mirror of https://github.com/llvm/torch-mlir
61 lines
1.7 KiB
Python
61 lines
1.7 KiB
Python
# -*- Python -*-
|
|
# This file is licensed under a pytorch-style license
|
|
# See frontends/pytorch/LICENSE for license information.
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch.optim as optim
|
|
|
|
import npcomp.frontends.pytorch as torch_mlir
|
|
import npcomp.frontends.pytorch.test as test
|
|
|
|
# RUN: python %s | FileCheck %s
|
|
|
|
class Net(nn.Module):
|
|
def __init__(self):
|
|
super(Net, self).__init__()
|
|
self.conv1 = nn.Conv2d(1, 32, 3, 1, bias=True)
|
|
self.conv2 = nn.Conv2d(32, 64, 3, 1, bias=True)
|
|
#self.maxpool2d = nn.MaxPool2d(2,2)
|
|
self.fc1 = nn.Linear(9216*4, 128, bias=True)
|
|
self.fc2 = nn.Linear(128, 10, bias=True)
|
|
|
|
def forward(self, x):
|
|
x = self.conv1(x)
|
|
x = F.relu(x)
|
|
x = self.conv2(x)
|
|
#x = self.maxpool2d(x)
|
|
x = x.view((64,9216*4))
|
|
x = self.fc1(x)
|
|
x = F.relu(x)
|
|
x = self.fc2(x)
|
|
output = F.log_softmax(x, dim=1)
|
|
return output
|
|
|
|
def main():
|
|
model = Net()
|
|
tensor = torch.randn((64, 1, 28, 28), requires_grad=True)
|
|
|
|
# CHECK: PASS! fwd check
|
|
fwd_path = test.check_fwd(model, tensor)
|
|
|
|
target = torch.ones((64), dtype=torch.long)
|
|
loss = F.nll_loss
|
|
|
|
# CHECK: PASS! back check
|
|
test.check_back(fwd_path, target, loss)
|
|
|
|
# CHECK: PASS! weight_grad check
|
|
test.compare(model.conv2.weight.grad,
|
|
fwd_path[0].conv2.weight.grad, "weight_grad")
|
|
# CHECK: PASS! bias_grad check
|
|
test.compare(model.conv2.bias.grad,
|
|
fwd_path[0].conv2.bias.grad, "bias_grad")
|
|
# CHECK: PASS! fc1_weight_grad check
|
|
test.compare(model.fc1.weight.grad,
|
|
fwd_path[0].fc1.weight.grad, "fc1_weight_grad")
|
|
|
|
if __name__ == '__main__':
|
|
main()
|