (!lhsTy || !rhsTy)
return op.emitError("Only Tensor types supported in TOSA");
auto lhsElemTy = lhsTy.getElementType();
auto rhsElemTy = rhsTy.getElementType();
if (lhsElemTy != rhsElemTy)
return op.emitError("Add: input datatypes mismatched");
rewriter.replaceOpWithNewOp<TosaOpT>(
op,
OpConversionPattern<AtenOpT>::getTypeConverter()->convertType(
op.getType()),
lhs, rhs);
return success();
}
};
// These binary op legalizations are specific to add/sub which have an
// alpha multiplier.
template <typename AtenOpT, typename TosaOpT>
class ConvertAtenAddSubOp : public OpConversionPattern<AtenOpT> {
public:
using OpConversionPattern<AtenOpT>::OpConversionPattern;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Value lhs = adaptor.self();
auto lhsTy = lhs.getType().cast<TensorType>();
Value rhs = adaptor.other();
auto rhsTy = rhs.getType().cast<TensorType>();
if (!lhsTy || !rhsTy)
return op.emitError("Only Tensor types supported in TOSA");
auto lhsElemTy = lhsTy.getElementType();
auto rhsElemTy = rhsTy.getElementType();
if (lhsElemTy != rhsElemTy)
return op.emitError("Add: input datatypes mismatched");
// FIXME: Handle alpha.
// Needs extraction of floating point constant.
if (lhsElemTy.isa<mlir::FloatType>()) {
rewriter.replaceOpWithNewOp<TosaOpT>(
op,
OpConversionPattern<AtenOpT>::getTypeConverter()->convertType(
op.getType()),
lhs, rhs);
return success();
} else {
return op.emitError(
"Only floating-point datatype legalization supported");
}
}
};
// This defines a template to construct ops whose legalizations are
// specialized.
template <typename AtenOpT>
class ConvertAtenOp : public OpConversionPattern<AtenOpT> {
public:
using OpConversionPattern<AtenOpT>::OpConversionPattern;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
template <>
LogicalResult ConvertAtenOp<AtenTanhOp>::matchAndRewrite(
AtenTanhOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Value self = adaptor.self();
auto selfTy = self.getType().cast<TensorType>();
if (selfTy && selfTy.getElementType().isa<mlir::FloatType>()) {
rewriter.replaceOpWithNewOp<tosa::TanhOp>(
op, getTypeConverter()->convertType(op.getType()), self);
return success();
} else {
// Sigmoid legalization in TOSA for quantized element-type uses
// specialized tosa.table construct.
return op.emitError(
"Only floating-point datatype legalization currently supported");
}
}
template <>
LogicalResult ConvertAtenOp<AtenSigmoidOp>::matchAndRewrite(
AtenSigmoidOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Value self = adaptor.self();
auto selfTy = self.getType().cast<TensorType>();
if (selfTy && selfTy.getElementType().isa<mlir::FloatType>()) {
rewriter.replaceOpWithNewOp<tosa::SigmoidOp>(
op, getTypeConverter()->convertType(op.getType()), self);
return success();
} else {
// Sigmoid legalization in TOSA for quantized element-type uses
// specialized tosa.table construct.
return op.emitError(
"Only floating-point datatype legalization currently supported");
}
}
template <>
LogicalResult ConvertAtenOp<AtenReluOp>::matchAndRewrite(
AtenReluOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Value self = adaptor.self();
auto selfTy = self.getType().cast<TensorType>();
// Maps to tosa.clamp which has both int and fp limits.
int64_t clampMin = 0;
Value clampIn = self;
if (selfTy) {
// Rescale the clampIn for quantized types. TBD
if (!selfTy.getElementType().isa<mlir::FloatType>()) {
return op.emitError(
"Only floating-point datatype legalization currently supported");
}
rewriter.replaceOpWithNewOp<tosa::ClampOp>(
op, getTypeConverter()->convertType(op.getType()), clampIn,
rewriter.getI64IntegerAttr(clampMin),
rewriter.getI64IntegerAttr(std::numeric_limits<int32_t>::max()),
rewriter.getF32FloatAttr(0.0f),
rewriter.getF32FloatAttr(std::numeric_limits<float>::max()));
return success();
} else {
return op.emitError("Only Tensor types supported in TOSA");
}
}
template <>
LogicalResult ConvertAtenOp<AtenMulTensorOp>::matchAndRewrite(
AtenMulTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Value lhs = adaptor.self();
auto lhsTy = lhs.getType().cast<TensorType>();
Value rhs = adaptor.other();
auto rhsTy = rhs.getType().cast<TensorType>();
if (!lhsTy || !rhsTy)
return op.emitError("Only Tensor types supported in TOSA");
auto lhsElemTy = lhsTy.getElementType();
auto rhsElemTy = rhsTy.getElementType();
if (lhsElemTy != rhsElemTy)
return op.emitError("Add: input datatypes mismatched");
if (lhsElemTy.isa<mlir::FloatType>()) {
rewriter.replaceOpWithNewOp<tosa::MulOp>(
op, getTypeConverter()->convertType(op.getType()), lhs, rhs,
/*shift=*/0);
return success();
} else {
// Quantized multiplication may need to rescale inputs.
return op.emitError(
"Only floating-point datatype legalization currently supported");
}
}
template <>
LogicalResult ConvertAtenOp<AtenDivTensorOp>::matchAndRewrite(
AtenDivTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Value lhs = adaptor.self();
auto lhsTy = lhs.getType().cast<TensorType>();
Value rhs = adaptor.other();
auto rhsTy = rhs.getType().cast<TensorType>();
if (!lhsTy || !rhsTy)
return op.emitError("Only Tensor types supported in TOSA");
auto lhsElemTy = lhsTy.getElementType();
auto rhsElemTy = rhsTy.getElementType();
if (lhsElemTy != rhsElemTy)
return op.emitError("Add: input datatypes mismatched");
if (lhsElemTy.isa<mlir::FloatType>()) {
auto rcpOp = rewriter.create<tosa::ReciprocalOp>(
op->getLoc(), getTypeConverter()->convertType(op.getType()), rhs);
rewriter.replaceOpWithNewOp<tosa::MulOp>(
op, getTypeConverter()->convertType(op.getType()), lhs,
rcpOp.getResult(), /*shift=*/0);
} else {
rewriter.replaceOpWithNewOp<tosa::DivOp>(
op, getTypeConverter()->convertType(op.getType()), lhs, rhs);
}
return success();
}
using ReductionConvFunc = llvm::Optional<Value> (*)(PatternRewriter &,
Operation *,
RankedTensorType, Value,
ElementsAttr, bool);
// They all constitute a common form invoking the appropriate
// converion function in TosaLegalizeCommon.cpp
template <typename AtenOpT, ReductionConvFunc ConversionFuncT>
class ConvertAtenReductionOp : public OpConversionPattern<AtenOpT> {
public:
using OpConversionPattern<AtenOpT>::OpConversionPattern;
using OpAdaptor = typename AtenOpT::Adaptor;
// Each variant must implement corresponding parameter parsing options
virtual LogicalResult readReduceDimsAndKeepDims(
AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter,
ElementsAttr &reduceDimsAttr, bool &keepDims) const {
return rewriter.notifyMatchFailure(
op, "Unimplemented reduce_dims and keep_dims parsing function");
}
// Common rewriter for all reduction ops, calls the specific implementation of
// readReduceDimsAndKeepDims() needed for the op variant.
LogicalResult
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Value self = adaptor.self();
auto selfTy = self.getType().cast<TensorType>();
if (!selfTy)
return op.emitError("Only Tensor types supported in TOSA");
auto outputTy = OpConversionPattern<AtenOpT>::getTypeConverter()
->convertType(op.getType())
.template cast<RankedTensorType>();
if (!outputTy)
return op.emitError(
"Only ranked tensor type outputs permitted for reduce_mean");
ElementsAttr reduceDimsAttr;
bool keepDims;
if (failed(readReduceDimsAndKeepDims(op, adaptor, rewriter, reduceDimsAttr,
keepDims)))
return failure();
llvm::Optional<Value> result =
ConversionFuncT(rewriter, op, outputTy, self, reduceDimsAttr, keepDims);
if (!result)
return failure();
// TBD - support dtype casting.
rewriter.replaceOp(op, {result.getValue()});
return success();
}
};
// This reduction op legalization template handles op variants that have
// explicit reduce_dims dimensions (provided as a list) and keep_dims
// parameters.
template <typename AtenOpT, ReductionConvFunc ConversionFuncT>
class ConvertAtenMultipleDimsReductionOp
: public ConvertAtenReductionOp<AtenOpT, ConversionFuncT> {
using ConvertAtenReductionOp<AtenOpT,
ConversionFuncT>::ConvertAtenReductionOp;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult readReduceDimsAndKeepDims(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter,
ElementsAttr &reduceDimsAttr,
bool &keepDims) const override {
SmallVector<int64_t, 4> reduceDims;
if (!matchPattern(op.dim(), m_TorchConstantIntList(reduceDims)))
return rewriter.notifyMatchFailure(op,
"non-const dim parameter unsupported");
int64_t N = reduceDims.size();
auto reduceDimsType = RankedTensorType::get({N}, rewriter.getI64Type());
reduceDimsAttr = DenseIntElementsAttr::get(reduceDimsType,
llvm::makeArrayRef(reduceDims));
keepDims = false;
if (!matchPattern(op.keepdim(), m_TorchConstantBool(&keepDims)))
return rewriter.notifyMatchFailure(
op, "non-const keepdim parameter unsupported");
return success();
}
};
// This reduction op legalization template handles op variants that reduce in
// only one explicit dim which is provided as a number (rather than a list), and
// a keep_dims parameter.
template <typename AtenOpT, ReductionConvFunc ConversionFuncT>
class ConvertAtenOneDimReductionOp
: public ConvertAtenReductionOp<AtenOpT, ConversionFuncT> {
using ConvertAtenReductionOp<AtenOpT,
ConversionFuncT>::ConvertAtenReductionOp;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult readReduceDimsAndKeepDims(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter,
ElementsAttr &reduceDimsAttr,
bool &keepDims) const override {
int64_t reduceDim;
if (!matchPattern(op.dim(), m_TorchConstantInt(&reduceDim)))
return rewriter.notifyMatchFailure(op,
"non-const dim parameter unsupported");
auto reduceDimsType = RankedTensorType::get({1}, rewriter.getI64Type());
reduceDimsAttr = DenseIntElementsAttr::get(reduceDimsType,
llvm::makeArrayRef({reduceDim}));
keepDims = false;
if (!matchPattern(op.keepdim(), m_TorchConstantBool(&keepDims)))
return rewriter.notifyMatchFailure(
op, "non-const keepdim parameter unsupported");
return success();
}
};
// This reduction op legalization template handles op variants that reduce all
// dims does not keep dims.
template <typename AtenOpT, ReductionConvFunc ConversionFuncT>
class ConvertAtenAllDimsReductionOp
: public ConvertAtenReductionOp<AtenOpT, ConversionFuncT> {
public:
using ConvertAtenReductionOp<AtenOpT,
ConversionFuncT>::ConvertAtenReductionOp;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult readReduceDimsAndKeepDims(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter,
ElementsAttr &reduceDimsAttr,
bool &keepDims) const override {
auto self = adaptor.self();
auto selfTy = self.getType().template cast<RankedTensorType>();
// Select all dims to reduce
SmallVector<int64_t, 4> reduceDims;
for (int64_t i = 0; i < selfTy.getRank(); i++)
reduceDims.push_back(i);
int64_t N = selfTy.getRank();
auto reduceDimsType = RankedTensorType::get({N}, rewriter.getI64Type());
reduceDimsAttr = DenseIntElementsAttr::get(reduceDimsType,
llvm::makeArrayRef(reduceDims));
keepDims = false;
return success();
}
};
template <>
LogicalResult ConvertAtenOp<AtenArgmaxOp>::matchAndRewrite(
AtenArgmaxOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Value self = adaptor.self();
auto selfTy = self.getType().template cast<RankedTensorType>();
if (!selfTy)
return op.emitError("Only ranked tensor types supported in TOSA argmax");
int64_t reduceDim;
if (!matchPattern(op.dim(), m_TorchConstantInt(&reduceDim))) {
// NoneType indicates reduce on all dims
reduceDim = -1;
}
bool keepDim = false;
if (!matchPattern(op.keepdim(), m_TorchConstantBool(&keepDim)))
return rewriter.notifyMatchFailure(
op, "non-const keepdim parameter unsupported");
auto resultTy = getTypeConverter()
->convertType(op.getResult().getType())
.cast<RankedTensorType>();
auto outputETy = resultTy.getElementType();
// Create a single instance of tosa.argmax.
// Multiple dims require chained construct.
auto buildArgmax = [&](int64_t reduceDim, Value input) -> Value {
auto inputTy = input.getType().cast<RankedTensorType>();
auto inputShape = inputTy.getShape();
SmallVector<int64_t> outputShapeArr = {};
int32_t i = 0;
for (auto &dim : inputShape) {
if (i++ != reduceDim) {
outputShapeArr.push_back(dim);
} else {
if (keepDim)
outputShapeArr.push_back(1);
}
}
// Tosa argmax output is i32, while Torch backend mandates i64.
auto outputReduceTy = RankedTensorType::get(
ArrayRef<int64_t>(outputShapeArr), rewriter.getI32Type());
auto reduceDimAttr =
rewriter.getIntegerAttr(rewriter.getI64Type(), reduceDim);
return rewriter
.create<tosa::ArgMaxOp>(op->getLoc(),
getTypeConverter()->convertType(outputReduceTy),
input, reduceDimAttr)
.getResult();
};
// Convert the final index to i64 for backend finalization, However, i64
// is not a defined type for tosa.cast, so using arith.extsi instead.
auto castToInt64 = [&](Value result) -> LogicalResult {
auto resTy = result.getType().cast<ShapedType>();
if (!resTy)
return op.emitError("Argmax: Result is not a shaped type");
auto resShape = resTy.getShape();
auto outTy =
RankedTensorType::get(resShape, outputETy); // rewriter.getI64Type());
rewriter.replaceOpWithNewOp<arith::ExtSIOp>(
op, getTypeConverter()->convertType(outTy), result);
return success();
};
if (reduceDim == -1) { // reducing on all dims
Value input = self;
for (int dim = 0; dim < selfTy.getRank(); dim++) {
// progressively reduce each 0-th dim
input = buildArgmax(0, input);
}
return castToInt64(input);
} else {
return castToInt64(buildArgmax(reduceDim, self));
}
return success();
}
template <typename AtenOpT>
class ConvertAtenSqueezeOp : public OpConversionPattern<AtenOpT> {
public:
using OpConversionPattern<AtenOpT>::OpConversionPattern;
using OpAdaptor = typename AtenOpT::Adaptor;
// Each variant must implement corresponding parameter parsing options
virtual LogicalResult
generateSqueezedShape(AtenOpT op, RankedTensorType selfTy,
ConversionPatternRewriter &rewriter,
SmallVector<int64_t> &squeezedShape) const {
return rewriter.notifyMatchFailure(
op, "Unimplemented dim/dim-list parsing function");
}
// Common rewriter for all squeeze ops, calls the specific implementation of
// generateSqueezedShape() needed for the op variant.
LogicalResult
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Value self = adaptor.self();
auto selfTy = self.getType().template cast<RankedTensorType>();
if (!selfTy)
return op.emitError("Only ranked tensor types supported in TOSA argmax");
SmallVector<int64_t> newOutputShape;
if (failed(generateSqueezedShape(op, selfTy, rewriter, newOutputShape)))
return op.emitError("Squeeze could not compute new shape");
auto resultTy = OpConversionPattern<AtenOpT>::getTypeConverter()
->convertType(op.getResult().getType())
.template cast<RankedTensorType>();
auto resultElemTy = resultTy.getElementType();
auto newOutputTy = RankedTensorType::get(newOutputShape, resultElemTy);
auto reshapeOp = rewriter.create<tosa::ReshapeOp>(
op->getLoc(),
OpConversionPattern<AtenOpT>::getTypeConverter()->convertType(
newOutputTy),
self, rewriter.getI64ArrayAttr(newOutputShape));
rewriter.replaceOpWithNewOp<tensor::CastOp>(
op,
OpConversionPattern<AtenOpT>::getTypeConverter()->convertType(
newOutputTy),
reshapeOp);
return success();
}
};
template <typename AtenOpT>
class ConvertAtenSqueezeOneDimOp : public ConvertAtenSqueezeOp<AtenOpT> {
using ConvertAtenSqueezeOp<AtenOpT>::ConvertAtenSqueezeOp;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult
generateSqueezedShape(AtenOpT op, RankedTensorType selfTy,
ConversionPatternRewriter &rewriter,
SmallVector<int64_t> &squeezedShape) const override {
int64_t squeezeDim;
if (!matchPattern(op.dim(), m_TorchConstantInt(&squeezeDim)))
return rewriter.notifyMatchFailure(op,
"non-const dim parameter unsupported");
// Handle negative dim
if (squeezeDim < 0)
squeezeDim = squeezeDim + selfTy.getRank();
auto selfShape = selfTy.getShape();
// Only dims statically known to have size=1 are reduced.
// Dynamic dims are treated as unknowns and will not be squeezed
// even if dim parameter says it should be.
uint32_t dimNum = 0;
for (auto &dim : selfShape) {
if (dim != 1 || squeezeDim != dimNum)
squeezedShape.push_back(dim);
dimNum++;
}
return success();
}
};
template <typename AtenOpT>
class ConvertAtenSqueezeAllDimsOp : public ConvertAtenSqueezeOp<AtenOpT> {
using ConvertAtenSqueezeOp<AtenOpT>::ConvertAtenSqueezeOp;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult
generateSqueezedShape(AtenOpT op, RankedTensorType selfTy,
ConversionPatternRewriter &rewriter,
SmallVector<int64_t> &squeezedShape) const override {
auto selfShape = selfTy.getShape();
// Dims that may dynamically resolve to 1 are not reduced here. Only
// compile-time resolvable dims are handled here.
for (auto &dim : selfShape) {
if (dim != 1)
squeezedShape.push_back(dim);
}
return success();
}
};
// FIXME(AG): This will eventually go into a Tosa*Utils file
// Convert an fp32 scalar into tosa fp32 tensor.
static LogicalResult
tosaF32TensorFromTorchFloat(ConversionPatternRewriter &rewriter, Operation *op,
Value torchScalarValue, Value &tosaTensor) {
double scalarValue;
if (!matchPattern(torchScalarValue, m_TorchConstantFloat(&scalarValue)))
return failure();
// Construct a tosa.const
tosaTensor =
mlir::tosa::getTosaConstTensorSingleF32(rewriter, op, scalarValue);
return success();
}
template <>
LogicalResult ConvertAtenOp<AtenPowTensorScalarOp>::matchAndRewrite(
AtenPowTensorScalarOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Value self = adaptor.self();
auto selfTy = self.getType().template cast<RankedTensorType>();
if (!selfTy)
return op.emitError("Only ranked tensor types supported in TOSA Pow");
if (!selfTy.getElementType().isa<mlir::FloatType>())
return op.emitError("Only floating-point datatype legalization supported");
Value expTensor;
Value expScalar = op.exponent();
if (failed(tosaF32TensorFromTorchFloat(rewriter, op.getOperation(), expScalar,
expTensor)))
return op.emitError("Currently only scalar constants are supported for "
"conversion in TOSA Pow operation");
rewriter.replaceOpWithNewOp<tosa::PowOp>(
op, getTypeConverter()->convertType(op.getType()), self, expTensor);
return success();
}
} // namespace
// -----------------------------------------------------------------------------
// TorchToTosa Pass
// -----------------------------------------------------------------------------
namespace {
class ConvertTorchToTosa : public ConvertTorchToTosaBase<ConvertTorchToTosa> {
public:
void getDependentDialects(DialectRegistry &registry) const override {
registry.insert<tosa::TosaDialect>();
registry.insert<tensor::TensorDialect>();
registry.insert<arith::ArithmeticDialect>();
TorchConversion::getBackendTypeConversionDependentDialects(registry);
}
void runOnOperation() override {
MLIRContext *context = &getContext();
ConversionTarget target(*context);
target.addLegalDialect<tosa::TosaDialect, tensor::TensorDialect,
arith::ArithmeticDialect>();
TypeConverter typeConverter;
typeConverter.addConversion([](Type type) { return type; });
TorchConversion::setupBackendTypeConversion(target, typeConverter);
RewritePatternSet patterns(context);
#define INSERT_UNARY_FPONLY_PATTERN(AtenOp, TosaOp) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenUnaryFPOnlyOp<AtenOp, TosaOp>>(typeConverter, \
context);
INSERT_UNARY_FPONLY_PATTERN(AtenLogOp, tosa::LogOp)
INSERT_UNARY_FPONLY_PATTERN(AtenExpOp, tosa::ExpOp)
#undef INSERT_UNARY_FPONLY_PATTERN
#define INSERT_UNARY_PATTERN(AtenOp, TosaOp) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenUnaryOp<AtenOp, TosaOp>>(typeConverter, context);
INSERT_UNARY_PATTERN(AtenNegOp, tosa::NegateOp)
INSERT_UNARY_PATTERN(AtenFloorOp, tosa::FloorOp)
INSERT_UNARY_PATTERN(AtenRsqrtOp, tosa::RsqrtOp)
INSERT_UNARY_PATTERN(AtenBitwiseNotOp, tosa::BitwiseNotOp)
#undef INSERT_UNARY_PATTERN
#define INSERT_BINARY_PATTERN(AtenOp, TosaOp) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenBinaryOp<AtenOp, TosaOp>>(typeConverter, context);
INSERT_BINARY_PATTERN(AtenMaximumOp, tosa::MaximumOp)
INSERT_BINARY_PATTERN(AtenMinimumOp, tosa::MinimumOp)
#undef INSERT_BINARY_PATTERN
#define INSERT_BINARY_ADDSUB_PATTERN(AtenOp, TosaOp) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenAddSubOp<AtenOp, TosaOp>>(typeConverter, context);
INSERT_BINARY_ADDSUB_PATTERN(AtenAddTensorOp, tosa::AddOp)
INSERT_BINARY_ADDSUB_PATTERN(AtenSubTensorOp, tosa::SubOp)
#undef INSERT_BINARY_ADDSUB_PATTERN
#define INSERT_NDIMS_REDUCTION_OP_PATTERN(AtenOp, ConversionFunc) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenMultipleDimsReductionOp<AtenOp, ConversionFunc>>( \
typeConverter, context);
INSERT_NDIMS_REDUCTION_OP_PATTERN(AtenMeanDimOp,
mlir::tosa::convertReduceMeanOp)
INSERT_NDIMS_REDUCTION_OP_PATTERN(AtenSumDimIntListOp,
mlir::tosa::convertReduceSumOp)
#undef INSERT_NDIMS_REDUCTION_OP_PATTERN
#define INSERT_ONEDIM_REDUCTION_OP_PATTERN(AtenOp, ConversionFunc) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenOneDimReductionOp<AtenOp, ConversionFunc>>( \
typeConverter, context);
INSERT_ONEDIM_REDUCTION_OP_PATTERN(AtenAnyDimOp,
mlir::tosa::convertReduceAnyOp)
#undef INSERT_ONEDIM_REDUCTION_OP_PATTERN
#define INSERT_ALLDIMS_REDUCTION_OP_PATTERN(AtenOp, ConversionFunc) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenAllDimsReductionOp<AtenOp, ConversionFunc>>( \
typeConverter, context);
INSERT_ALLDIMS_REDUCTION_OP_PATTERN(AtenAllOp,
mlir::tosa::convertReduceAllOp)
INSERT_ALLDIMS_REDUCTION_OP_PATTERN(AtenAnyOp,
mlir::tosa::convertReduceAnyOp)
INSERT_ALLDIMS_REDUCTION_OP_PATTERN(AtenSumOp,
mlir::tosa::convertReduceSumOp)
#undef INSERT_ALLDIMS_REDUCTION_OP_PATTERN
#define INSERT_SQUEEZE_OP_PATTERN(AtenOp, TemplateForm) \
target.addIllegalOp<AtenOp>(); \
patterns.add<TemplateForm<AtenOp>>(typeConverter, context);
INSERT_SQUEEZE_OP_PATTERN(AtenSqueezeOp, ConvertAtenSqueezeAllDimsOp)
INSERT_SQUEEZE_OP_PATTERN(AtenSqueezeDimOp, ConvertAtenSqueezeOneDimOp)
#undef INSERT_SQUEEZE_OP_PATTERN
#define INSERT_ATENOP_PATTERN(AtenOp) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenOp<AtenOp>>(typeConverter, context);
INSERT_ATENOP_PATTERN(AtenTanhOp);
INSERT_ATENOP_PATTERN(AtenSigmoidOp);
INSERT_ATENOP_PATTERN(AtenReluOp);
INSERT_ATENOP_PATTERN(AtenMulTensorOp);
INSERT_ATENOP_PATTERN(AtenDivTensorOp);
INSERT_ATENOP_PATTERN(AtenArgmaxOp);
INSERT_ATENOP_PATTERN(AtenPowTensorScalarOp);
#undef INSERT_ATENOP_PATTERN
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
return signalPassFailure();
}
};
} // namespace
std::unique_ptr<OperationPass<FuncOp>>
mlir::torch::createConvertTorchToTosaPass() {
return std::make_unique<ConvertTorchToTosa>();
}