mirror of https://github.com/llvm/torch-mlir
177 lines
6.4 KiB
C++
177 lines
6.4 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v3.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-1.0 WITH LLVM-exception
|
|
// Also available under a BSD-style license. See LICENSE.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "torch-mlir/Conversion/TorchToTensor/TorchToTensor.h"
|
|
|
|
#include "../PassDetail.h"
|
|
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
|
|
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
|
|
#include "torch-mlir/Dialect/TorchConversion/Transforms/BackendTypeConversion.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::torch;
|
|
using namespace mlir::torch::Torch;
|
|
|
|
namespace {
|
|
|
|
class ConvertAtenItemOp : public OpConversionPattern<AtenItemOp> {
|
|
public:
|
|
using OpConversionPattern<AtenItemOp>::OpConversionPattern;
|
|
using OpAdaptor = typename AtenItemOp::Adaptor;
|
|
LogicalResult
|
|
matchAndRewrite(AtenItemOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto operand = adaptor.getOperands()[0];
|
|
auto operandTy = cast<RankedTensorType>(operand.getType());
|
|
auto torchDTy = cast<ValueTensorType>(op.getOperand().getType()).getDtype();
|
|
|
|
if (operandTy.getNumElements() != 1)
|
|
return rewriter.notifyMatchFailure(op, "expected only one item");
|
|
|
|
auto zeroIdx = rewriter.create<arith::ConstantIndexOp>(op.getLoc(), 0);
|
|
auto rank = operandTy.getRank();
|
|
llvm::SmallVector<Value> indices(rank, zeroIdx);
|
|
|
|
Value extract = rewriter.create<tensor::ExtractOp>(
|
|
op.getLoc(), operandTy.getElementType(), operand, indices);
|
|
auto extractTy = extract.getType();
|
|
if (isa<mlir::IntegerType>(extractTy) && !extractTy.isInteger(64)) {
|
|
if (torchDTy.isUnsignedInteger()) {
|
|
extract = rewriter.create<arith::ExtUIOp>(
|
|
op.getLoc(), rewriter.getIntegerType(64), extract);
|
|
} else {
|
|
extract = rewriter.create<arith::ExtSIOp>(
|
|
op.getLoc(), rewriter.getIntegerType(64), extract);
|
|
}
|
|
}
|
|
|
|
if (isa<mlir::FloatType>(extractTy) && !extractTy.isF64()) {
|
|
extract = rewriter.create<arith::ExtFOp>(op.getLoc(),
|
|
rewriter.getF64Type(), extract);
|
|
}
|
|
|
|
rewriter.replaceOp(op, extract);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
class ConvertAtenShapeToTensorPatternOp
|
|
: public OpConversionPattern<Aten_ShapeAsTensorOp> {
|
|
public:
|
|
using OpConversionPattern<Aten_ShapeAsTensorOp>::OpConversionPattern;
|
|
using OpAdaptor = typename Aten_ShapeAsTensorOp::Adaptor;
|
|
LogicalResult
|
|
matchAndRewrite(Aten_ShapeAsTensorOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto loc = op.getLoc();
|
|
auto operand = adaptor.getOperands()[0];
|
|
auto operandTy = cast<RankedTensorType>(operand.getType());
|
|
auto resultTy =
|
|
cast<RankedTensorType>(getTypeConverter()->convertType(op.getType()));
|
|
|
|
int64_t rank = operandTy.getRank();
|
|
if (rank == 0) {
|
|
rewriter.replaceOpWithNewOp<tensor::EmptyOp>(op, resultTy.getShape(),
|
|
resultTy.getElementType());
|
|
return success();
|
|
}
|
|
|
|
SmallVector<Value> dims;
|
|
for (int i = 0; i < rank; ++i) {
|
|
Value dim = rewriter.createOrFold<tensor::DimOp>(loc, operand, i);
|
|
dim = rewriter.createOrFold<arith::IndexCastOp>(
|
|
loc, resultTy.getElementType(), dim);
|
|
dims.push_back(dim);
|
|
}
|
|
|
|
Value tensor =
|
|
rewriter.createOrFold<tensor::FromElementsOp>(op.getLoc(), dims);
|
|
rewriter.replaceOp(op, tensor);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
class ConvertAtenTensorOpPattern : public OpConversionPattern<AtenTensorOp> {
|
|
public:
|
|
using OpConversionPattern<AtenTensorOp>::OpConversionPattern;
|
|
using OpAdaptor = typename AtenTensorOp::Adaptor;
|
|
LogicalResult
|
|
matchAndRewrite(AtenTensorOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto loc = op.getLoc();
|
|
auto list = op.getData().getDefiningOp<Torch::PrimListConstructOp>();
|
|
if (!list)
|
|
return failure();
|
|
|
|
auto typeConverter = getTypeConverter();
|
|
auto resultTy = cast<ShapedType>(typeConverter->convertType(op.getType()));
|
|
auto resultETy = resultTy.getElementType();
|
|
|
|
SmallVector<Value> values;
|
|
for (Value operand : list.getOperands()) {
|
|
Value value = typeConverter->materializeTargetConversion(
|
|
rewriter, loc, typeConverter->convertType(operand.getType()),
|
|
operand);
|
|
|
|
if (isa<mlir::IntegerType>(resultETy) && value.getType() != resultETy)
|
|
value = rewriter.create<arith::TruncIOp>(loc, resultETy, value);
|
|
|
|
if (isa<mlir::FloatType>(resultETy) && value.getType() != resultETy)
|
|
value = rewriter.create<arith::TruncFOp>(loc, resultETy, value);
|
|
|
|
values.push_back(value);
|
|
}
|
|
|
|
rewriter.replaceOpWithNewOp<tensor::FromElementsOp>(op, resultTy, values);
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
class ConvertTorchToTensor
|
|
: public ConvertTorchToTensorBase<ConvertTorchToTensor> {
|
|
public:
|
|
void getDependentDialects(DialectRegistry ®istry) const override {
|
|
registry.insert<tensor::TensorDialect>();
|
|
TorchConversion::getBackendTypeConversionDependentDialects(registry);
|
|
}
|
|
void runOnOperation() override {
|
|
MLIRContext *context = &getContext();
|
|
ConversionTarget target(*context);
|
|
target.addLegalDialect<arith::ArithDialect>();
|
|
target.addLegalDialect<tensor::TensorDialect>();
|
|
target.addIllegalOp<Torch::AtenItemOp>();
|
|
target.addIllegalOp<Torch::AtenTensorOp>();
|
|
target.addIllegalOp<Torch::Aten_ShapeAsTensorOp>();
|
|
|
|
TypeConverter typeConverter;
|
|
typeConverter.addConversion([](Type type) { return type; });
|
|
TorchConversion::setupBackendTypeConversion(target, typeConverter);
|
|
|
|
RewritePatternSet patterns(context);
|
|
patterns.add<ConvertAtenShapeToTensorPatternOp, ConvertAtenItemOp,
|
|
ConvertAtenTensorOpPattern>(typeConverter, context);
|
|
|
|
if (failed(applyPartialConversion(getOperation(), target,
|
|
std::move(patterns))))
|
|
return signalPassFailure();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
std::unique_ptr<OperationPass<func::FuncOp>>
|
|
mlir::torch::createConvertTorchToTensorPass() {
|
|
return std::make_unique<ConvertTorchToTensor>();
|
|
}
|