mirror of https://github.com/llvm/torch-mlir
150 lines
5.5 KiB
C++
150 lines
5.5 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
// Also available under a BSD-style license. See LICENSE.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PassDetail.h"
|
|
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchDialect.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
|
|
#include "torch-mlir/Dialect/Torch/Transforms/Passes.h"
|
|
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::torch;
|
|
using namespace mlir::torch::Torch;
|
|
|
|
// Helper funtion to get rank of `Base tensor type`.
|
|
// -1 is returned if the tensorRank can't be determined.
|
|
static int getTensorRank(Value tensor) {
|
|
int tensorRank = -1;
|
|
BaseTensorType tensorType = tensor.getType().cast<BaseTensorType>();
|
|
|
|
if (tensorType.hasSizes()) {
|
|
ArrayRef<int64_t> tensorShape = tensorType.getSizes();
|
|
tensorRank = tensorShape.size();
|
|
}
|
|
return tensorRank;
|
|
}
|
|
|
|
// Decompose softmax into: exp(x) / sum(exp(x))
|
|
namespace {
|
|
class DecomposeAtenSoftmaxIntOp : public OpRewritePattern<AtenSoftmaxIntOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenSoftmaxIntOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Value self = op.self();
|
|
Value dim = op.dim();
|
|
if (!op.dtype().getType().isa<Torch::NoneType>())
|
|
return rewriter.notifyMatchFailure(
|
|
op, "Unimplemented non-None dtype for softmax");
|
|
|
|
BaseTensorType tensorType = self.getType().cast<BaseTensorType>();
|
|
if (!tensorType.hasDtype() || !tensorType.getDtype().isa<mlir::FloatType>())
|
|
return rewriter.notifyMatchFailure(op, "Only support floating type");
|
|
// exp(x)
|
|
Value exp = rewriter.create<AtenExpOp>(loc, tensorType, self);
|
|
|
|
// sum(exp(x))
|
|
Value dimList = rewriter.create<PrimListConstructOp>(
|
|
loc, Torch::ListType::get(dim.getType()), dim);
|
|
Value keepDim = rewriter.create<ConstantBoolOp>(loc, true);
|
|
Value dtype = rewriter.create<ConstantNoneOp>(loc);
|
|
SmallVector<int64_t> sizes;
|
|
int64_t dimInt;
|
|
if (tensorType.hasSizes()) {
|
|
ArrayRef<int64_t> inputShape = tensorType.getSizes();
|
|
int64_t inputRank = inputShape.size();
|
|
if (matchPattern(dim, m_TorchConstantInt(&dimInt))) {
|
|
dimInt = toPositiveDim(dimInt, inputRank);
|
|
if (!isValidDim(dimInt, inputRank))
|
|
return rewriter.notifyMatchFailure(op, "dim is not a valid dim");
|
|
sizes.append(inputShape.begin(), inputShape.end());
|
|
sizes[dimInt] = 1;
|
|
} else {
|
|
sizes.resize(inputRank, kUnknownSize);
|
|
}
|
|
}
|
|
Type resultType = tensorType.getWithSizesAndDtype(
|
|
sizes.size() == 0 ? Optional<ArrayRef<int64_t>>()
|
|
: llvm::makeArrayRef(sizes),
|
|
tensorType.getDtype());
|
|
Value sum = rewriter.create<AtenSumDimIntListOp>(loc, resultType, exp,
|
|
dimList, keepDim, dtype);
|
|
// exp(x) / sum(exp(x))
|
|
Value result = rewriter.create<AtenDivTensorOp>(loc, tensorType, exp, sum);
|
|
rewriter.replaceOpWithNewOp<TensorStaticInfoCastOp>(op, op.getType(),
|
|
result);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Decompose torch.matmul into: torch.mm and torch.bmm according to ranks.
|
|
namespace {
|
|
class DecomposeAtenMatmulOp : public OpRewritePattern<AtenMatmulOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenMatmulOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Value lhs = op.self();
|
|
Value rhs = op.other();
|
|
|
|
int lhsRank = getTensorRank(lhs);
|
|
int rhsRank = getTensorRank(rhs);
|
|
|
|
// If both lhs and rhs ranks are 2 then map it to `aten.mm` op.
|
|
if (lhsRank == 2 && rhsRank == 2)
|
|
rewriter.replaceOpWithNewOp<AtenMmOp>(op, op.getType(), lhs, rhs);
|
|
|
|
// If both lhs and rhs ranks are 3 then map it to `aten.bmm` op.
|
|
if (lhsRank == 3 && rhsRank == 3)
|
|
rewriter.replaceOpWithNewOp<AtenBmmOp>(op, op.getType(), lhs, rhs);
|
|
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class DecomposeComplexOpsPass
|
|
: public DecomposeComplexOpsBase<DecomposeComplexOpsPass> {
|
|
void runOnOperation() override {
|
|
MLIRContext *context = &getContext();
|
|
RewritePatternSet patterns(context);
|
|
ConversionTarget target(*context);
|
|
target.addLegalDialect<Torch::TorchDialect>();
|
|
|
|
patterns.add<DecomposeAtenSoftmaxIntOp>(context);
|
|
target.addIllegalOp<AtenSoftmaxIntOp>();
|
|
patterns.add<DecomposeAtenMatmulOp>(context);
|
|
target.addDynamicallyLegalOp<AtenMatmulOp>([](AtenMatmulOp op) {
|
|
Value lhs = op.self();
|
|
Value rhs = op.other();
|
|
|
|
int lhsRank = getTensorRank(lhs);
|
|
int rhsRank = getTensorRank(rhs);
|
|
|
|
// Make aten.matmul legal if the following condition is satisfied.
|
|
return (lhsRank != 2 || rhsRank != 2) && (lhsRank != 3 || rhsRank != 3);
|
|
});
|
|
if (failed(applyPartialConversion(getOperation(), target,
|
|
std::move(patterns)))) {
|
|
return signalPassFailure();
|
|
}
|
|
}
|
|
};
|
|
} // namespace
|
|
std::unique_ptr<OperationPass<FuncOp>>
|
|
mlir::torch::Torch::createDecomposeComplexOpsPass() {
|
|
return std::make_unique<DecomposeComplexOpsPass>();
|
|
}
|