mirror of https://github.com/llvm/torch-mlir
195 lines
7.3 KiB
C++
195 lines
7.3 KiB
C++
//===----------------------------------------------------------------------===//
|
||
//
|
||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
// See https://llvm.org/LICENSE.txt for license information.
|
||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
// Also available under a BSD-style license. See LICENSE.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "torch-mlir/Conversion/TorchToMhlo/TorchToMhlo.h"
|
||
|
||
#include "../PassDetail.h"
|
||
#include "./PopulatePatterns.h"
|
||
#include "mlir-hlo/Dialect/mhlo/IR/hlo_ops.h"
|
||
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
|
||
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
||
#include "torch-mlir/Conversion/Utils/Utils.h"
|
||
#include "torch-mlir/Dialect/Torch/IR/TorchDialect.h"
|
||
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
|
||
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
|
||
#include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionOps.h"
|
||
|
||
using namespace mlir;
|
||
using namespace mlir::torch;
|
||
using namespace mlir::torch::Torch;
|
||
|
||
#ifdef TORCH_MLIR_ENABLE_MHLO_TRUNC_DIMSIZE_TO_I32
|
||
static constexpr size_t kMhloDimSizeBits = 32;
|
||
#else
|
||
static constexpr size_t kMhloDimSizeBits = 64;
|
||
#endif
|
||
|
||
namespace {
|
||
Value gatherTensorAlongSingleAxis(PatternRewriter &rewriter, Operation *op,
|
||
Value input, Value indices, int64_t axis) {
|
||
auto loc = op->getLoc();
|
||
Type intType = rewriter.getIntegerType(kMhloDimSizeBits);
|
||
Value one = rewriter.create<arith::ConstantOp>(
|
||
loc, rewriter.getIntegerAttr(intType, 1));
|
||
|
||
// sliceSizes
|
||
auto inputRankTy = input.getType().dyn_cast<RankedTensorType>();
|
||
auto inputRank = inputRankTy.getRank();
|
||
SmallVector<Value, 4> sliceSizes;
|
||
sliceSizes.reserve(inputRank);
|
||
for (int64_t r = 0; r < inputRank; ++r) {
|
||
if (r == axis) {
|
||
sliceSizes.push_back(one);
|
||
} else {
|
||
sliceSizes.push_back(rewriter.create<arith::IndexCastOp>(
|
||
loc, intType, rewriter.create<tensor::DimOp>(loc, input, r)));
|
||
}
|
||
}
|
||
auto sliceSizesTensor =
|
||
rewriter.create<tensor::FromElementsOp>(loc, sliceSizes);
|
||
|
||
// offsetDims
|
||
SmallVector<int64_t, 4> offsetDims;
|
||
offsetDims.reserve(inputRank);
|
||
for (int64_t r = 0; r < axis; ++r) {
|
||
offsetDims.push_back(r);
|
||
}
|
||
auto indicesRankTy = indices.getType().dyn_cast<RankedTensorType>();
|
||
auto indicesRank = indicesRankTy.getRank();
|
||
for (int64_t r = axis + 1; r < inputRank; ++r) {
|
||
offsetDims.push_back(r + indicesRank - 1);
|
||
}
|
||
|
||
// collapsedSliceDims
|
||
SmallVector<int64_t, 4> collapsedSliceDims(1, axis);
|
||
// startIndexMap
|
||
SmallVector<int64_t, 4> startIndexMap(1, axis);
|
||
// indexVecDim
|
||
int64_t indexVecDim = indicesRank;
|
||
auto dimsAttr = mhlo::GatherDimensionNumbersAttr::get(
|
||
rewriter.getContext(),
|
||
/*offsetDims=*/offsetDims,
|
||
/*collapsedSliceDims=*/collapsedSliceDims,
|
||
/*startIndexMap=*/startIndexMap,
|
||
/*indexVecDim=*/indexVecDim);
|
||
|
||
// outputShape = input.shape[:axis] + indices.shape +
|
||
// input.shape[axis + 1:]
|
||
auto inputShape = inputRankTy.getShape();
|
||
auto indicesShape = indicesRankTy.getShape();
|
||
SmallVector<int64_t, 4> outputShape(inputShape.begin(),
|
||
inputShape.begin() + axis);
|
||
outputShape.insert(outputShape.end(), indicesShape.begin(),
|
||
indicesShape.end());
|
||
outputShape.insert(outputShape.end(), inputShape.begin() + axis + 1,
|
||
inputShape.end());
|
||
|
||
// create output tensor type
|
||
auto outputTy =
|
||
RankedTensorType::get(outputShape, inputRankTy.getElementType());
|
||
return rewriter
|
||
.create<mhlo::DynamicGatherOp>(loc, outputTy, input, indices,
|
||
sliceSizesTensor, dimsAttr)
|
||
.getResult();
|
||
}
|
||
|
||
template <typename AtenOpT>
|
||
class ConvertAtenOp : public OpConversionPattern<AtenOpT> {
|
||
public:
|
||
using OpConversionPattern<AtenOpT>::OpConversionPattern;
|
||
using OpAdaptor = typename AtenOpT::Adaptor;
|
||
LogicalResult
|
||
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
|
||
ConversionPatternRewriter &rewriter) const override;
|
||
};
|
||
|
||
// Ref: https://pytorch.org/docs/stable/generated/torch.nn.functional.embedding.html
|
||
// padding_idx (int, optional)
|
||
// – If specified, the entries at padding_idx do not contribute to the gradient;
|
||
// therefore, the embedding vector at padding_idx is not updated during training,
|
||
// i.e. it remains as a fixed “pad”.
|
||
// scale_grad_by_freq (boolean, optional)
|
||
// – If given, this will scale gradients by the inverse of frequency of the
|
||
// words in the mini-batch. Default False.
|
||
// sparse (bool, optional)
|
||
// – If True, gradient w.r.t. weight matrix will be a sparse tensor.
|
||
template <>
|
||
LogicalResult ConvertAtenOp<AtenEmbeddingOp>::matchAndRewrite(
|
||
AtenEmbeddingOp op, OpAdaptor adaptor,
|
||
ConversionPatternRewriter &rewriter) const {
|
||
auto weight = adaptor.weight();
|
||
auto weightTy = weight.getType().template cast<RankedTensorType>();
|
||
if (!weightTy)
|
||
return op.emitError("only ranked tensor types are supported");
|
||
|
||
int64_t padding_idx;
|
||
if (!matchPattern(op.padding_idx(), m_TorchConstantInt(&padding_idx)))
|
||
return rewriter.notifyMatchFailure(
|
||
op, "only constant padding_idx is currently supported");
|
||
|
||
bool scale_grad_by_freq;
|
||
if (!matchPattern(op.scale_grad_by_freq(),
|
||
m_TorchConstantBool(&scale_grad_by_freq)))
|
||
return rewriter.notifyMatchFailure(
|
||
op, "only constant scale_grad_by_freq is currently supported");
|
||
if (scale_grad_by_freq)
|
||
return rewriter.notifyMatchFailure(
|
||
op, "scale gradients is currently not supported");
|
||
bool sparse;
|
||
if (!matchPattern(op.sparse(), m_TorchConstantBool(&sparse)))
|
||
return rewriter.notifyMatchFailure(
|
||
op, "only constant sparse is currently supported");
|
||
if (sparse)
|
||
return rewriter.notifyMatchFailure(
|
||
op, "sparse gradients is currently not supported");
|
||
|
||
Value output =
|
||
gatherTensorAlongSingleAxis(rewriter, op, weight, adaptor.indices(), 0);
|
||
rewriter.replaceOpWithNewOp<mhlo::ConvertOp>(
|
||
op, getTypeConverter()->convertType(op.getType()), output);
|
||
|
||
return success();
|
||
}
|
||
|
||
template <>
|
||
LogicalResult ConvertAtenOp<AtenIndexSelectOp>::matchAndRewrite(
|
||
AtenIndexSelectOp op, OpAdaptor adaptor,
|
||
ConversionPatternRewriter &rewriter) const {
|
||
auto self = adaptor.self();
|
||
auto selfTy = self.getType().template cast<RankedTensorType>();
|
||
if (!selfTy)
|
||
return op.emitError("only ranked tensor types are supported");
|
||
int64_t dim;
|
||
if (!matchPattern(op.dim(), m_TorchConstantInt(&dim)))
|
||
return rewriter.notifyMatchFailure(
|
||
op, "only constant dim is currently supported");
|
||
|
||
Value output =
|
||
gatherTensorAlongSingleAxis(rewriter, op, self, adaptor.index(), dim);
|
||
|
||
rewriter.replaceOpWithNewOp<mhlo::ConvertOp>(
|
||
op, getTypeConverter()->convertType(op.getType()), output);
|
||
|
||
return success();
|
||
}
|
||
} // namespace
|
||
|
||
void mlir::torch::torch_to_mhlo::populateGatherOpPatternsAndLegality(
|
||
TypeConverter &typeConverter, RewritePatternSet &patterns,
|
||
ConversionTarget &target) {
|
||
MLIRContext *context = patterns.getContext();
|
||
|
||
#define INSERT_ATENOP_PATTERN(AtenOp) \
|
||
target.addIllegalOp<AtenOp>(); \
|
||
patterns.add<ConvertAtenOp<AtenOp>>(typeConverter, context);
|
||
INSERT_ATENOP_PATTERN(AtenEmbeddingOp);
|
||
INSERT_ATENOP_PATTERN(AtenIndexSelectOp);
|
||
#undef INSERT_ATENOP_PATTERN
|
||
}
|