torch-mlir/lib/Dialect/Torch/IR/TorchOps.cpp

1213 lines
45 KiB
C++

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Support/LLVM.h"
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/Casting.h"
using namespace mlir;
using namespace mlir::torch;
using namespace mlir::torch::Torch;
// see https://github.com/pytorch/pytorch/blob/master/c10/core/ScalarType.h#L28
static int64_t getDtypeIntegerFromMlirType(Type dtype) {
if (dtype.isa<Float32Type>())
return 6;
if (auto integerType = dtype.dyn_cast<IntegerType>()) {
if (integerType.isSignedInteger(64))
return 4;
if (integerType.isSignlessInteger(1))
return 11;
}
return -1;
}
//===----------------------------------------------------------------------===//
// Utilities
//===----------------------------------------------------------------------===//
Value mlir::torch::Torch::copyTensorToType(OpBuilder &builder, Location loc,
BaseTensorType newType,
Value tensor) {
auto originalType = tensor.getType().cast<BaseTensorType>();
// Adjust the static information in the type to match between the original and
// new types.
if (!originalType.hasSameSizesAndDtype(newType)) {
tensor = builder.create<TensorStaticInfoCastOp>(
loc, originalType.getWithSizesAndDtypeFrom(newType), tensor);
}
// Unless both the original and new types are both value tensors, we end
// up creating one op that converts between the value and non-value tensor
// domains. If both the original and new types are both non-value tensors,
// then we do the copy by going to a value tensor and back.
if (tensor.getType().isa<NonValueTensorType>())
tensor = builder.create<CopyToValueTensorOp>(loc, tensor);
if (newType.isa<NonValueTensorType>())
tensor = builder.create<CopyToNonValueTensorOp>(loc, tensor);
return tensor;
}
static IntegerAttr getI64IntegerAttr(MLIRContext *context, int64_t value) {
return IntegerAttr::get(IntegerType::get(context, 64), value);
}
//===----------------------------------------------------------------------===//
// MethodOp
//===----------------------------------------------------------------------===//
LogicalResult MethodOp::verifySymbolUses(SymbolTableCollection &symbolTable) {
auto func =
symbolTable.lookupNearestSymbolFrom<FuncOp>(*this, functionAttr());
if (!func)
return emitError() << "'@" << function()
<< "' does not reference a valid function";
if (func.getVisibility() != SymbolTable::Visibility::Private)
return emitError() << "'@" << function()
<< "' must reference a private function";
if (func.isDeclaration())
return emitError() << "'@" << function()
<< "' must reference a function that is defined (not "
"merely declared)";
auto expectedReceiverArgType = NnModuleType::get(
getContext(), getOperation()->getParentOfType<ClassTypeOp>().getName());
if (func.getType().getNumInputs() == 0 ||
func.getType().getInput(0) != expectedReceiverArgType) {
return emitError() << "the referenced function '" << function()
<< "' must have a first argument of type "
<< expectedReceiverArgType;
}
return success();
}
//===----------------------------------------------------------------------===//
// NnModuleOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(NnModuleOp op) {
for (Operation &child : *op.getBody())
if (!isa<SlotOp, NnModuleTerminatorOp>(&child))
return child.emitOpError() << "is not allowed inside 'torch.nn_module'";
return success();
}
// PyTorch has a well-developed notion of subtyping.
//
// This is a restricted subset of it.
//
// TODO: Flesh this out.
// TODO: Decide / properly model the distinction between PEP 483 / Python
// subtyping vs "more static information".
bool isValidSubtype(Type subtype, Type type) {
if (subtype == type)
return true;
if (auto any = type.dyn_cast<AnyType>())
return true;
if (auto number = type.dyn_cast<NumberType>())
return subtype.isa<IntType>() || subtype.isa<Torch::FloatType>();
if (auto optional = type.dyn_cast<OptionalType>())
return isValidSubtype(subtype, optional.getContainedType()) ||
subtype.isa<Torch::NoneType>();
if (auto tuple = type.dyn_cast<Torch::TupleType>()) {
if (!subtype.isa<Torch::TupleType>())
return false;
auto subtypes = subtype.cast<Torch::TupleType>().getContainedTypes();
auto types = tuple.getContainedTypes();
if (subtypes.size() != types.size())
return false;
for (auto t : llvm::zip(subtypes, types)) {
if (!isValidSubtype(std::get<0>(t), std::get<1>(t)))
return false;
}
return true;
}
// TODO: This is not subtyping according to PEP 483. See description
// of NonValueTensorType.
if (subtype.isa<NonValueTensorType>() && type.isa<NonValueTensorType>() &&
type ==
NonValueTensorType::getWithLeastStaticInformation(type.getContext()))
return true;
if (subtype.isa<ValueTensorType>() && type.isa<ValueTensorType>() &&
type == ValueTensorType::getWithLeastStaticInformation(type.getContext()))
return true;
return false;
}
LogicalResult NnModuleOp::verifySymbolUses(SymbolTableCollection &symbolTable) {
auto classType = symbolTable.lookupNearestSymbolFrom<ClassTypeOp>(
*this, SymbolRefAttr::get(getContext(), getClassName()));
if (!classType)
return emitError() << "'" << getClassName()
<< "' does not reference a valid class type";
auto attrs = llvm::to_vector<6>(getBody()->getOps<SlotOp>());
auto attrDefs = llvm::to_vector<6>(classType.getBody()->getOps<AttrOp>());
if (attrs.size() != attrDefs.size())
return emitError() << "number of 'torch.slot's in a 'torch.nn_module' must "
"match number of 'torch.attr's in "
"the corresponding 'torch.class_type'";
for (int i = 0, e = attrs.size(); i != e; i++) {
SlotOp attr = attrs[i];
AttrOp attrDef = attrDefs[i];
if (!isValidSubtype(attr.value().getType(), attrDef.type()) ||
attr.name() != attrDef.name()) {
return attr.emitOpError()
.append("is expected to match type and name of '",
attrDef.getOperation(), "'")
.attachNote(attrDef.getLoc())
.append("see torch.attr at corresponding index ", i, " here");
}
}
return success();
}
//===----------------------------------------------------------------------===//
// PrimListConstructOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(PrimListConstructOp op) {
auto resultType = op.getResult().getType();
auto resultElementType = resultType.dyn_cast<ListType>().getContainedType();
auto matchResultElementType = [&](Type type) {
return isValidSubtype(type, resultElementType);
};
if (!llvm::all_of(op->getOperandTypes(), matchResultElementType)) {
return op.emitError() << "operand types should have the same type as the "
"list contained type";
}
return success();
}
//===----------------------------------------------------------------------===//
// PrimDictConstructOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(PrimDictConstructOp op) {
auto isValidSubTypeOf = [](Type expectedType) {
return [=](Type type) { return isValidSubtype(type, expectedType); };
};
Type keyType = op.getKeyType();
if (!llvm::all_of(op.keys().getTypes(), isValidSubTypeOf(keyType)))
return op.emitError() << "keys should be of Dict key type";
Type valueType = op.getValueType();
if (!llvm::all_of(op.values().getTypes(), isValidSubTypeOf(valueType)))
return op.emitError() << "values should be of Dict value type";
return success();
}
//===----------------------------------------------------------------------===//
// ClassTypeOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(ClassTypeOp op) {
llvm::StringMap<Operation *> namesToOps;
for (Operation &child : op.getBody()->without_terminator()) {
if (!isa<AttrOp, MethodOp>(&child))
return child.emitOpError() << "is not allowed inside `torch.class_type`";
StringRef name;
if (auto attr = dyn_cast<AttrOp>(child))
name = attr.name();
else
name = cast<MethodOp>(child).name();
auto itAndWasInserted = namesToOps.insert({name, &child});
auto it = itAndWasInserted.first;
bool wasInserted = itAndWasInserted.second;
if (!wasInserted) {
auto diag = op.emitOpError().append(
"has duplicate attr/method with name '", name, "'");
diag.attachNote(it->second->getLoc())
.append("see first conflicting attr/method here");
diag.attachNote(child.getLoc())
.append("see second conflicting attr/method here");
return failure();
}
}
return success();
}
//===----------------------------------------------------------------------===//
// PrimLoopOp
//===----------------------------------------------------------------------===//
OperandRange PrimLoopOp::getSuccessorEntryOperands(unsigned index) {
assert(index == 0);
return iterArgsInit();
}
void PrimLoopOp::getSuccessorRegions(
Optional<unsigned> index, ArrayRef<Attribute> operands,
SmallVectorImpl<RegionSuccessor> &regions) {
(void)operands;
if (!index.hasValue()) {
regions.emplace_back(&region(), region().getArguments().slice(1));
return;
}
assert(*index == 0);
regions.emplace_back(&region(), region().getArguments().slice(1));
regions.emplace_back(getResults());
}
//===----------------------------------------------------------------------===//
// PrimLoopConditionOp
//===----------------------------------------------------------------------===//
MutableOperandRange
PrimLoopConditionOp::getMutableSuccessorOperands(Optional<unsigned> index) {
// Pass all operands except the condition to the successor which is the
// parent loop op.
return iterArgsMutable();
}
//===----------------------------------------------------------------------===//
// PrimIfOp
//===----------------------------------------------------------------------===//
static ParseResult parsePrimIfOp(OpAsmParser &parser, OperationState &result) {
// Create the regions.
result.regions.reserve(2);
Region *thenRegion = result.addRegion();
Region *elseRegion = result.addRegion();
auto &builder = parser.getBuilder();
OpAsmParser::OperandType cond;
Type boolType = builder.getType<Torch::BoolType>();
if (parser.parseOperand(cond) ||
parser.resolveOperand(cond, boolType, result.operands))
return failure();
// Parse results type list.
if (parser.parseArrowTypeList(result.types))
return failure();
// Parse the 'then' region.
if (parser.parseRegion(*thenRegion, /*arguments=*/{}, /*argTypes=*/{}))
return failure();
// Parse the 'else' region.
if (parser.parseKeyword("else"))
return failure();
if (parser.parseRegion(*elseRegion, /*arguments=*/{}, /*argTypes=*/{}))
return failure();
// Parse the optional attribute list.
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
return success();
}
static void print(OpAsmPrinter &p, PrimIfOp op) {
p << " " << op.condition();
p << " -> (" << op.getResultTypes() << ")";
p.printRegion(op.thenRegion(), /*printEntryBlockArgs=*/false);
p << " else";
p.printRegion(op.elseRegion(), /*printEntryBlockArgs=*/false);
p.printOptionalAttrDict(op->getAttrs());
}
void PrimIfOp::getSuccessorRegions(Optional<unsigned> index,
ArrayRef<Attribute> operands,
SmallVectorImpl<RegionSuccessor> &regions) {
// The `then` and the `else` region branch back to the parent operation.
if (index.hasValue()) {
regions.push_back(RegionSuccessor(getResults()));
return;
}
// If the condition is constant, we can give a more precise answer.
if (auto condAttr = operands.front().dyn_cast_or_null<IntegerAttr>()) {
Region *executedRegion =
condAttr.getValue().isOneValue() ? &thenRegion() : &elseRegion();
regions.push_back(RegionSuccessor(executedRegion));
return;
}
// If the condition isn't constant, both regions may be executed.
regions.push_back(RegionSuccessor(&thenRegion()));
regions.push_back(RegionSuccessor(&elseRegion()));
return;
}
/// Replaces the given op with the contents of the given single-block region,
/// using the operands of the block terminator to replace operation results.
static void replaceOpWithRegion(PatternRewriter &rewriter, Operation *op,
Region &region, ValueRange blockArgs = {}) {
assert(llvm::hasSingleElement(region) && "expected single-region block");
Block *block = &region.front();
Operation *terminator = block->getTerminator();
ValueRange results = terminator->getOperands();
rewriter.mergeBlockBefore(block, op, blockArgs);
rewriter.replaceOp(op, results);
rewriter.eraseOp(terminator);
}
void PrimIfOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
// If the condition is constant, delete the dead branch and inline the live
// branch.
patterns.add(+[](PrimIfOp op, PatternRewriter &rewriter) {
auto constantBool = op.condition().getDefiningOp<Torch::ConstantBoolOp>();
if (!constantBool)
return rewriter.notifyMatchFailure(op, "non-constant condition");
replaceOpWithRegion(
rewriter, op, constantBool.value() ? op.thenRegion() : op.elseRegion());
return success();
});
}
//===----------------------------------------------------------------------===//
// DerefineOp
//===----------------------------------------------------------------------===//
bool DerefineOp::areCastCompatible(mlir::TypeRange inputs,
mlir::TypeRange outputs) {
return isValidSubtype(inputs[0], outputs[0]);
}
template <typename OpTy>
static OpFoldResult atenIsOrIsNotFoldHelper(OpTy op, bool equalIsTrue) {
Type lhsType = op.self().getType();
Type rhsType = op.obj().getType();
// If either type is a NoneType, make it be the lhsType.
if (rhsType.template isa<Torch::NoneType>())
std::swap(lhsType, rhsType);
// TODO: Implement and use subtype infra for this.
// If neither type is a subtype of the other, then the result is false.
if (lhsType.template isa<Torch::NoneType>() &&
rhsType.template isa<Torch::NoneType>())
return IntegerAttr::get(IntegerType::get(op.getContext(), 1), equalIsTrue);
if (lhsType.template isa<Torch::NoneType>() &&
!rhsType.template isa<Torch::OptionalType>())
return IntegerAttr::get(IntegerType::get(op.getContext(), 1), !equalIsTrue);
return nullptr;
}
//===----------------------------------------------------------------------===//
// Aten__Is__Op
//===----------------------------------------------------------------------===//
OpFoldResult Aten__Is__Op::fold(ArrayRef<Attribute> operands) {
return atenIsOrIsNotFoldHelper(*this, /*equalIsTrue=*/true);
}
//===----------------------------------------------------------------------===//
// Aten__Isnot__Op
//===----------------------------------------------------------------------===//
OpFoldResult Aten__Isnot__Op::fold(ArrayRef<Attribute> operands) {
return atenIsOrIsNotFoldHelper(*this, /*equalIsTrue=*/false);
}
//===----------------------------------------------------------------------===//
// Aten__Not__Op
//===----------------------------------------------------------------------===//
OpFoldResult Aten__Not__Op::fold(ArrayRef<Attribute> operands) {
bool value;
if (!matchPattern(getOperand(), m_TorchConstantBool(&value)))
return nullptr;
return IntegerAttr::get(IntegerType::get(getContext(), 1), !value);
}
//===----------------------------------------------------------------------===//
// AtenNeBoolOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenNeBoolOp::fold(ArrayRef<Attribute> operands) {
if (getOperand(0) == getOperand(1))
return IntegerAttr::get(IntegerType::get(getContext(), 1), false);
bool a, b;
if (!matchPattern(getOperand(0), m_TorchConstantBool(&a)))
return nullptr;
if (!matchPattern(getOperand(1), m_TorchConstantBool(&b)))
return nullptr;
return IntegerAttr::get(IntegerType::get(getContext(), 1), a != b);
}
//===----------------------------------------------------------------------===//
// AtenSqueezeOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenSqueezeOp::fold(ArrayRef<Attribute> operands) {
if (auto tensorType = getOperand().getType().dyn_cast<BaseTensorType>()) {
if (tensorType.hasSizes() && tensorType.getSizes().size() == 0)
return getOperand();
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenSqueezeDimOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenSqueezeDimOp::fold(ArrayRef<Attribute> operands) {
if (auto tensorType = getOperand(0).getType().dyn_cast<BaseTensorType>()) {
if (tensorType.hasSizes() && tensorType.getSizes().size() == 0)
return getOperand(0);
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenToDtypeOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenToDtypeOp::fold(ArrayRef<Attribute> operands) {
bool nonBlocking, copyArg;
// The non_blocking arg must be `False`.
if (!matchPattern(non_blocking(), m_TorchConstantBool(&nonBlocking)) ||
nonBlocking)
return nullptr;
// The copy arg must be `False`.
if (!matchPattern(copy(), m_TorchConstantBool(&copyArg)) || copyArg)
return nullptr;
// The memory_format arg must be `none`.
if (!memory_format().getType().isa<Torch::NoneType>())
return nullptr;
auto inputType = getOperand(0).getType().dyn_cast<BaseTensorType>();
if (!inputType || !inputType.hasSizes())
return nullptr;
auto resType = getType().dyn_cast<BaseTensorType>();
if (!resType || !resType.hasSizes() || inputType != resType)
return nullptr;
// Fold when both the input tensor and result are of the same type.
return getOperand(0);
}
//===----------------------------------------------------------------------===//
// AtenViewOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenViewOp::fold(ArrayRef<Attribute> operands) {
auto inputType = getOperand(0).getType().dyn_cast<BaseTensorType>();
if (!inputType || !inputType.hasSizes() || inputType.getSizes().size() != 1)
return nullptr;
auto resType = getType().dyn_cast<BaseTensorType>();
if (!resType || !resType.hasSizes() || resType.getSizes().size() != 1)
return nullptr;
// Fold when both the input tensor and result are unity rank tensors.
return getOperand(0);
}
//===----------------------------------------------------------------------===//
// AtenDimOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenDimOp::fold(ArrayRef<Attribute> operands) {
if (auto tensorType = getOperand().getType().dyn_cast<BaseTensorType>()) {
if (tensorType.hasSizes())
return IntegerAttr::get(IntegerType::get(getContext(), 64),
tensorType.getSizes().size());
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenLenTOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenLenTOp::fold(ArrayRef<Attribute> operands) {
// `len([1,1,1])` -> `3`
if (auto listConstruct =
getOperand().getDefiningOp<Torch::PrimListConstructOp>()) {
return IntegerAttr::get(IntegerType::get(getContext(), 64),
listConstruct.getNumOperands());
}
return nullptr;
}
void AtenLenTOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
// `len(t.size())` -> `t.ndim`
patterns.add(+[](AtenLenTOp op, PatternRewriter &rewriter) {
auto size = op.getOperand().getDefiningOp<AtenSizeOp>();
if (!size)
return rewriter.notifyMatchFailure(op, "operand not AtenSizeOp");
rewriter.replaceOpWithNewOp<AtenDimOp>(op, size.getOperand());
return success();
});
}
//===----------------------------------------------------------------------===//
// AtenSizeOp
//===----------------------------------------------------------------------===//
void AtenSizeOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](AtenSizeOp op, PatternRewriter &rewriter) {
auto type = op.getOperand().getType().dyn_cast<BaseTensorType>();
if (!type || !type.areAllSizesKnown())
return rewriter.notifyMatchFailure(op, "all sizes not known");
SmallVector<Value> listElements;
for (int64_t size : type.getSizes()) {
listElements.push_back(rewriter.create<Torch::ConstantIntOp>(
op->getLoc(), rewriter.getI64IntegerAttr(size)));
}
rewriter.replaceOpWithNewOp<Torch::PrimListConstructOp>(
op, Torch::ListType::get(rewriter.getType<Torch::IntType>()),
listElements);
return success();
});
// One-off pattern to erase if dead.
// TODO: Use the effects infra to express the semantics of this op and enable
// a centralized "erase if dead" canonicalization.
// Specifically, we need to mark the op as only MemoryEffects::Allocate
// so that `mlir::wouldOpBeTriviallyDead` does the right thing.
patterns.add(+[](AtenSizeOp op, PatternRewriter &rewriter) {
if (!op.use_empty())
return failure();
rewriter.eraseOp(op);
return failure();
});
}
//===----------------------------------------------------------------------===//
// AtenSizeIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenSizeIntOp::fold(ArrayRef<Attribute> operands) {
auto type = getOperand(0).getType().dyn_cast<BaseTensorType>();
if (!type || !type.hasSizes())
return nullptr;
int64_t inputRank = type.getSizes().size();
int64_t dim;
if (!matchPattern(this->dim(), m_TorchConstantInt(&dim)))
return nullptr;
dim = toPositiveDim(dim, inputRank);
if (!isValidDim(dim, inputRank))
return nullptr;
if (type.getSizes()[dim] == kUnknownSize)
return nullptr;
return IntegerAttr::get(IntegerType::get(getContext(), 64),
type.getSizes()[dim]);
}
//===----------------------------------------------------------------------===//
// AtenGtIntOp
//===----------------------------------------------------------------------===//
static IntegerAttr getI1IntegerAttr(MLIRContext *context, bool value) {
return IntegerAttr::get(IntegerType::get(context, 1),
static_cast<int64_t>(value));
}
using ConstantIntComparator = std::function<bool(int64_t, int64_t)>;
template <typename OpTy>
static OpFoldResult comparatorFoldHelper(OpTy op,
ConstantIntComparator comparator) {
if (op.getOperand(0) == op.getOperand(1))
return getI1IntegerAttr(op.getContext(), comparator(0, 0));
int64_t lhs, rhs;
if (!matchPattern(op.getOperand(0), m_TorchConstantInt(&lhs)) ||
!matchPattern(op.getOperand(1), m_TorchConstantInt(&rhs)))
return nullptr;
return getI1IntegerAttr(op.getContext(), comparator(lhs, rhs));
}
//===----------------------------------------------------------------------===//
// AtenNeIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenNeIntOp::fold(ArrayRef<Attribute> operands) {
return comparatorFoldHelper(*this,
[](int64_t a, int64_t b) { return a != b; });
}
//===----------------------------------------------------------------------===//
// AtenEqIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenEqIntOp::fold(ArrayRef<Attribute> operands) {
return comparatorFoldHelper(*this,
[](int64_t a, int64_t b) { return a == b; });
}
//===----------------------------------------------------------------------===//
// AtenEqFloatOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenEqFloatOp::fold(ArrayRef<Attribute> operands) {
double lhs, rhs;
if (!matchPattern(getOperand(0), m_TorchConstantFloat(&lhs)) ||
!matchPattern(getOperand(1), m_TorchConstantFloat(&rhs)))
return nullptr;
return getI1IntegerAttr(getContext(), lhs == rhs);
}
//===----------------------------------------------------------------------===//
// AtenEqStrOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenEqStrOp::fold(ArrayRef<Attribute> operands) {
if (getOperand(0) == getOperand(1))
return getI1IntegerAttr(getContext(), true);
auto aStr = a().getDefiningOp<ConstantStrOp>();
auto bStr = b().getDefiningOp<ConstantStrOp>();
if (aStr && bStr)
return getI1IntegerAttr(getContext(), aStr == bStr);
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenLtIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenLtIntOp::fold(ArrayRef<Attribute> operands) {
return comparatorFoldHelper(*this,
[](int64_t a, int64_t b) { return a < b; });
}
//===----------------------------------------------------------------------===//
// AtenLeIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenLeIntOp::fold(ArrayRef<Attribute> operands) {
return comparatorFoldHelper(*this,
[](int64_t a, int64_t b) { return a <= b; });
}
//===----------------------------------------------------------------------===//
// AtenGtIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenGtIntOp::fold(ArrayRef<Attribute> operands) {
return comparatorFoldHelper(*this,
[](int64_t a, int64_t b) { return a > b; });
}
//===----------------------------------------------------------------------===//
// AtenGeIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenGeIntOp::fold(ArrayRef<Attribute> operands) {
return comparatorFoldHelper(*this,
[](int64_t a, int64_t b) { return a >= b; });
}
//===----------------------------------------------------------------------===//
// NonValueTensorLiteralOp
//===----------------------------------------------------------------------===//
LogicalResult NonValueTensorLiteralOp::inferReturnTypes(
MLIRContext *context, Optional<Location> location, ValueRange operands,
DictionaryAttr attributes, RegionRange regions,
SmallVectorImpl<Type> &inferredReturnTypes) {
auto attr = attributes.get("value").dyn_cast_or_null<ElementsAttr>();
if (!attr)
return failure();
RankedTensorType tensorType = attr.getType().cast<RankedTensorType>();
NonValueTensorType returnType =
NonValueTensorType::get(tensorType.getContext(), tensorType.getShape(),
tensorType.getElementType());
inferredReturnTypes.push_back(returnType);
return success();
}
static bool areSizesAndDtypesCompatible(BaseTensorType a, BaseTensorType b) {
if (a.hasSizes() && b.hasSizes()) {
if (failed(verifyCompatibleShape(a.getSizes(), b.getSizes())))
return false;
}
if (a.hasDtype() && b.hasDtype()) {
if (a.getDtype() != b.getDtype())
return false;
}
return true;
}
bool NonValueTensorLiteralOp::isCompatibleReturnTypes(TypeRange inferred,
TypeRange actual) {
if (!actual[0].isa<BaseTensorType>())
return false;
return areSizesAndDtypesCompatible(inferred[0].cast<BaseTensorType>(),
actual[0].cast<BaseTensorType>());
}
//===----------------------------------------------------------------------===//
// ValueTensorLiteralOp
//===----------------------------------------------------------------------===//
LogicalResult ValueTensorLiteralOp::inferReturnTypes(
MLIRContext *context, Optional<Location> location, ValueRange operands,
DictionaryAttr attributes, RegionRange regions,
SmallVectorImpl<Type> &inferredReturnTypes) {
auto attr = attributes.get("value").dyn_cast_or_null<ElementsAttr>();
if (!attr)
return failure();
RankedTensorType tensorType = attr.getType().cast<RankedTensorType>();
ValueTensorType returnType =
ValueTensorType::get(tensorType.getContext(), tensorType.getShape(),
tensorType.getElementType());
inferredReturnTypes.push_back(returnType);
return success();
}
OpFoldResult ValueTensorLiteralOp::fold(ArrayRef<Attribute> operands) {
return valueAttr();
}
//----------------------------------------------------------------------------//
// TensorStaticInfoCast
//----------------------------------------------------------------------------//
bool TensorStaticInfoCastOp::areCastCompatible(mlir::TypeRange inputs,
mlir::TypeRange outputs) {
return areSizesAndDtypesCompatible(inputs[0].cast<BaseTensorType>(),
outputs[0].cast<BaseTensorType>());
}
void TensorStaticInfoCastOp::getCanonicalizationPatterns(
RewritePatternSet &patterns, MLIRContext *context) {
patterns.add(+[](TensorStaticInfoCastOp op, PatternRewriter &rewriter) {
auto reverseCast =
op.operand().getDefiningOp<Torch::TensorStaticInfoCastOp>();
if (!reverseCast || reverseCast.operand().getType() != op.getType())
return failure();
rewriter.replaceOp(op, reverseCast.operand());
return success();
});
}
//===----------------------------------------------------------------------===//
// CopyToNonValueTensorOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(CopyToNonValueTensorOp op) {
auto resultType = op.getResult().getType().cast<BaseTensorType>();
auto operandType = op.getOperand().getType().cast<BaseTensorType>();
if (!resultType.hasSameSizesAndDtype(operandType)) {
return op.emitError()
<< "operand and result must have same sizes and dtype";
}
return success();
}
LogicalResult CopyToNonValueTensorOp::inferReturnTypes(
MLIRContext *context, Optional<Location> location, ValueRange operands,
DictionaryAttr attributes, RegionRange regions,
SmallVectorImpl<Type> &inferredReturnTypes) {
auto resultType = operands[0].getType().cast<ValueTensorType>();
inferredReturnTypes.push_back(resultType.getWithoutValueSemantics());
return success();
}
void CopyToNonValueTensorOp::getEffects(
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
&effects) {
effects.emplace_back(MemoryEffects::Allocate::get(), getResult());
}
//===----------------------------------------------------------------------===//
// CopyToValueTensorOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(CopyToValueTensorOp op) {
auto resultType = op.getResult().getType().cast<BaseTensorType>();
auto operandType = op.getOperand().getType().cast<BaseTensorType>();
if (!resultType.hasSameSizesAndDtype(operandType)) {
return op.emitError()
<< "operand and result must have same sizes and dtype";
}
return success();
}
LogicalResult CopyToValueTensorOp::inferReturnTypes(
MLIRContext *context, Optional<Location> location, ValueRange operands,
DictionaryAttr attributes, RegionRange regions,
SmallVectorImpl<Type> &inferredReturnTypes) {
auto resultType = operands[0].getType().cast<NonValueTensorType>();
inferredReturnTypes.push_back(resultType.getWithValueSemantics());
return success();
}
void CopyToValueTensorOp::getEffects(
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
&effects) {
effects.emplace_back(MemoryEffects::Read::get(), getOperand());
}
//===----------------------------------------------------------------------===//
// ConstantNoneOp
//===----------------------------------------------------------------------===//
OpFoldResult ConstantNoneOp::fold(ArrayRef<Attribute> operands) {
return TypeAttr::get(Torch::NoneType::get(getContext()));
}
void ConstantNoneOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
setNameFn(getResult(), "none");
}
//===----------------------------------------------------------------------===//
// ConstantStrOp
//===----------------------------------------------------------------------===//
OpFoldResult ConstantStrOp::fold(ArrayRef<Attribute> operands) {
return valueAttr();
}
void ConstantStrOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
setNameFn(getResult(), "str");
}
//===----------------------------------------------------------------------===//
// ConstantDeviceOp
//===----------------------------------------------------------------------===//
void ConstantDeviceOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
setNameFn(getResult(), value());
}
//===----------------------------------------------------------------------===//
// ConstantIntOp
//===----------------------------------------------------------------------===//
static ParseResult parseConstantIntOp(OpAsmParser &parser,
OperationState &result) {
Builder builder(result.getContext());
result.addTypes(builder.getType<Torch::IntType>());
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
int64_t value;
if (parser.parseInteger(value))
return failure();
result.addAttribute("value", builder.getI64IntegerAttr(value));
return success();
}
static void print(OpAsmPrinter &p, Torch::ConstantIntOp op) {
p << " ";
p << op.value().getSExtValue();
p.printOptionalAttrDict(op->getAttrs(), {"value"});
}
OpFoldResult Torch::ConstantIntOp::fold(ArrayRef<Attribute> operands) {
return valueAttr();
}
void Torch::ConstantIntOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
SmallVector<char> buf;
llvm::raw_svector_ostream os(buf);
os << "int" << value();
setNameFn(getResult(), os.str());
}
//===----------------------------------------------------------------------===//
// ConstantFloatOp
//===----------------------------------------------------------------------===//
OpFoldResult Torch::ConstantFloatOp::fold(ArrayRef<Attribute> operands) {
return valueAttr();
}
void Torch::ConstantFloatOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
// Calculate a stringified version of the number, compatible with MLIR
// identifier syntax. (in practice, this just removes the '+' from 'e+' in
// float string representation).
SmallVector<char> buf;
value().toString(buf, /*FormatPrecision=*/6, /*FormatMaxPadding=*/0,
/*TruncateZero=*/false);
auto isValidMLIRIdentifierChar = [](char c) {
return isalpha(c) || isdigit(c) || c == '_' || c == '$' || c == '.' ||
c == '-';
};
auto numberStr = llvm::to_vector<16>(
llvm::make_filter_range(buf, isValidMLIRIdentifierChar));
// Construct the identifier string.
buf.clear();
llvm::append_range(buf, StringRef("float"));
llvm::append_range(buf, numberStr);
setNameFn(getResult(), StringRef(buf.data(), buf.size()));
}
//===----------------------------------------------------------------------===//
// ConstantBoolOp
//===----------------------------------------------------------------------===//
OpFoldResult Torch::ConstantBoolOp::fold(ArrayRef<Attribute> operands) {
return valueAttr();
}
void Torch::ConstantBoolOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
setNameFn(getResult(), value() ? "true" : "false");
}
//===----------------------------------------------------------------------===//
// PrimUncheckedCastOp
//===----------------------------------------------------------------------===//
bool PrimUncheckedCastOp::areCastCompatible(mlir::TypeRange inputs,
mlir::TypeRange outputs) {
return isValidSubtype(outputs[0], inputs[0]);
}
//===----------------------------------------------------------------------===//
// Aten__Getitem__TOp
//===----------------------------------------------------------------------===//
void Aten__Getitem__TOp::getCanonicalizationPatterns(
RewritePatternSet &patterns, MLIRContext *context) {
patterns.add(+[](Aten__Getitem__TOp op, PatternRewriter &rewriter) {
auto torchList = op.getOperand(0);
// TODO: Use a proper effects interface when more operands taking a list
// are implemented.
if (!llvm::all_of(torchList.getUsers(), [](Operation *op) {
return isa<Aten__Getitem__TOp, AtenLenTOp>(op);
}))
return failure();
auto listConstruct = torchList.getDefiningOp<Torch::PrimListConstructOp>();
if (!listConstruct)
return failure();
int64_t index;
if (!matchPattern(op.getOperand(1), m_TorchConstantInt(&index)))
return failure();
rewriter.replaceOp(op, {listConstruct.getOperand(index)});
return success();
});
}
//===----------------------------------------------------------------------===//
// PrimTupleIndexOp
//===----------------------------------------------------------------------===//
void PrimTupleIndexOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](PrimTupleIndexOp op, PatternRewriter &rewriter) {
auto tupleConstruct = op.tup().getDefiningOp<Torch::PrimTupleConstructOp>();
if (!tupleConstruct)
return failure();
int64_t i;
if (!matchPattern(op.i(), m_TorchConstantInt(&i)))
return failure();
if (i >= (int64_t)tupleConstruct.elements().size())
return failure();
rewriter.replaceOp(op, tupleConstruct.elements()[i]);
return success();
});
}
//===----------------------------------------------------------------------===//
// PrimUninitializedOp
//===----------------------------------------------------------------------===//
void PrimUninitializedOp::getCanonicalizationPatterns(
RewritePatternSet &patterns, MLIRContext *context) {
patterns.add(+[](PrimUninitializedOp op, PatternRewriter &rewriter) {
if (!op.use_empty())
return failure();
rewriter.eraseOp(op);
return success();
});
}
//===----------------------------------------------------------------------===//
// PrimTupleUnpackOp
//===----------------------------------------------------------------------===//
void PrimTupleUnpackOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](PrimTupleUnpackOp op, PatternRewriter &rewriter) {
auto tupleConstruct = op.tup().getDefiningOp<Torch::PrimTupleConstructOp>();
if (!tupleConstruct)
return failure();
rewriter.replaceOp(op, tupleConstruct.elements());
return success();
});
}
static PrimDictConstructOp getDictConstructIfNotModified(Value torchDict) {
if (!llvm::all_of(torchDict.getUsers(), [](Operation *op) {
return isa<Aten__Getitem__DictStrOp, Aten__Contains__StrOp,
AtenKeysStrOp, AtenGetDefaultStrOp, PrimDictConstructOp>(op);
}))
return nullptr;
return torchDict.getDefiningOp<Torch::PrimDictConstructOp>();
}
//===----------------------------------------------------------------------===//
// Aten__Getitem__DictStrOp
//===----------------------------------------------------------------------===//
OpFoldResult Aten__Getitem__DictStrOp::fold(ArrayRef<Attribute> operands) {
auto dictConstruct = getDictConstructIfNotModified(self());
if (!dictConstruct)
return nullptr;
auto targetKey = key();
for (auto i : llvm::zip(dictConstruct.keys(), dictConstruct.values())) {
auto k = std::get<0>(i);
if (k == targetKey)
return std::get<1>(i);
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// Aten__Contains__StrOp
//===----------------------------------------------------------------------===//
OpFoldResult Aten__Contains__StrOp::fold(ArrayRef<Attribute> operands) {
auto dictConstruct = getDictConstructIfNotModified(dict());
if (!dictConstruct)
return nullptr;
auto targetKey = key();
for (auto key : dictConstruct.keys()) {
if (key == targetKey)
return getI1IntegerAttr(getContext(), true);
}
return nullptr;
}
using BinaryIntOperatorFn = std::function<int64_t(int64_t, int64_t)>;
template <typename OpTy>
static OpFoldResult atenBinaryIntOperatorFoldHelper(OpTy op,
BinaryIntOperatorFn f) {
int64_t lhs, rhs;
if (!matchPattern(op.getOperand(0), m_TorchConstantInt(&lhs)) ||
!matchPattern(op.getOperand(1), m_TorchConstantInt(&rhs)))
return nullptr;
return getI64IntegerAttr(op.getContext(), f(lhs, rhs));
}
//===----------------------------------------------------------------------===//
// AtenFloordivIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenFloordivIntOp::fold(ArrayRef<Attribute> operands) {
return atenBinaryIntOperatorFoldHelper(
*this, [](int64_t a, int64_t b) { return std::floor(a / (double)b); });
}
//===----------------------------------------------------------------------===//
// AtenRemainderIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenRemainderIntOp::fold(ArrayRef<Attribute> operands) {
return atenBinaryIntOperatorFoldHelper(
*this, [](int64_t a, int64_t b) { return a % b; });
}
//===----------------------------------------------------------------------===//
// AtenAddIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenAddIntOp::fold(ArrayRef<Attribute> operands) {
return atenBinaryIntOperatorFoldHelper(
*this, [](int64_t a, int64_t b) { return a + b; });
}
//===----------------------------------------------------------------------===//
// AtenSubIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenSubIntOp::fold(ArrayRef<Attribute> operands) {
return atenBinaryIntOperatorFoldHelper(
*this, [](int64_t a, int64_t b) { return a - b; });
}
//===----------------------------------------------------------------------===//
// AtenMulIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenMulIntOp::fold(ArrayRef<Attribute> operands) {
int64_t lhs, rhs;
bool lConstant = matchPattern(getOperand(0), m_TorchConstantInt(&lhs));
bool rConstant = matchPattern(getOperand(1), m_TorchConstantInt(&rhs));
if ((lConstant && lhs == 0) || (rConstant && rhs == 0))
return getI64IntegerAttr(getContext(), 0);
if (lConstant && rConstant)
return getI64IntegerAttr(getContext(), lhs * rhs);
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenNegIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenNegIntOp::fold(ArrayRef<Attribute> operands) {
int64_t c;
if (matchPattern(getOperand(), m_TorchConstantInt(&c)))
return getI64IntegerAttr(getContext(), -c);
return nullptr;
}
//===----------------------------------------------------------------------===//
// PrimDtypeOp
//===----------------------------------------------------------------------===//
OpFoldResult PrimDtypeOp::fold(ArrayRef<Attribute> operands) {
BaseTensorType tensorType = a().getType().cast<BaseTensorType>();
if (tensorType.hasDtype()) {
int64_t dtypeInt = getDtypeIntegerFromMlirType(tensorType.getDtype());
if (dtypeInt != -1)
return getI64IntegerAttr(getContext(), dtypeInt);
}
return nullptr;
}
OpFoldResult AtenIntTensorOp::fold(ArrayRef<Attribute> operands) {
// If an scalar number is converted to a 0-d tensor and passed on to
// aten.Int.Tensor, fold to the scalar number.
if (auto numToTensorScalar = a().getDefiningOp<PrimNumToTensorScalarOp>())
return numToTensorScalar.a();
return nullptr;
}
#define GET_OP_CLASSES
#include "torch-mlir/Dialect/Torch/IR/TorchOps.cpp.inc"