mirror of https://github.com/llvm/torch-mlir
91 lines
3.6 KiB
C++
91 lines
3.6 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
// Also available under a BSD-style license. See LICENSE.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PassDetail.h"
|
|
|
|
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
|
|
#include "mlir/Dialect/Math/IR/Math.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/IR/OpDefinition.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "torch-mlir/Dialect/TorchConversion/Transforms/Passes.h"
|
|
|
|
#include "mlir/IR/BuiltinOps.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::torch;
|
|
using namespace mlir::torch::TorchConversion;
|
|
|
|
namespace {
|
|
class VerifyLinalgOnTensorsBackendContractPass
|
|
: public VerifyLinalgOnTensorsBackendContractBase<
|
|
VerifyLinalgOnTensorsBackendContractPass> {
|
|
void runOnOperation() override {
|
|
MLIRContext *context = &getContext();
|
|
auto module = getOperation();
|
|
TypeConverter converter;
|
|
converter.addConversion([](RankedTensorType type) -> Type {
|
|
if (BaseMemRefType::isValidElementType(type.getElementType()))
|
|
return type;
|
|
return nullptr;
|
|
});
|
|
TypeConverter scalarConverter;
|
|
for (TypeConverter *c : {&converter, &scalarConverter}) {
|
|
c->addConversion([](FloatType type) { return type; });
|
|
c->addConversion([](IntegerType type) { return type; });
|
|
c->addConversion([](IndexType type) { return type; });
|
|
}
|
|
|
|
auto opHasLegalTypes = [&](Operation *op) { return converter.isLegal(op); };
|
|
auto isLegalScalarOp = [&](Operation *op) {
|
|
// We recognize basic scalar ops by them having the trait "Elementwise",
|
|
// even though we don't expect them to operate on tensors.
|
|
return scalarConverter.isLegal(op) &&
|
|
op->hasTrait<OpTrait::Elementwise>();
|
|
};
|
|
|
|
ConversionTarget target(*context);
|
|
|
|
// Structural operations.
|
|
target.addDynamicallyLegalOp<ModuleOp, FuncOp, ReturnOp>(opHasLegalTypes);
|
|
|
|
// Basic scalar operations.
|
|
target.addDynamicallyLegalDialect<StandardOpsDialect>(isLegalScalarOp);
|
|
target.addDynamicallyLegalDialect<math::MathDialect>(isLegalScalarOp);
|
|
target.addDynamicallyLegalDialect<arith::ArithmeticDialect>(
|
|
isLegalScalarOp);
|
|
|
|
// Tensor operations should go through linalg and the tensor dialect.
|
|
target.addDynamicallyLegalDialect<linalg::LinalgDialect>(opHasLegalTypes);
|
|
target.addDynamicallyLegalDialect<tensor::TensorDialect>(opHasLegalTypes);
|
|
target.addDynamicallyLegalDialect<AffineDialect>(opHasLegalTypes);
|
|
|
|
// AssertOp is used to terminate the program for error guards.
|
|
target.addLegalOp<AssertOp>();
|
|
// ConstantOp is used for tensors and for scalars.
|
|
target.addDynamicallyLegalOp<arith::ConstantOp>(opHasLegalTypes);
|
|
|
|
RewritePatternSet patterns(context);
|
|
if (failed(applyFullConversion(module, target, std::move(patterns)))) {
|
|
// We avoid `module.emitError()` so that mlir-print-op-on-diagnostics
|
|
// doesn't unnecessarily spew out the entire module.
|
|
emitError(module.getLoc())
|
|
<< "Module does not conform to the linalg-on-tensors backend contract. "
|
|
"See dialect conversion legality information above.";
|
|
return signalPassFailure();
|
|
}
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
std::unique_ptr<OperationPass<ModuleOp>>
|
|
mlir::torch::TorchConversion::createVerifyLinalgOnTensorsBackendContractPass() {
|
|
return std::make_unique<VerifyLinalgOnTensorsBackendContractPass>();
|
|
}
|