mirror of https://github.com/llvm/torch-mlir
69 lines
3.5 KiB
MLIR
69 lines
3.5 KiB
MLIR
// RUN: torch-mlir-opt <%s -convert-torch-to-linalg -split-input-file -verify-diagnostics | FileCheck %s
|
|
|
|
// -----
|
|
|
|
#CSR = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }>
|
|
|
|
// CHECK: #[[$CSR:.*]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }>
|
|
// CHECK-LABEL: func.func @sum(
|
|
// CHECK-SAME: %[[A:.*]]: !torch.vtensor<[64,64],f32,#[[$CSR]]>) -> !torch.vtensor<[],f32>
|
|
// CHECK: %[[S:.*]] = torch_c.to_builtin_tensor %[[A]] : !torch.vtensor<[64,64],f32,#[[$CSR]]> -> tensor<64x64xf32, #[[$CSR]]>
|
|
// CHECK: linalg.generic {{{.*}}} ins(%[[S]] : tensor<64x64xf32, #[[$CSR]]>)
|
|
func.func @sum(%arg0: !torch.vtensor<[64,64],f32,#CSR>) -> !torch.vtensor<[],f32> {
|
|
%none = torch.constant.none
|
|
%0 = torch.aten.sum %arg0, %none
|
|
: !torch.vtensor<[64,64],f32,#CSR>, !torch.none -> !torch.vtensor<[],f32>
|
|
return %0 : !torch.vtensor<[],f32>
|
|
}
|
|
|
|
// -----
|
|
|
|
#CSR = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }>
|
|
|
|
// CHECK: #[[$CSR:.*]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }>
|
|
// CHECK-LABEL: func.func @SpMM(
|
|
// CHECK-SAME: %[[A:.*]]: !torch.vtensor<[8,16],f32,#[[$CSR]]>,
|
|
// CHECK-SAME: %[[B:.*]]: !torch.vtensor<[16,8],f32>) -> !torch.vtensor<[8,8],f32>
|
|
// CHECK: %[[S:.*]] = torch_c.to_builtin_tensor %[[A]] : !torch.vtensor<[8,16],f32,#[[$CSR]]> -> tensor<8x16xf32, #[[$CSR]]>
|
|
// CHECK: %[[T:.*]] = torch_c.to_builtin_tensor %[[B]] : !torch.vtensor<[16,8],f32> -> tensor<16x8xf32>
|
|
// CHECK: linalg.matmul ins(%[[S]], %[[T]] : tensor<8x16xf32, #[[$CSR]]>, tensor<16x8xf32>)
|
|
func.func @SpMM(%arg0: !torch.vtensor<[8,16],f32,#CSR>,
|
|
%arg1: !torch.vtensor<[16,8],f32>) -> !torch.vtensor<[8,8],f32> {
|
|
%0 = torch.aten.matmul %arg0, %arg1
|
|
: !torch.vtensor<[8,16],f32,#CSR>,
|
|
!torch.vtensor<[16,8],f32> -> !torch.vtensor<[8,8],f32>
|
|
return %0 : !torch.vtensor<[8,8],f32>
|
|
}
|
|
|
|
// -----
|
|
|
|
#sparse = #sparse_tensor.encoding<{
|
|
map = (d0, d1, d2, d3, d4) ->
|
|
(d0 : compressed(nonunique),
|
|
d1 : singleton(nonunique, soa),
|
|
d2 : singleton(nonunique, soa),
|
|
d3 : singleton(nonunique, soa),
|
|
d4 : singleton(soa)
|
|
),
|
|
posWidth = 64,
|
|
crdWidth = 64
|
|
}>
|
|
|
|
// CHECK: #[[$ST:.*]] = #sparse_tensor.encoding<{ map = (d0, d1, d2, d3, d4) -> (d0 : compressed(nonunique), d1 : singleton(nonunique, soa), d2 : singleton(nonunique, soa), d3 : singleton(nonunique, soa), d4 : singleton(soa)), posWidth = 64, crdWidth = 64 }>
|
|
// CHECK-LABEL: func.func @activate(
|
|
// CHECK-SAME: %[[A:.*]]: !torch.vtensor<[128,64,30,30,6],f32>)
|
|
// CHECK: %[[D:.*]] = torch_c.to_builtin_tensor %arg0 : !torch.vtensor<[128,64,30,30,6],f32> -> tensor<128x64x30x30x6xf32>
|
|
// CHECK: %[[C:.*]] = sparse_tensor.convert %0 : tensor<128x64x30x30x6xf32> to tensor<128x64x30x30x6xf32, #[[$ST]]>
|
|
// CHECK: %[[R:.*]] = torch_c.from_builtin_tensor %[[C]] : tensor<128x64x30x30x6xf32, #[[$ST]]>
|
|
// CHECK: return %[[R]] : !torch.vtensor<[128,64,30,30,6],f32,#[[$ST]]>
|
|
func.func @activate(%arg0: !torch.vtensor<[128,64,30,30,6],f32>)
|
|
-> !torch.vtensor<[128,64,30,30,6],f32,#sparse> {
|
|
%none_0 = torch.constant.none
|
|
%none_1 = torch.constant.none
|
|
%none_2 = torch.constant.none
|
|
%result = torch.operator "torch.aten._to_sparse"(%arg0, %none_0, %none_1, %none_2)
|
|
: (!torch.vtensor<[128,64,30,30,6],f32>, !torch.none, !torch.none, !torch.none)
|
|
-> !torch.vtensor<[128,64,30,30,6],f32,#sparse>
|
|
return %result : !torch.vtensor<[128,64,30,30,6],f32,#sparse>
|
|
}
|