mirror of https://github.com/llvm/torch-mlir
703 lines
26 KiB
C++
703 lines
26 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
// Also available under a BSD-style license. See LICENSE.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "torch-mlir/Conversion/TorchToMhlo/TorchToMhlo.h"
|
|
|
|
#include "../PassDetail.h"
|
|
#include "./MhloLegalizeUtils.h"
|
|
#include "./PopulatePatterns.h"
|
|
#include "mhlo/IR/hlo_ops.h"
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "torch-mlir/Conversion/Utils/Utils.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchDialect.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
|
|
#include "torch-mlir/Dialect/Torch/Utils/TorchUpstream.h"
|
|
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
|
|
#include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionOps.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::torch;
|
|
using namespace mlir::torch::Torch;
|
|
using namespace mlir::torch::torch_to_mhlo;
|
|
|
|
static Value createInitialValueForReduceOp(Operation *op, Type elementTy,
|
|
PatternRewriter &rewriter) {
|
|
auto constType = RankedTensorType::get({}, elementTy);
|
|
if (isa<AtenSumOp, AtenSumDimIntListOp, AtenFrobeniusNormDimOp>(op)) {
|
|
if (elementTy.isa<mlir::FloatType>()) {
|
|
auto constAttr = DenseElementsAttr::get(
|
|
constType, {APFloat::getZero(
|
|
elementTy.cast<mlir::FloatType>().getFloatSemantics(),
|
|
/*negative=*/false)});
|
|
return rewriter.create<mhlo::ConstantOp>(op->getLoc(), constType,
|
|
constAttr);
|
|
} else if (elementTy.isa<mlir::IntegerType>() &&
|
|
elementTy.getIntOrFloatBitWidth() != 8) {
|
|
auto constAttr = DenseElementsAttr::get(
|
|
constType, {APInt::getZero(elementTy.getIntOrFloatBitWidth())});
|
|
return rewriter.create<mhlo::ConstantOp>(op->getLoc(), constType,
|
|
constAttr);
|
|
}
|
|
}
|
|
|
|
if (isa<AtenMaxOp, AtenMaxDimOp, AtenArgmaxOp>(op)) {
|
|
if (elementTy.isa<mlir::FloatType>()) {
|
|
auto constAttr = DenseElementsAttr::get(
|
|
constType, {APFloat::getLargest(
|
|
elementTy.cast<mlir::FloatType>().getFloatSemantics(),
|
|
/*negative=*/true)});
|
|
return rewriter.create<mhlo::ConstantOp>(op->getLoc(), constType,
|
|
constAttr);
|
|
} else if (elementTy.isa<mlir::IntegerType>() &&
|
|
elementTy.getIntOrFloatBitWidth() != 8) {
|
|
auto constAttr = DenseElementsAttr::get(
|
|
constType,
|
|
{APInt::getSignedMinValue(elementTy.getIntOrFloatBitWidth())});
|
|
return rewriter.create<mhlo::ConstantOp>(op->getLoc(), constType,
|
|
constAttr);
|
|
}
|
|
}
|
|
|
|
op->emitError("unimplemented lowering in "
|
|
"createInitialValueForReduceOp");
|
|
return nullptr;
|
|
}
|
|
|
|
// Util for converting AtenArgmaxOp and AtenMaxDimOp
|
|
static std::optional<ValueRange>
|
|
getMaxInDim(ConversionPatternRewriter &rewriter, Operation *op, Value &input,
|
|
ArrayRef<Value> inputShapeVec, int64_t dim,
|
|
size_t dimSizeIndexBits) {
|
|
auto inputTy = input.getType().template cast<RankedTensorType>();
|
|
if (!inputTy) {
|
|
return std::nullopt;
|
|
}
|
|
if (!inputTy.getElementType().isIntOrFloat()) {
|
|
return std::nullopt;
|
|
}
|
|
auto inputShape = inputTy.getShape();
|
|
auto inputElemTy = inputTy.getElementType();
|
|
|
|
Value initValue = createInitialValueForReduceOp(op, inputElemTy, rewriter);
|
|
if (!initValue)
|
|
return std::nullopt;
|
|
Value initIndex;
|
|
if (dimSizeIndexBits == 32) {
|
|
initIndex = mhlo::getConstTensor<int32_t>(rewriter, op, {0}, {}).value();
|
|
} else {
|
|
initIndex = mhlo::getConstTensor<int64_t>(rewriter, op, {0}, {}).value();
|
|
}
|
|
|
|
DenseIntElementsAttr dimensions = DenseIntElementsAttr::get(
|
|
RankedTensorType::get({}, rewriter.getI64Type()), dim);
|
|
|
|
auto inputShapeTensor = rewriter.create<mlir::tensor::FromElementsOp>(
|
|
op->getLoc(), inputShapeVec);
|
|
auto indexTensor = rewriter.create<mhlo::DynamicIotaOp>(
|
|
op->getLoc(),
|
|
RankedTensorType::get(inputShape,
|
|
rewriter.getIntegerType(dimSizeIndexBits)),
|
|
inputShapeTensor, static_cast<uint64_t>(dim));
|
|
|
|
auto mhloReduceOp = rewriter.create<mhlo::ReduceOp>(
|
|
op->getLoc(), ValueRange{input, indexTensor},
|
|
ValueRange{
|
|
initValue,
|
|
initIndex,
|
|
},
|
|
dimensions);
|
|
|
|
Block &block = mhloReduceOp.getBody().emplaceBlock();
|
|
|
|
// Add block arguments
|
|
auto blockValArgumentType =
|
|
RankedTensorType::get({}, inputTy.getElementType());
|
|
auto blockIdxArgumentType =
|
|
RankedTensorType::get({}, rewriter.getIntegerType(dimSizeIndexBits));
|
|
auto compareResultType = RankedTensorType::get({}, rewriter.getI1Type());
|
|
block.addArgument(blockValArgumentType, op->getLoc());
|
|
block.addArgument(blockIdxArgumentType, op->getLoc());
|
|
|
|
block.addArgument(blockValArgumentType, op->getLoc());
|
|
block.addArgument(blockIdxArgumentType, op->getLoc());
|
|
|
|
auto *firstValArg = block.args_begin();
|
|
auto *firstIdxArg = std::next(firstValArg);
|
|
auto *secondValArg = std::next(firstIdxArg);
|
|
auto *secondIdxArg = std::next(secondValArg);
|
|
|
|
mhlo::ComparisonTypeAttr compareTypeAttr;
|
|
if (inputTy.getElementType().isa<mlir::FloatType>()) {
|
|
compareTypeAttr = mhlo::ComparisonTypeAttr::get(
|
|
rewriter.getContext(), mhlo::ComparisonType::FLOAT);
|
|
} else if (inputTy.getElementType().isa<mlir::IntegerType>()) {
|
|
compareTypeAttr = mhlo::ComparisonTypeAttr::get(
|
|
rewriter.getContext(), mhlo::ComparisonType::SIGNED);
|
|
}
|
|
mhlo::ComparisonDirectionAttr compareGeDirectionAttr =
|
|
mhlo::ComparisonDirectionAttr::get(rewriter.getContext(),
|
|
mhlo::ComparisonDirection::GE);
|
|
mhlo::ComparisonDirectionAttr compareEqDirectionAttr =
|
|
mhlo::ComparisonDirectionAttr::get(rewriter.getContext(),
|
|
mhlo::ComparisonDirection::EQ);
|
|
|
|
{
|
|
OpBuilder::InsertionGuard guard(rewriter);
|
|
rewriter.setInsertionPointToStart(&block);
|
|
|
|
Value compareGeResult = rewriter.create<mhlo::CompareOp>(
|
|
op->getLoc(), compareResultType, *firstValArg, *secondValArg,
|
|
compareGeDirectionAttr, compareTypeAttr);
|
|
Value retValResult = rewriter.create<mhlo::SelectOp>(
|
|
op->getLoc(), compareGeResult, *firstValArg, *secondValArg);
|
|
|
|
// get smaller index value if compared nums are equal.
|
|
Value compareEqResult = rewriter.create<mhlo::CompareOp>(
|
|
op->getLoc(), compareResultType, *firstValArg, *secondValArg,
|
|
compareEqDirectionAttr, compareTypeAttr);
|
|
Value minIdx =
|
|
rewriter.create<mhlo::MinOp>(op->getLoc(), *firstIdxArg, *secondIdxArg);
|
|
Value idxWithGeVal = rewriter.create<mhlo::SelectOp>(
|
|
op->getLoc(), compareGeResult, *firstIdxArg, *secondIdxArg);
|
|
Value retIdxResult = rewriter.create<mhlo::SelectOp>(
|
|
op->getLoc(), compareEqResult, minIdx, idxWithGeVal);
|
|
|
|
rewriter.create<mhlo::ReturnOp>(
|
|
op->getLoc(), mlir::ValueRange{retValResult, retIdxResult});
|
|
}
|
|
return mhloReduceOp.getResults();
|
|
}
|
|
|
|
namespace {
|
|
template <typename AtenOpT>
|
|
class ConvertAtenReductionOp : public ConvertAtenOp<AtenOpT> {
|
|
public:
|
|
using ConvertAtenOp<AtenOpT>::ConvertAtenOp;
|
|
using OpAdaptor = typename AtenOpT::Adaptor;
|
|
LogicalResult
|
|
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override;
|
|
};
|
|
} // namespace
|
|
|
|
// AtenArgmaxOp
|
|
namespace {
|
|
template <>
|
|
LogicalResult ConvertAtenReductionOp<AtenArgmaxOp>::matchAndRewrite(
|
|
AtenArgmaxOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
Value input = adaptor.getSelf();
|
|
auto inputTy = input.getType().template cast<RankedTensorType>();
|
|
if (!inputTy) {
|
|
return rewriter.notifyMatchFailure(op, "only Tensor types supported in MHLO");
|
|
}
|
|
|
|
auto inputElemTy = inputTy.getElementType();
|
|
if (!inputElemTy.isIntOrFloat()) {
|
|
return op.emitError(
|
|
"only floating-point or integer datatype legalization supported");
|
|
}
|
|
// Currently, (u)int8 dtype is not supported!
|
|
if (inputElemTy.isa<mlir::IntegerType>() &&
|
|
inputElemTy.getIntOrFloatBitWidth() == 8) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "IntegerType with bitwidth 8 unsupported in convertion from "
|
|
"AtenArgmaxOp to MHLO");
|
|
}
|
|
|
|
int64_t dim;
|
|
if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim))) {
|
|
return rewriter.notifyMatchFailure(op, "non-int dim unsupported");
|
|
}
|
|
dim = toPositiveDim(dim, inputTy.getRank());
|
|
if (!isValidDim(dim, inputTy.getRank())) {
|
|
return rewriter.notifyMatchFailure(op, "dim is not a valid dim");
|
|
}
|
|
|
|
bool keepDim = false;
|
|
if (!matchPattern(op.getKeepdim(), m_TorchConstantBool(&keepDim))) {
|
|
return rewriter.notifyMatchFailure(op, "non-bool keepdim unsupported");
|
|
}
|
|
|
|
const auto &options = getOptions();
|
|
auto inputShapeInfo =
|
|
mhlo::getDimSizesOfTensor(rewriter, op, input, options.dimSizeIndexBits);
|
|
if (failed(inputShapeInfo)) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "failed to get dimension sizes of the input");
|
|
}
|
|
auto inputShapeVec = *inputShapeInfo;
|
|
auto mhloReduceResults = getMaxInDim(rewriter, op, input, inputShapeVec, dim,
|
|
options.dimSizeIndexBits)
|
|
.value();
|
|
|
|
if (keepDim) {
|
|
auto outShapeVec = inputShapeVec;
|
|
outShapeVec[dim] = rewriter.create<mlir::arith::ConstantOp>(
|
|
op->getLoc(),
|
|
rewriter.getIntegerAttr(
|
|
rewriter.getIntegerType(options.dimSizeIndexBits), 1));
|
|
|
|
auto outShapeTensor = rewriter.create<mlir::tensor::FromElementsOp>(
|
|
op->getLoc(), outShapeVec);
|
|
rewriter.replaceOpWithNewOp<mhlo::DynamicReshapeOp>(
|
|
op, typeConverter->convertType(op.getType()), mhloReduceResults[1],
|
|
outShapeTensor);
|
|
return success();
|
|
}
|
|
|
|
rewriter.replaceOp(op, mhloReduceResults[1]);
|
|
return success();
|
|
}
|
|
} // namespace
|
|
|
|
// AtenMaxDimOp
|
|
namespace {
|
|
template <>
|
|
LogicalResult ConvertAtenReductionOp<AtenMaxDimOp>::matchAndRewrite(
|
|
AtenMaxDimOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
Value input = adaptor.getSelf();
|
|
auto inputTy = input.getType().template dyn_cast<RankedTensorType>();
|
|
if (!inputTy) {
|
|
return rewriter.notifyMatchFailure(op, "only Tensor types supported in MHLO");
|
|
}
|
|
auto inputElemTy = inputTy.getElementType();
|
|
if (!inputElemTy.isIntOrFloat()) {
|
|
return op.emitError(
|
|
"Only floating-point or integer datatype legalization supported");
|
|
}
|
|
// Currently, (u)int8 dtype is not supported
|
|
if (inputElemTy.isa<mlir::IntegerType>() &&
|
|
inputElemTy.getIntOrFloatBitWidth() == 8) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "IntegerType with bitwidth 8 unsupported in convertion from "
|
|
"AtenMaxDimOp to MHLO");
|
|
}
|
|
|
|
RankedTensorType valResultType = getTypeConverter()
|
|
->convertType(op.getResult(0).getType())
|
|
.template cast<RankedTensorType>();
|
|
RankedTensorType idxResultType = getTypeConverter()
|
|
->convertType(op.getResult(1).getType())
|
|
.template cast<RankedTensorType>();
|
|
Type idxElementType = idxResultType.getElementType();
|
|
if (!idxElementType.isa<mlir::IntegerType>()) {
|
|
return op.emitError("Aten.max.dim needs integer-like result");
|
|
}
|
|
|
|
int64_t dim;
|
|
if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim))) {
|
|
return rewriter.notifyMatchFailure(op, "non-int dim unsupported");
|
|
}
|
|
dim = toPositiveDim(dim, inputTy.getRank());
|
|
if (!isValidDim(dim, inputTy.getRank())) {
|
|
return rewriter.notifyMatchFailure(op, "dim is not a valid dim");
|
|
}
|
|
bool keepDim = false;
|
|
if (!matchPattern(op.getKeepdim(), m_TorchConstantBool(&keepDim))) {
|
|
return rewriter.notifyMatchFailure(op, "non-bool keepdim unsupported");
|
|
}
|
|
|
|
const auto &options = getOptions();
|
|
auto inputShapeInfo =
|
|
mhlo::getDimSizesOfTensor(rewriter, op, input, options.dimSizeIndexBits);
|
|
if (failed(inputShapeInfo)) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "failed to get dimension sizes of the input");
|
|
}
|
|
auto inputShapeVec = *inputShapeInfo;
|
|
auto mhloReduceResults = getMaxInDim(rewriter, op, input, inputShapeVec, dim,
|
|
options.dimSizeIndexBits)
|
|
.value();
|
|
|
|
if (keepDim) {
|
|
auto outShapeVec = inputShapeVec;
|
|
outShapeVec[dim] = rewriter.create<mlir::arith::ConstantOp>(
|
|
op->getLoc(),
|
|
rewriter.getIntegerAttr(
|
|
rewriter.getIntegerType(options.dimSizeIndexBits), 1));
|
|
auto outShapeTensor = rewriter.create<mlir::tensor::FromElementsOp>(
|
|
op->getLoc(), outShapeVec);
|
|
|
|
auto mhloReduceValueResult = rewriter.create<mhlo::DynamicReshapeOp>(
|
|
op->getLoc(), valResultType, mhloReduceResults[0], outShapeTensor);
|
|
auto mhloReduceIndexResult = rewriter.create<mhlo::DynamicReshapeOp>(
|
|
op->getLoc(), idxResultType, mhloReduceResults[1], outShapeTensor);
|
|
rewriter.replaceOp(op, {mhloReduceValueResult, mhloReduceIndexResult});
|
|
return success();
|
|
}
|
|
|
|
rewriter.replaceOp(op, {mhloReduceResults[0], mhloReduceResults[1]});
|
|
return success();
|
|
}
|
|
} // namespace
|
|
|
|
// AtenSumOp
|
|
namespace {
|
|
template <>
|
|
LogicalResult ConvertAtenReductionOp<AtenSumOp>::matchAndRewrite(
|
|
AtenSumOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
Value input = adaptor.getSelf();
|
|
auto inputTy = input.getType().dyn_cast<RankedTensorType>();
|
|
auto outTy = getTypeConverter()
|
|
->convertType(op.getType())
|
|
.template dyn_cast<RankedTensorType>();
|
|
if (!inputTy) {
|
|
return rewriter.notifyMatchFailure(op, "only Tensor types supported in MHLO");
|
|
}
|
|
if (inputTy.getElementType() != outTy.getElementType()) {
|
|
// Use output element type as computation type.
|
|
auto dstElemTy = outTy.getElementType();
|
|
input = rewriter.create<mhlo::ConvertOp>(op->getLoc(), input, dstElemTy);
|
|
inputTy = input.getType().dyn_cast<RankedTensorType>();
|
|
}
|
|
auto inputElemTy = inputTy.getElementType();
|
|
if (!inputElemTy.isIntOrFloat()) {
|
|
return op.emitError(
|
|
"only floating-point or integer datatype legalization supported");
|
|
}
|
|
// Currently, (u)int8 dtype is not supported
|
|
if (inputElemTy.isa<mlir::IntegerType>() &&
|
|
inputElemTy.getIntOrFloatBitWidth() == 8) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "IntegerType with bitwidth 8 unsupported in convertion from "
|
|
"AtenSumOp to MHLO");
|
|
}
|
|
|
|
SmallVector<int64_t> dims;
|
|
for (int64_t i = 0; i < inputTy.getRank(); i++) {
|
|
dims.push_back(i);
|
|
}
|
|
Value initValue =
|
|
createInitialValueForReduceOp(op, inputTy.getElementType(), rewriter);
|
|
if (!initValue) return failure();
|
|
|
|
llvm::sort(dims.begin(), dims.end());
|
|
auto mhloReduceOp = rewriter.create<mhlo::ReduceOp>(
|
|
op.getLoc(), input, initValue, rewriter.getI64TensorAttr(dims));
|
|
|
|
Block &block = mhloReduceOp.getBody().emplaceBlock();
|
|
auto blockArgumentTy = RankedTensorType::get({}, inputTy.getElementType());
|
|
|
|
block.addArgument(blockArgumentTy, op->getLoc());
|
|
block.addArgument(blockArgumentTy, op->getLoc());
|
|
|
|
auto *firstArgument = block.args_begin();
|
|
auto secondArgument = block.args_rbegin();
|
|
|
|
{
|
|
OpBuilder::InsertionGuard guard(rewriter);
|
|
rewriter.setInsertionPointToStart(&block);
|
|
Value addResult = rewriter.create<mhlo::AddOp>(
|
|
op->getLoc(), blockArgumentTy, *firstArgument, *secondArgument);
|
|
rewriter.create<mhlo::ReturnOp>(op->getLoc(), addResult);
|
|
}
|
|
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, outTy,
|
|
mhloReduceOp.getResults());
|
|
return success();
|
|
}
|
|
} // namespace
|
|
|
|
// AtenMaxOp
|
|
namespace {
|
|
template <>
|
|
LogicalResult ConvertAtenReductionOp<AtenMaxOp>::matchAndRewrite(
|
|
AtenMaxOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
Value input = adaptor.getSelf();
|
|
auto inputTy = input.getType().dyn_cast<RankedTensorType>();
|
|
if (!inputTy) {
|
|
return rewriter.notifyMatchFailure(op, "only Tensor types supported in MHLO");
|
|
}
|
|
auto inputElemTy = inputTy.getElementType();
|
|
if (!inputElemTy.isIntOrFloat()) {
|
|
return op.emitError(
|
|
"only floating-point or integer datatype legalization supported");
|
|
}
|
|
// Currently, (u)int8 dtype is not supported
|
|
if (inputElemTy.isa<mlir::IntegerType>() &&
|
|
inputElemTy.getIntOrFloatBitWidth() == 8) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "IntegerType with bitwidth 8 unsupported in convertion from "
|
|
"AtenMaxOp to MHLO");
|
|
}
|
|
|
|
SmallVector<int64_t> dims;
|
|
for (int64_t i = 0; i < inputTy.getRank(); i++) {
|
|
dims.push_back(i);
|
|
}
|
|
|
|
Value initValue =
|
|
createInitialValueForReduceOp(op, inputTy.getElementType(), rewriter);
|
|
if (!initValue) return failure();
|
|
llvm::sort(dims.begin(), dims.end());
|
|
auto mhloReduceOp = rewriter.create<mhlo::ReduceOp>(
|
|
op.getLoc(), input, initValue, rewriter.getI64TensorAttr(dims));
|
|
|
|
Block &block = mhloReduceOp.getBody().emplaceBlock();
|
|
auto blockArgumentTy = RankedTensorType::get({}, inputTy.getElementType());
|
|
|
|
block.addArgument(blockArgumentTy, op->getLoc());
|
|
block.addArgument(blockArgumentTy, op->getLoc());
|
|
|
|
auto *firstArgument = block.args_begin();
|
|
auto secondArgument = block.args_rbegin();
|
|
|
|
{
|
|
OpBuilder::InsertionGuard guard(rewriter);
|
|
rewriter.setInsertionPointToStart(&block);
|
|
Value maxResult = rewriter.create<mhlo::MaxOp>(
|
|
op->getLoc(), blockArgumentTy, *firstArgument, *secondArgument);
|
|
rewriter.create<mhlo::ReturnOp>(op->getLoc(), maxResult);
|
|
}
|
|
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(
|
|
op, getTypeConverter()->convertType(op.getType()),
|
|
mhloReduceOp.getResults());
|
|
return success();
|
|
}
|
|
} // namespace
|
|
|
|
// AtenSumDimIntListOp
|
|
namespace {
|
|
template <>
|
|
LogicalResult ConvertAtenReductionOp<AtenSumDimIntListOp>::matchAndRewrite(
|
|
AtenSumDimIntListOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
Value input = adaptor.getSelf();
|
|
auto inputTy = input.getType().dyn_cast<RankedTensorType>();
|
|
auto outTy = getTypeConverter()
|
|
->convertType(op.getType())
|
|
.template dyn_cast<RankedTensorType>();
|
|
if (!inputTy) {
|
|
return rewriter.notifyMatchFailure(op, "only Tensor types supported in MHLO");
|
|
}
|
|
if (inputTy.getElementType() != outTy.getElementType()) {
|
|
// Use output element type as computation type.
|
|
auto dstElemTy = outTy.getElementType();
|
|
input = rewriter.create<mhlo::ConvertOp>(op->getLoc(), input, dstElemTy);
|
|
inputTy = input.getType().dyn_cast<RankedTensorType>();
|
|
}
|
|
auto inputElemTy = inputTy.getElementType();
|
|
if (!inputElemTy.isIntOrFloat()) {
|
|
return op.emitError(
|
|
"Only floating-point or integer datatype legalization supported");
|
|
}
|
|
|
|
// Currently, (u)int8 dtype is not supported
|
|
if (inputElemTy.isa<mlir::IntegerType>() &&
|
|
inputElemTy.getIntOrFloatBitWidth() == 8) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "IntegerType with bitwidth 8 unsupported in convertion from "
|
|
"AtenSumDimIntListOp to MHLO");
|
|
}
|
|
|
|
SmallVector<int64_t> inputDims;
|
|
SmallVector<int64_t> dims;
|
|
if (!matchPattern(op.getDim(), m_TorchListOfConstantInts(inputDims))) {
|
|
return rewriter.notifyMatchFailure(op, "non-int dim list unsupported");
|
|
}
|
|
if (inputDims.size() == 0) {
|
|
inputDims = llvm::to_vector<4>(llvm::seq<int64_t>(0, inputTy.getRank()));
|
|
}
|
|
|
|
for (auto d : inputDims) {
|
|
d = toPositiveDim(d, inputTy.getRank());
|
|
// Drop invalid dims
|
|
if (isValidDim(d, inputTy.getRank())) {
|
|
dims.push_back(d);
|
|
}
|
|
}
|
|
|
|
bool keepDim = false;
|
|
if (!matchPattern(op.getKeepdim(), m_TorchConstantBool(&keepDim))) {
|
|
return rewriter.notifyMatchFailure(op, "non-bool keepdim unsupported");
|
|
}
|
|
Value initValue =
|
|
createInitialValueForReduceOp(op, inputTy.getElementType(), rewriter);
|
|
if (!initValue) return failure();
|
|
|
|
llvm::sort(dims.begin(), dims.end());
|
|
auto mhloReduceOp = rewriter.create<mhlo::ReduceOp>(
|
|
op.getLoc(), input, initValue, rewriter.getI64TensorAttr(dims));
|
|
|
|
Region ®ion = mhloReduceOp.getBody();
|
|
Block &block = region.emplaceBlock();
|
|
auto blockArgumentTy = RankedTensorType::get({}, inputTy.getElementType());
|
|
|
|
block.addArgument(blockArgumentTy, op->getLoc());
|
|
block.addArgument(blockArgumentTy, op->getLoc());
|
|
|
|
auto *firstArgument = block.args_begin();
|
|
auto secondArgument = block.args_rbegin();
|
|
|
|
{
|
|
OpBuilder::InsertionGuard guard(rewriter);
|
|
rewriter.setInsertionPointToStart(&block);
|
|
Value addResult = rewriter.create<mhlo::AddOp>(
|
|
op->getLoc(), blockArgumentTy, *firstArgument, *secondArgument);
|
|
rewriter.create<mhlo::ReturnOp>(op->getLoc(), addResult);
|
|
}
|
|
|
|
if (keepDim) {
|
|
const auto &options = getOptions();
|
|
auto outShapeInfo = mhlo::getDimSizesOfTensor(rewriter, op, input,
|
|
options.dimSizeIndexBits);
|
|
if (failed(outShapeInfo)) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "failed to get dimension sizes of the input");
|
|
}
|
|
auto outShapeVec = *outShapeInfo;
|
|
auto one = rewriter.create<mlir::arith::ConstantOp>(
|
|
op->getLoc(),
|
|
rewriter.getIntegerAttr(
|
|
rewriter.getIntegerType(options.dimSizeIndexBits), 1));
|
|
for (int64_t i : dims) {
|
|
outShapeVec[i] = one;
|
|
}
|
|
auto outShapeTensor = rewriter.create<mlir::tensor::FromElementsOp>(
|
|
op->getLoc(), outShapeVec);
|
|
rewriter.replaceOpWithNewOp<mhlo::DynamicReshapeOp>(
|
|
op, getTypeConverter()->convertType(op.getType()),
|
|
mhloReduceOp.getResult(0), outShapeTensor);
|
|
return success();
|
|
}
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, outTy,
|
|
mhloReduceOp.getResults());
|
|
return success();
|
|
}
|
|
} // namespace
|
|
|
|
// AtenFrobeniusNormDimOp
|
|
// aten.frobenius_norm.dim => mhlo.reduce(calculate square sum along given dims)
|
|
// + mhlo.sqrt
|
|
namespace {
|
|
template <>
|
|
LogicalResult ConvertAtenReductionOp<AtenFrobeniusNormDimOp>::matchAndRewrite(
|
|
AtenFrobeniusNormDimOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
const TorchToMhloOptions &options = getOptions();
|
|
|
|
Value input = adaptor.getSelf();
|
|
auto inputType = input.getType().dyn_cast<RankedTensorType>();
|
|
if (!inputType) {
|
|
return op.emitError(
|
|
"only ranked tensor input supported in AtenFrobeniusNormDimOp");
|
|
}
|
|
auto inputRank = inputType.getRank();
|
|
auto inputElemType = inputType.getElementType();
|
|
if (!inputElemType.isa<mlir::FloatType>()) {
|
|
return op.emitError(
|
|
"only float dtype allowed in input tensor of AtenFrobeniusNormDimOp");
|
|
}
|
|
|
|
SmallVector<int64_t> dims;
|
|
if (!matchPattern(op.getDim(), m_TorchListOfConstantInts(dims))) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "non-const integer `dim` is not supported");
|
|
}
|
|
for (auto &dim : dims) {
|
|
dim = toPositiveDim(dim, inputRank);
|
|
if (!isValidDim(dim, inputRank)) {
|
|
return rewriter.notifyMatchFailure(op,
|
|
"invalid dimension detected in `dim`");
|
|
}
|
|
}
|
|
|
|
// Sort the dims in ascending order, making the conversion
|
|
// stable with unordered dims.
|
|
std::sort(dims.begin(), dims.end());
|
|
|
|
bool keepDim = false;
|
|
if (!matchPattern(op.getKeepdim(), m_TorchConstantBool(&keepDim))) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "non-const bool `keepdim` is not supported");
|
|
}
|
|
|
|
auto initValue = createInitialValueForReduceOp(op, inputElemType, rewriter);
|
|
if (!initValue) {
|
|
return failure();
|
|
}
|
|
|
|
auto squareSumReduceOp = rewriter.create<mhlo::ReduceOp>(
|
|
op->getLoc(), input, initValue, rewriter.getI64TensorAttr(dims));
|
|
|
|
Region ®ion = squareSumReduceOp.getBody();
|
|
Block &block = region.emplaceBlock();
|
|
auto blockArgumentTy = RankedTensorType::get({}, inputElemType);
|
|
|
|
block.addArgument(blockArgumentTy, op->getLoc());
|
|
block.addArgument(blockArgumentTy, op->getLoc());
|
|
|
|
auto *firstArgument = block.args_begin();
|
|
auto secondArgument = block.args_rbegin();
|
|
|
|
{
|
|
OpBuilder::InsertionGuard guard(rewriter);
|
|
rewriter.setInsertionPointToStart(&block);
|
|
|
|
auto constantOrd2 = rewriter.create<mhlo::ConstantOp>(
|
|
op->getLoc(), blockArgumentTy,
|
|
DenseElementsAttr::get(blockArgumentTy, llvm::ArrayRef<float>{2.0}));
|
|
auto abs = rewriter.create<mhlo::AbsOp>(op->getLoc(), *secondArgument);
|
|
auto squareResult = rewriter.create<mhlo::PowOp>(
|
|
op->getLoc(), abs, constantOrd2);
|
|
auto addResult = rewriter.create<mhlo::AddOp>(op->getLoc(), squareResult,
|
|
*firstArgument);
|
|
rewriter.create<mhlo::ReturnOp>(op->getLoc(), addResult.getResult());
|
|
}
|
|
|
|
auto output = rewriter.create<mhlo::SqrtOp>(op->getLoc(),
|
|
squareSumReduceOp.getResult(0));
|
|
|
|
if (keepDim) {
|
|
auto outShapeInfo = mhlo::getDimSizesOfTensor(rewriter, op, input, options.dimSizeIndexBits);
|
|
if (failed(outShapeInfo)) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "failed to get dimension sizes of the input");
|
|
}
|
|
auto outShapeVec = *outShapeInfo;
|
|
auto one = rewriter.create<mlir::arith::ConstantOp>(
|
|
op->getLoc(), rewriter.getIntegerAttr(
|
|
rewriter.getIntegerType(options.dimSizeIndexBits), 1));
|
|
for (int64_t i : dims) {
|
|
outShapeVec[i] = one;
|
|
}
|
|
auto outShapeTensor = rewriter.create<mlir::tensor::FromElementsOp>(
|
|
op->getLoc(), outShapeVec);
|
|
rewriter.replaceOpWithNewOp<mhlo::DynamicReshapeOp>(
|
|
op, getTypeConverter()->convertType(op.getType()), output,
|
|
outShapeTensor);
|
|
return success();
|
|
}
|
|
rewriter.replaceOp(op, output.getResult());
|
|
return success();
|
|
}
|
|
} // namespace
|
|
|
|
void mlir::torch::torch_to_mhlo::populateReductionOpPatternsAndLegality(
|
|
TypeConverter &typeConverter, RewritePatternSet &patterns,
|
|
ConversionTarget &target, const TorchToMhloOptions &options) {
|
|
MLIRContext *context = patterns.getContext();
|
|
#define INSERT_ATEN_REDUCTION_OP_PATTERN(AtenOp) \
|
|
target.addIllegalOp<AtenOp>(); \
|
|
patterns.add<ConvertAtenReductionOp<AtenOp>>(typeConverter, context, options)
|
|
INSERT_ATEN_REDUCTION_OP_PATTERN(AtenArgmaxOp);
|
|
INSERT_ATEN_REDUCTION_OP_PATTERN(AtenMaxDimOp);
|
|
INSERT_ATEN_REDUCTION_OP_PATTERN(AtenSumDimIntListOp);
|
|
INSERT_ATEN_REDUCTION_OP_PATTERN(AtenSumOp);
|
|
INSERT_ATEN_REDUCTION_OP_PATTERN(AtenMaxOp);
|
|
INSERT_ATEN_REDUCTION_OP_PATTERN(AtenFrobeniusNormDimOp);
|
|
#undef INSERT_ATEN_REDUCTION_OP_PATTERN
|
|
}
|