torch-mlir/lib/Conversion/TorchToLinalg/DataMovement.cpp

2693 lines
109 KiB
C++

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/Transforms/DialectConversion.h"
#include "torch-mlir/Conversion/TorchToLinalg/TorchToLinalg.h"
#include "PopulatePatterns.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Complex/IR/Complex.h"
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/IR/Matchers.h"
#include "torch-mlir/Conversion/TorchToLinalg/Utils.h"
#include "torch-mlir/Conversion/Utils/Utils.h"
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
#include "torch-mlir/Dialect/Torch/Utils/TorchUpstream.h"
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
#include "llvm/ADT/APInt.h"
#include <numeric>
using namespace mlir;
using namespace mlir::torch;
using namespace mlir::torch::Torch;
static int64_t productReduce(ArrayRef<int64_t> a) {
return accumulate(a.begin(), a.end(), /*init=*/static_cast<int64_t>(1),
std::multiplies<int64_t>());
}
template <typename OpTy, typename OpAdaptor>
LogicalResult prepareArgumentsForSlicingOp(OpTy op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter,
SmallVector<Value> &resultShape,
SmallVector<Value> &offsets,
SmallVector<Value> &strides) {
Location loc = op.getLoc();
auto input = adaptor.getSelf();
RankedTensorType inputType = cast<RankedTensorType>(input.getType());
Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
Value one = rewriter.create<arith::ConstantIndexOp>(loc, 1);
Value negone = rewriter.create<arith::ConstantIndexOp>(loc, -1);
int64_t dim;
if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim)))
return op->emitError("unimplemented: dim is not constant");
int64_t inputRank = inputType.getRank();
dim = toPositiveDim(dim, inputRank);
if (!isValidDim(dim, inputRank))
return rewriter.notifyMatchFailure(op, "dim is statically invalid");
SmallVector<Value> inputShape = getTensorSizes(rewriter, loc, input);
Value dimSize = inputShape[dim];
Value torchTypeStart = op.getStart();
Value torchTypeEnd = op.getEnd();
Value builtinTypeStart = adaptor.getStart();
Value builtinTypeEnd = adaptor.getEnd();
if (isa<OptionalType>(torchTypeStart.getType()) ||
isa<OptionalType>(torchTypeEnd.getType()))
return rewriter.notifyMatchFailure(op, "unimplemented optional type arg");
Value stepIndex = castIntToIndex(rewriter, loc, adaptor.getStep());
Value start = toPositiveValidDim(rewriter, loc, torchTypeStart,
builtinTypeStart, zero, dimSize);
// We cannot use to positive valid dim as for negative strides we need to
// clamp to `-1` so that the full tensor bounds are available:
Value end = builtinTypeEnd;
if (isa<Torch::NoneType>(torchTypeEnd.getType())) {
end = dimSize;
} else {
end = castIntToIndex(rewriter, loc, end);
Value endcmp = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::slt, end, zero);
Value endadd = rewriter.create<arith::AddIOp>(loc, end, dimSize);
end = rewriter.create<arith::SelectOp>(loc, endcmp, endadd, end);
endcmp = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, end,
zero);
end = rewriter.create<arith::SelectOp>(loc, endcmp, negone, end);
endcmp = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sgt, end,
dimSize);
end = rewriter.create<arith::SelectOp>(loc, endcmp, dimSize, end);
}
// Slice logic: resultSize = floordiv(end - start + step - 1, step)
resultShape = getTensorSizes(rewriter, loc, input);
Value len = rewriter.create<arith::SubIOp>(loc, end, start);
// We check the difference between start and end to determine the total size:
Value stepcmp = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sge,
stepIndex, zero);
Value stepsign = rewriter.create<arith::SelectOp>(loc, stepcmp, one, negone);
Value resultSize = rewriter.create<arith::AddIOp>(loc, len, stepIndex);
resultSize = rewriter.create<arith::SubIOp>(loc, resultSize, stepsign);
resultSize = rewriter.create<arith::FloorDivSIOp>(loc, resultSize, stepIndex);
// Clamp the size to [0, ...]:
Value szcmp = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt,
resultSize, zero);
resultSize = rewriter.create<arith::SelectOp>(loc, szcmp, zero, resultSize);
resultShape[dim] = resultSize;
strides.resize(inputType.getRank(), one);
offsets.resize(inputType.getRank(), zero);
offsets[dim] = start;
strides[dim] = stepIndex;
return success();
}
// Example:
// input = tensor([[[0., 1., 2., 3.],
// [4., 5., 6., 7.]]])
// torch.ops.aten.reflection_pad1d(input, (3,1));
// padding_left = 3,
// padding_right = 1
// output = tensor([[[3., 2., 1., 0., 1., 2., 3., 2.],
// [7., 6., 5., 4., 5., 6., 7., 6.]]])
// Checks: 1) Each of padding_left and padding_right must be non-negative and
// less than the size of the last dimension.
// Implementation: a) Construct a result tensor of
// shape of input tensor except for the last dimension.
// The last dimension of the result tensor should be last
// dimension of input tensor + left padding size + right
// padding size. Initialize result tensor to all zeros
// b) Setup affine map to take slice from input tensor of size
// left padding starting from
// second column onwards as first column is reflection
// boundary
// c) Reflect the affine map to have resultant slice reflected
// d) Take the slice and write from begining in result tensor
// e) write the original tensor next into result tensor
// f) Setup affine map to take slice from input tensor of right
// padding size ending
// at second last column as last column is reflection
// boundary for right padding
// g) Reflect the affine map to have resultant slice reflected
// h) Take the slice and write from left padding size + orignal
// tensor last dim size
// into result tensor
// Uses the ideas/code used for AtenReflectionPad2dOp
namespace {
class ConvertAtenReflectionPad1dOp
: public OpConversionPattern<AtenReflectionPad1dOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenReflectionPad1dOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
SmallVector<int64_t> padInts;
if (!matchPattern(op.getPadding(), m_TorchListOfConstantInts(padInts)))
return rewriter.notifyMatchFailure(
op, "only constant int padding range is supported");
MLIRContext *context = rewriter.getContext();
Location loc = op.getLoc();
// Lambda Unitility Functions
// Create an Integer expression of x + y
auto createIAdd = [&](Value x, Value y) {
return rewriter.create<arith::AddIOp>(loc, x, y);
};
// Create an integer expression of x - y
auto createISub = [&](Value x, Value y) {
return rewriter.create<arith::SubIOp>(loc, x, y);
};
enum PadLocation { PAD_LEFT = 0, PAD_RIGHT = 1, PAD_CENTER = 2 };
Value input = adaptor.getSelf();
Type indexType = rewriter.getIndexType();
Value zero = getConstant(rewriter, loc, 0, indexType);
Value one = getConstant(rewriter, loc, 1, indexType);
auto inputType = llvm::cast<RankedTensorType>(input.getType());
auto outputType = llvm::cast<RankedTensorType>(
getTypeConverter()->convertType(op->getResult(0).getType()));
unsigned numDims = inputType.getRank();
assert(numDims >= 2 && "Not enough input dimensions");
int64_t lastDim = numDims - 1;
SmallVector<Value> inputShape = getTensorSizes(rewriter, loc, input);
Value lastDimSize = inputShape[lastDim]; // input [1,2,4], then lastDim = 2,
// inputShape[2] will give 4
Value tileWidth[3], extractOffset[3], insertOffset[3];
tileWidth[PAD_LEFT] =
getConstant(rewriter, loc, padInts[PAD_LEFT], indexType);
tileWidth[PAD_RIGHT] =
getConstant(rewriter, loc, padInts[PAD_RIGHT], indexType);
tileWidth[PAD_CENTER] = lastDimSize;
extractOffset[PAD_LEFT] = one;
// The offset for the right hand padding "bar" is:
// [right] lastDimSize - (tileWidth[PAD_RIGHT] + one)
extractOffset[PAD_RIGHT] =
createISub(lastDimSize, createIAdd(tileWidth[PAD_RIGHT], one));
extractOffset[PAD_CENTER] = zero;
insertOffset[PAD_LEFT] = zero;
insertOffset[PAD_RIGHT] = createIAdd(lastDimSize, tileWidth[PAD_LEFT]);
insertOffset[PAD_CENTER] = tileWidth[PAD_LEFT];
SmallVector<Value> resultShape{inputShape};
// Result's last dimension will have size:
// lastDimSize + left padding size + right padding size
resultShape[lastDim] =
createIAdd(resultShape[lastDim],
createIAdd(tileWidth[PAD_LEFT], tileWidth[PAD_RIGHT]));
Value resultTensor = createZeroInitTensor(rewriter, loc, resultShape,
inputType.getElementType());
// Helper to reflect/reverse the i-th dimension of an affine map without
// symbols. This only works if applied on a tensor for which the
// corresponding dimension has a statically known size
auto reflectDim = [](AffineMap map, unsigned numDims, int64_t i,
int64_t size) {
AffineExpr d = map.getResult(i);
return map.replace(d, size - d - 1, numDims,
0); // left reflect for (3,1) on input shape (1,2,4).
// size = 3, lastDim=2, numDims=3
};
SmallVector<utils::IteratorType> iteratorTypes{
numDims, utils::IteratorType::parallel};
auto idMap = AffineMap::getMultiDimIdentityMap(numDims, context);
SmallVector<Value> allOneStrides(numDims, one);
auto addTileToResult = [&](PadLocation padPosition) {
// Create the tile by extracting a slice from the input tensor.
SmallVector<Value> extractShape{inputShape};
extractShape[lastDim] = tileWidth[padPosition];
SmallVector<Value> extractOffsets(numDims, zero);
extractOffsets[lastDim] = extractOffset[padPosition];
Value tile = rewriter.create<tensor::ExtractSliceOp>(
loc, input, extractOffsets, extractShape, allOneStrides);
auto inputMap = AffineMap::getMultiDimIdentityMap(numDims, context);
// Setup the affine map function to resverse the tile along the horizontal
// for left and right slices
if (padPosition < PAD_CENTER) {
inputMap = reflectDim(inputMap, numDims, lastDim, padInts[padPosition]);
// Take reflected slice as per inputMap
tile = rewriter
.create<linalg::GenericOp>(
loc, llvm::cast<RankedTensorType>(tile.getType()), tile,
tile, ArrayRef({inputMap, idMap}), iteratorTypes,
[](OpBuilder &b, Location nestedLoc, ValueRange args) {
b.create<linalg::YieldOp>(nestedLoc, args[0]);
})
.getResult(0);
}
// Insert the tile in the resultTensor
SmallVector<Value> insertOffsets(numDims, zero);
insertOffsets[lastDim] = insertOffset[padPosition];
resultTensor = rewriter.create<tensor::InsertSliceOp>(
loc, tile, resultTensor, insertOffsets, extractShape, allOneStrides);
};
if (padInts[PAD_LEFT] > 0)
addTileToResult(PAD_LEFT);
if (padInts[PAD_RIGHT] > 0)
addTileToResult(PAD_RIGHT);
addTileToResult(PAD_CENTER);
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, outputType, resultTensor);
return success();
}
};
} // namespace
namespace {
// Lower the aten.reflection.pad_2d operator into a sequence of
// tensor.extract_slice, linalg.generic, and tensor_insert_slice
// operations.
// To understand the lowering, consider this pytorch example:
//
// >>> t = torch.tensor([[[1.0,2,3],[4,5,6], [7,8,9]]])
// >>> t
// tensor([[[1., 2., 3.],
// [4., 5., 6.],
// [7., 8., 9.]]])
// >>> torch.ops.aten.reflection_pad2d(t, [1,2,1,2])
// tensor([[[5., 4., 5., 6., 5., 4.],
// [2., 1., 2., 3., 2., 1.],
// [5., 4., 5., 6., 5., 4.],
// [8., 7., 8., 9., 8., 7.],
// [5., 4., 5., 6., 5., 4.],
// [2., 1., 2., 3., 2., 1.]]])
//
// The result can be subdivided into "tiles" corresponding to either
// the input tensor (in the center) or slices of the input tensor
// whose width and height is determined by the padding sizes and which
// are reflected through the side of the central input tensor that
// they touch.
// In the example above, the tiles are:
// top left: [[5]]
// top center: [[4,5,6]]
// top right: [[5,4]]
// center left [[2,1],[5,4],[8,7]]
// center: copy of the input tensor
// center right: [[2,1],[5,4],[8,7]]
// bottom left: [[5,4],[2,1]]
// center bottom: [[2,3,2]]
// center right: [[2,1]]
//
// The lowering uses a tensor.extract_slice operation to create each tile,
// a linalg.generic for the reflection, and a tensor.insert_slice to
// insert the tile in the resulting tensor.
class ConvertAtenReflectionPad2dOp
: public OpConversionPattern<AtenReflectionPad2dOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenReflectionPad2dOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
SmallVector<int64_t> padInts;
if (!matchPattern(op.getPadding(), m_TorchListOfConstantInts(padInts)))
return rewriter.notifyMatchFailure(
op, "only support constant int pad ranges");
Location loc = op.getLoc();
// Some generic helper functions for creating arithmetic operations.
auto createAdd = [&](Value x, Value y) {
return rewriter.create<arith::AddIOp>(loc, x, y);
};
auto createAdds = [&](std::initializer_list<Value> values) {
assert(values.size() >= 2);
return std::accumulate(values.begin() + 1, values.end(), data(values)[0],
createAdd);
};
auto createSub = [&](Value x, Value y) {
return rewriter.create<arith::SubIOp>(loc, x, y);
};
auto createSubs = [&](std::initializer_list<Value> values) {
assert(values.size() >= 2);
return std::accumulate(values.begin() + 1, values.end(), data(values)[0],
createSub);
};
// Enums for specifying the coordinates of a tile. An "h" prefix
// is used to stand for "horizontal" and "v" for "vertical"
// throughout.
enum PadHLoc { LEFT = 0, RIGHT = 1, HCENTER = 2 };
enum PadVLoc { TOP = 0, BOTTOM = 1, VCENTER = 2 };
// Helper functions for obtaining information about the operator's
// padding arguments.
auto getHPadArgument = [&](PadHLoc l) {
assert(l < HCENTER);
return padInts[l];
};
auto getVPadArgument = [&](PadVLoc l) {
assert(l < VCENTER);
return padInts[2 + l];
};
auto shouldCreateTile = [&](PadVLoc v, PadHLoc h) {
if (!(h == HCENTER || getHPadArgument(h) > 0))
return false;
if (!(v == VCENTER || getVPadArgument(v) > 0))
return false;
return true;
};
Value input = adaptor.getSelf();
MLIRContext *context = rewriter.getContext();
auto inputType = llvm::cast<RankedTensorType>(input.getType());
auto outputType = llvm::cast<RankedTensorType>(
getTypeConverter()->convertType(op->getResult(0).getType()));
unsigned numDims = inputType.getRank();
assert(numDims >= 2 && "Not enough input dimensions");
SmallVector<Value> inputShape = getTensorSizes(rewriter, loc, input);
int64_t hDim = numDims - 1;
int64_t vDim = numDims - 2;
Value hDimSize = inputShape[hDim];
Value vDimSize = inputShape[vDim];
assert(getHPadArgument(LEFT) < inputType.getShape()[hDim] &&
"Left padding too large");
assert(getHPadArgument(RIGHT) < inputType.getShape()[hDim] &&
"Right padding too large");
assert(getVPadArgument(TOP) < inputType.getShape()[vDim] &&
"Top padding too large");
assert(getVPadArgument(BOTTOM) < inputType.getShape()[vDim] &&
"Bottom padding too large");
Type indexType = rewriter.getIndexType();
Value zero = getConstant(rewriter, loc, 0, indexType);
Value one = getConstant(rewriter, loc, 1, indexType);
Value tileWidth[3];
tileWidth[HCENTER] = hDimSize;
for (auto h : {LEFT, RIGHT})
tileWidth[h] = getConstant(rewriter, loc, getHPadArgument(h), indexType);
Value tileHeight[3];
tileHeight[VCENTER] = vDimSize;
for (auto v : {TOP, BOTTOM})
tileHeight[v] = getConstant(rewriter, loc, getVPadArgument(v), indexType);
// Helper to reflect/reverse the i-th dimension of an affine map
// without symbols. This only works if applied on a tensor
// for which the corresponding dimension has a statically
// known size which is good enough since we only apply
// it to reflect the padding slices.
auto reflectDim = [](AffineMap map, unsigned numDims, int64_t i,
int64_t size) {
AffineExpr d = map.getResult(i);
return map.replace(d, size - d - 1, numDims, 0);
};
// Create output shape and tensor
SmallVector<Value> resultShape{inputShape};
resultShape[vDim] =
createAdds({resultShape[vDim], tileHeight[TOP], tileHeight[BOTTOM]});
resultShape[hDim] =
createAdds({resultShape[hDim], tileWidth[LEFT], tileWidth[RIGHT]});
Value resultTensor = createZeroInitTensor(rewriter, loc, resultShape,
inputType.getElementType());
// Construction of the tiles
// Example: central left tile
//
// Let m the width of the left padding as returned by getHPadargument(LEFT)
// and n the size of the input tensor's "horizontal" dimension, i.e.
// hDimSize. Assume that the subtensor of the input tensor in the relevant
// (i.e. last two) dimensions is:
//
// x_1,1 x_1,2 ... x_1,m
// x_2,1 x_2,2 ... x_2,m
// .
// .
// .
// x_n,1 x_n,2 ... x_n,m
//
// The padding tile consists of the columns 2, ..., m + 1
// of the input in reverse order. The first column gets
// skipped because this is the column through which the
// reflection happens.
//
// x_1,m x_1,m-1 ... x_1,2
// x_2,m x_1,m-1 ... x_2,2
// .
// .
// .
// x_n,m x_n,m-1 ... x_n,2
//
// The tile will be inserted to the left of the copy of the input tensor
// in the output tensor, i.e. with horizontal offset 0.
// The top padding determines the vertical offset.
// Tiles on the diagonal (e.g. (TOP, LEFT)) are reflected through
// two sides, i.e. their columns and rows must be reversed.
// Setup information about the tiles
// Compute the offsets for extracting the slice from the
// input. We need to skip the row or column through which
// the tile should be reflected, if any (none for the center tile).
Value extractHOffset[3];
extractHOffset[LEFT] = one;
extractHOffset[HCENTER] = zero;
extractHOffset[RIGHT] = createSubs({hDimSize, tileWidth[RIGHT], one});
Value extractVOffset[3];
extractVOffset[TOP] = one;
extractVOffset[VCENTER] = zero;
extractVOffset[BOTTOM] = createSubs({vDimSize, tileHeight[BOTTOM], one});
// Compute the horizontal and vertical offsets for inserting
// the tiles in the resultTensor.
Value insertHOffset[3];
insertHOffset[LEFT] = zero;
insertHOffset[HCENTER] = tileWidth[LEFT];
insertHOffset[RIGHT] = createAdd(hDimSize, tileWidth[LEFT]);
Value insertVOffset[3];
insertVOffset[TOP] = zero;
insertVOffset[VCENTER] = tileHeight[TOP];
insertVOffset[BOTTOM] = createAdd(vDimSize, tileHeight[TOP]);
auto shouldHReflect = [](PadHLoc l) { return l == LEFT || l == RIGHT; };
auto shouldVReflect = [](PadVLoc l) { return l == TOP || l == BOTTOM; };
SmallVector<utils::IteratorType> iteratorTypes{
numDims, utils::IteratorType::parallel};
auto idMap = AffineMap::getMultiDimIdentityMap(numDims, context);
SmallVector<Value> allOneStrides(numDims, one);
auto createTile = [&](PadVLoc verticalPos, PadHLoc horizontalPos) {
// Create the tile by extracting a slice from the input tenor.
SmallVector<Value> extractShape{inputShape};
extractShape[hDim] = tileWidth[horizontalPos];
extractShape[vDim] = tileHeight[verticalPos];
SmallVector<Value> extractOffsets(numDims, zero);
extractOffsets[hDim] = extractHOffset[horizontalPos];
extractOffsets[vDim] = extractVOffset[verticalPos];
Value tile = rewriter.create<tensor::ExtractSliceOp>(
loc, input, extractOffsets, extractShape, allOneStrides);
// Reverse the tile along the horizontal, vertical, or both
// dimensions.
auto inputMap = AffineMap::getMultiDimIdentityMap(numDims, context);
if (shouldHReflect(horizontalPos)) {
inputMap =
reflectDim(inputMap, numDims, hDim, getHPadArgument(horizontalPos));
}
if (shouldVReflect(verticalPos)) {
inputMap =
reflectDim(inputMap, numDims, vDim, getVPadArgument(verticalPos));
}
tile = rewriter
.create<linalg::GenericOp>(
loc, llvm::cast<RankedTensorType>(tile.getType()), tile,
tile, ArrayRef({inputMap, idMap}), iteratorTypes,
[](OpBuilder &b, Location nestedLoc, ValueRange args) {
b.create<linalg::YieldOp>(nestedLoc, args[0]);
})
.getResult(0);
// Insert the tile in the resultTensor.
SmallVector<Value> insertOffsets(numDims, zero);
insertOffsets[hDim] = insertHOffset[horizontalPos];
insertOffsets[vDim] = insertVOffset[verticalPos];
resultTensor = rewriter.create<tensor::InsertSliceOp>(
loc, tile, resultTensor, insertOffsets, extractShape, allOneStrides);
};
for (auto v : {TOP, BOTTOM, VCENTER})
for (auto h : {LEFT, RIGHT, HCENTER})
if (shouldCreateTile(v, h))
createTile(v, h);
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, outputType, resultTensor);
return success();
}
};
} // namespace
namespace {
class ConvertAtenFlattenUsingIntsOp
: public OpConversionPattern<AtenFlattenUsingIntsOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenFlattenUsingIntsOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
int64_t startDim;
if (!matchPattern(op.getStartDim(), m_TorchConstantInt(&startDim)))
return rewriter.notifyMatchFailure(op, "start_dim must be constant");
int64_t endDim;
if (!matchPattern(op.getEndDim(), m_TorchConstantInt(&endDim)))
return rewriter.notifyMatchFailure(op, "end_dim must be constant");
auto type = cast<RankedTensorType>(adaptor.getSelf().getType());
auto inputRank = type.getRank();
if (inputRank == 1) {
// If input rank is equal to 1, then there's no scope for flattening the
// input tensor.
rewriter.replaceOp(op, adaptor.getSelf());
return success();
}
auto resultType =
cast<RankedTensorType>(getTypeConverter()->convertType(op.getType()));
if (startDim < 0)
startDim += inputRank;
if (endDim < 0)
endDim += inputRank;
if (inputRank == 0) {
SmallVector<ReassociationIndices> reassociation;
if (!(startDim >= -1 && startDim <= 0 && endDim >= -1 && endDim <= 0))
return rewriter.notifyMatchFailure(
op, "start_dim and end_dim must be in [-1, 0] when inputRank is 0");
rewriter.replaceOpWithNewOp<tensor::ExpandShapeOp>(
op, resultType, adaptor.getSelf(), reassociation);
return success();
}
if (startDim < 0 || startDim >= inputRank || endDim < 0 ||
endDim >= inputRank || startDim > endDim)
return rewriter.notifyMatchFailure(
op, "statically invalid flattening dim range");
SmallVector<ReassociationIndices> reassociation(resultType.getRank());
int j = 0;
for (auto i : llvm::seq<int64_t>(0, inputRank)) {
reassociation[j].push_back(i);
if (i < startDim || i >= endDim)
j++;
}
Value collapsedTensor = rewriter.create<tensor::CollapseShapeOp>(
op->getLoc(), adaptor.getSelf(), reassociation);
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType,
collapsedTensor);
return success();
}
};
} // namespace
// Lower aten.unflatten.int into tensor.expand_shape
namespace {
class ConvertAtenUnflattenIntOp
: public OpConversionPattern<AtenUnflattenIntOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenUnflattenIntOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value self = op.getSelf();
BaseTensorType outputTensorType = cast<BaseTensorType>(op.getType());
if (!outputTensorType.hasSizes())
return rewriter.notifyMatchFailure(
op, "unimplemented: output must have known sizes");
std::optional<unsigned> maybeRank = getTensorRank(self);
if (!maybeRank)
return rewriter.notifyMatchFailure(op, "unimplemented: unranked tensor");
auto inputTensorType = cast<Torch::ValueTensorType>(self.getType());
if (!inputTensorType || !inputTensorType.hasSizes()) {
return rewriter.notifyMatchFailure(op,
"Expected input type having sizes");
}
int inputRank = inputTensorType.getSizes().size();
int outputRank = outputTensorType.getSizes().size();
int64_t dimInt;
if (!matchPattern(op.getDim(), m_TorchConstantInt(&dimInt)))
return rewriter.notifyMatchFailure(
op, "unimplemented: requires dim to be constants");
dimInt = toPositiveDim(dimInt, inputRank);
if (!isValidDim(dimInt, inputRank))
return rewriter.notifyMatchFailure(op, "dim is not a valid dim");
auto sizesOp = op.getSizes().getDefiningOp<Torch::PrimListConstructOp>();
int numSizes = sizesOp.getNumOperands();
SmallVector<ReassociationIndices> reassociations(inputRank);
if (inputRank > 0) {
for (int i = 0; i < dimInt; ++i)
reassociations[i].push_back(i);
for (int i = 0; i < numSizes; ++i)
reassociations[dimInt].push_back(i + dimInt);
for (int i = dimInt + numSizes; i < outputRank; ++i)
reassociations[i - numSizes + 1].push_back(i);
}
auto expandTy = getTypeConverter()->convertType(outputTensorType);
auto expand = rewriter
.create<tensor::ExpandShapeOp>(
loc, expandTy, adaptor.getSelf(), reassociations)
.getResult();
rewriter.replaceOp(op, expand);
return success();
}
};
} // namespace
namespace {
/// The `ConvertAtenViewOp` conversion pattern converts `aten.View` op to
/// one `linalg.TensorExpandShape` op for all expanded dimensions and one
/// `linalg.TensorCollapseShape` op for all collapsed dimensions. Cases where
/// there is neither an expand or collapse of dimensions (e.g. [2, 3] -> [3, 2])
/// is not handled. Additionally, certain dynamic dimension cases rely on naive
/// assumptions or aren't supported.
/// TODO: Handle all the other cases of `aten.View` op.
class ConvertAtenViewOp : public OpConversionPattern<AtenViewOp> {
public:
using OpConversionPattern::OpConversionPattern;
// If one of the two dims arrays has size 1, a mapping is created from the one
// dimension of the size-1 array to all the dimensions of the other array. For
// example for inputs: xDims = [6], yDims = [2, 3] the result in the indices
// arrays will be: xIndices = [0], yIndices = [0, 1].
//
// An error is returned if the dimension size of the size-1 array is not equal
// to the product of all the dimension sizes in the other array, or if neither
// of the arrays is size-1.
static LogicalResult mapAllDimsToSingleDim(ArrayRef<int64_t> xDims,
ArrayRef<int64_t> yDims,
SmallVector<int64_t> &xIndices,
SmallVector<int64_t> &yIndices) {
if (xDims.empty() || yDims.empty())
return failure();
auto isValidReduction = [](int64_t expectedReductionProduct,
ArrayRef<int64_t> arrayToReduce) -> bool {
if (llvm::count(arrayToReduce, kUnknownSize) > 0 ||
expectedReductionProduct == kUnknownSize)
return true;
return productReduce(arrayToReduce) == expectedReductionProduct;
};
if (xDims.size() == 1) {
if (!isValidReduction(xDims[0], yDims))
return failure();
xIndices.assign({0});
yIndices.assign(llvm::to_vector(llvm::seq<int64_t>(0, yDims.size())));
return success();
} else if (yDims.size() == 1) {
if (!isValidReduction(yDims[0], xDims))
return failure();
yIndices.assign({0});
xIndices.assign(llvm::to_vector(llvm::seq<int64_t>(0, xDims.size())));
return success();
}
return failure();
}
// Starting from the beginning of the dims arrays, this helper finds the
// smallest set of consecutive dims in each array such that the product of the
// dim sizes in the two subsets is equal. The indices arrays are populated
// with the indices of the dims arrays that correspond to the subsets found.
//
// An error is returned if two subsets of dims with total number of elements
// equal to each other is not found.
static LogicalResult mapStaticallyKnownDims(ArrayRef<int64_t> xDims,
ArrayRef<int64_t> yDims,
SmallVector<int64_t> &xIndices,
SmallVector<int64_t> &yIndices) {
if (xDims.empty() || yDims.empty())
return failure();
int64_t xTotalSize = xDims[0];
int64_t yTotalSize = yDims[0];
if (xTotalSize == kUnknownSize || yTotalSize == kUnknownSize)
return failure();
SmallVector<int64_t> xIndicesResult({0});
SmallVector<int64_t> yIndicesResult({0});
size_t nextXIndex = 1;
size_t nextYIndex = 1;
while (xTotalSize != yTotalSize) {
if (xTotalSize < yTotalSize) {
if (nextXIndex == xDims.size() || xDims[nextXIndex] == kUnknownSize)
return failure();
xTotalSize *= xDims[nextXIndex];
xIndicesResult.push_back(nextXIndex++);
} else {
if (nextYIndex == yDims.size() || yDims[nextYIndex] == kUnknownSize)
return failure();
yTotalSize *= yDims[nextYIndex];
yIndicesResult.push_back(nextYIndex++);
}
}
xIndices.assign(std::move(xIndicesResult));
yIndices.assign(std::move(yIndicesResult));
return success();
}
// Starting from the beginning of the dims arrays, this helper finds the
// smallest set of consecutive dims in each array that satisfies one of
// the following conditions.
// 1. The product of the static dim sizes in the two subsets is equal.
// 2. The product of the dim size multiplied by the multiplier for the unknown
// one in both subsets is equal.
// The indices arrays are populated with the indices of the dims arrays that
// correspond to the subsets found.
//
// An error is returned if two subsets of dims with total number of elements
// equal to each other is not found.
static LogicalResult mapParallelUnknownDims(ArrayRef<int64_t> xDims,
ArrayRef<int64_t> yDims,
SmallVector<int64_t> &xIndices,
SmallVector<int64_t> &yIndices,
int64_t xMultiplier,
int64_t yMultiplier) {
if (xDims.empty() || yDims.empty())
return failure();
if (llvm::count(xDims, kUnknownSize) > 1 ||
llvm::count(yDims, kUnknownSize) > 1)
return failure();
int64_t xTotalSize = xDims[0];
int64_t yTotalSize = yDims[0];
SmallVector<int64_t> xIndicesResult({0});
SmallVector<int64_t> yIndicesResult({0});
size_t nextXIndex = 1;
size_t nextYIndex = 1;
bool xHasUnknownSize = false;
bool yHasUnknownSize = false;
if (xTotalSize == kUnknownSize) {
xHasUnknownSize = true;
xTotalSize = xMultiplier;
}
if (yTotalSize == kUnknownSize) {
yHasUnknownSize = true;
yTotalSize = yMultiplier;
}
while (xTotalSize != yTotalSize || xHasUnknownSize != yHasUnknownSize) {
if ((!xHasUnknownSize && yHasUnknownSize) || xTotalSize < yTotalSize) {
if (nextXIndex == xDims.size())
return failure();
if (xDims[nextXIndex] == kUnknownSize) {
// No support for more than one unknown dim.
if (xHasUnknownSize)
return failure();
xTotalSize *= xMultiplier;
xHasUnknownSize = true;
} else {
xTotalSize *= xDims[nextXIndex];
}
xIndicesResult.push_back(nextXIndex++);
} else {
if (nextYIndex == yDims.size())
return failure();
if (yDims[nextYIndex] == kUnknownSize) {
// No support for more than one unknown dim.
if (yHasUnknownSize)
return failure();
yTotalSize *= yMultiplier;
yHasUnknownSize = true;
} else {
yTotalSize *= yDims[nextYIndex];
}
yIndicesResult.push_back(nextYIndex++);
}
}
xIndices.assign(std::move(xIndicesResult));
yIndices.assign(std::move(yIndicesResult));
return success();
}
// Calculates the size of a dynamic dimension if all other dimensions are
// statically known, and rewrites that dynamic dimension with the static size.
//
// Note: this function assumes that all the dimensions in `inputShape` map to
// all the dimensions in `outputShape`.
static void calculateSingleDynamicSize(MutableArrayRef<int64_t> inputShape,
MutableArrayRef<int64_t> outputShape) {
if (inputShape.empty() || outputShape.empty())
return;
int64_t inputDynamicDimCount = llvm::count(inputShape, kUnknownSize);
int64_t outputDynamicDimCount = llvm::count(outputShape, kUnknownSize);
if (inputDynamicDimCount + outputDynamicDimCount != 1)
return;
int64_t inputProduct = productReduce(inputShape);
int64_t outputProduct = productReduce(outputShape);
if (inputDynamicDimCount == 1) {
inputProduct /= kUnknownSize;
*llvm::find(inputShape, kUnknownSize) = outputProduct / inputProduct;
} else {
outputProduct /= kUnknownSize;
*llvm::find(outputShape, kUnknownSize) = inputProduct / outputProduct;
}
}
// Gets the shapes of the input and output tensors, making a best-effort
// attempt to extract static shape information given the inputs to
// `aten.view`.
static std::pair<SmallVector<int64_t>, SmallVector<int64_t>>
getInputAndOutputShape(Value inputTorchTensor,
SmallVector<Value> outputSizeTorchInt) {
SmallVector<int64_t> inputShape(
cast<BaseTensorType>(inputTorchTensor.getType()).getSizes());
SmallVector<int64_t> outputShape(outputSizeTorchInt.size(), kUnknownSize);
for (auto [outputDim, outputDimSize] :
llvm::enumerate(outputSizeTorchInt)) {
int64_t inputDim;
int64_t outputDimSizeInt;
// Match torch.aten.size.int(inputTensor, inputDim) with constant inputDim
if (matchPattern(outputDimSize,
m_TorchTensorSizeInt(inputTorchTensor, &inputDim))) {
outputShape[outputDim] = inputShape[inputDim];
} else if (matchPattern(outputDimSize,
m_TorchConstantInt(&outputDimSizeInt))) {
if (outputDimSizeInt != -1) {
outputShape[outputDim] = outputDimSizeInt;
}
}
}
calculateSingleDynamicSize(inputShape, outputShape);
return std::make_pair(inputShape, outputShape);
}
// Gets the ratio between the unknown dimensions in the input shape and the
// output shape. This ratio is used to match parallel unknown dimensions.
static std::pair<int64_t, int64_t>
getMultiplier(SmallVector<int64_t> inputShape,
SmallVector<int64_t> outputShape) {
int64_t totalInputElements = std::abs(productReduce(inputShape));
int64_t totalOutputElements = std::abs(productReduce(outputShape));
APInt GCD = llvm::APIntOps::GreatestCommonDivisor(
APInt(64, totalInputElements), APInt(64, totalOutputElements));
int64_t gcd = *(GCD.getRawData());
int64_t inputMultiplier = totalOutputElements / gcd;
int64_t outputMultiplier = totalInputElements / gcd;
return std::make_pair(inputMultiplier, outputMultiplier);
}
LogicalResult
matchAndRewrite(AtenViewOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (op->getParentOp()->hasAttr("torch.disable_legacy_view"))
return rewriter.notifyMatchFailure(op.getLoc(),
"legacy view lowering diabled");
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
Location loc = op.getLoc();
Value input = adaptor.getSelf();
auto inputType = cast<RankedTensorType>(input.getType());
int64_t inputRank = inputType.getRank();
const TypeConverter *typeConverter = getTypeConverter();
auto resultType =
cast<RankedTensorType>(typeConverter->convertType(op.getType()));
int64_t resultRank = resultType.getRank();
if (resultRank == 0) {
rewriter
.replaceOpWithNewOp<tensor::CollapseShapeOp>(
op, resultType, input, ArrayRef<ReassociationIndices>())
.getResult();
return success();
}
if (inputRank == 0) {
llvm::SmallVector<int64_t> outshape(resultRank, 1);
auto expandTy =
RankedTensorType::get(outshape, resultType.getElementType());
Value expand = rewriter.create<tensor::ExpandShapeOp>(
op.getLoc(), expandTy, input, ArrayRef<ReassociationIndices>());
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, expand);
return success();
}
// Extract the desired output size as a list of integers. This list should
// have been created using the operation `torch.prim.ListConstruct`.
SmallVector<Value> outputSizeTorchInt;
if (!getListConstructElements(op.getSize(), outputSizeTorchInt)) {
return rewriter.notifyMatchFailure(op,
"unimplemented: the target size is "
"not constructed from ListConstruct");
}
if (llvm::count_if(outputSizeTorchInt, [](Value size) -> bool {
int64_t sizeInt;
if (matchPattern(size, m_TorchConstantInt(&sizeInt)))
return sizeInt == -1;
return false;
}) > 1) {
return rewriter.notifyMatchFailure(
op, "at most one element in size list is allowed to be -1");
}
auto [inputShape, outputShape] =
getInputAndOutputShape(op.getSelf(), outputSizeTorchInt);
// Currently, we only handle the cases where each dimension is either
// being expanded or collapsed. We do not handle cases where it's neither
// collapsing nor expanding like view of [2,3] for 3x2 tensor.
// TODO: For neither collapsing nor expanding, we could find a intermediate
// shape to collapse and then expanded to the target shape. Like [2,3] =>
// [6] => [3, 2].
// Iterate through the view op size list to do the following:
// Mark dims in unchangedDims for size list items where the output dim
// size comes from a `torch.aten.size.int(inputTensor, inputDim)`. We
// naively assume this means the corresponding dimension is not expanded or
// collapsed. Note this may technically not always be true.
// TODO: think of a way better way to at least detect when this assumption
// is violated for the cases of dynamic dimensions.
int64_t inputDynDim = llvm::count(inputShape, kUnknownSize);
int64_t outputDynDim = llvm::count(outputShape, kUnknownSize);
if (outputDynDim > 1)
return rewriter.notifyMatchFailure(
op, "Cannot support more than one output dynamic dimension");
bool inputHasOneDynDim = inputDynDim == 1;
bool outputHasOneDynDim = outputDynDim == 1;
bool singleDynDimsAreEqual =
inputHasOneDynDim && outputHasOneDynDim &&
productReduce(inputShape) == productReduce(outputShape);
SmallVector<std::pair<int64_t, int64_t>> unchangedDims;
auto [inputMultiplier, outputMultiplier] =
getMultiplier(inputShape, outputShape);
for (auto [outputDim, outputDimSize] :
llvm::enumerate(outputSizeTorchInt)) {
int64_t inputDim;
// Match torch.aten.size.int(inputTensor, inputDim) with constant inputDim
if (matchPattern(outputDimSize,
m_TorchTensorSizeInt(op.getSelf(), &inputDim))) {
unchangedDims.push_back(std::make_pair(inputDim, outputDim));
} else if (singleDynDimsAreEqual &&
outputShape[outputDim] == kUnknownSize) {
// If the input and output have a single dynamic dimension and the
// product of the other dimensions is the same, then we know that the
// dynamic dimension is unchanged.
inputDim = std::distance(inputShape.begin(),
llvm::find(inputShape, kUnknownSize));
unchangedDims.push_back(std::make_pair(inputDim, outputDim));
}
}
// Mark the end of the input/output shapes
unchangedDims.push_back(std::make_pair(inputRank, resultRank));
// Association indices for expand/collapse ops. These two vectors
// are populated such that two entries at the same index corresponds
// to an expand or collapse. For example,
//
// inputAssociations: [[0, 1], [2]]
// outputAssociations: [[0], [1, 2, 3]]
//
// indicates that the first two dims of the input tensor
// are collapsed into the first dim of the output, and the
// third dim of the input is expanded into the last three dims
// of the output.
SmallVector<ReassociationIndices> inputAssociations;
SmallVector<ReassociationIndices> outputAssociations;
// The for loop does the following:
// 1. Attempt to match the indices from inputDim and outputDim to the next
// boundary found from `torch.aten.size.int(inputTensor, inputDim)`, or
// until (inputRank, resultRank) if there is no such op. Look at the first
// dimension of the input and output and collapse the larger one by finding
// a minimal set of opposing indices with the same number of elements. If
// the number of dims to the next boundary is 1, then we assume all
// remaining opposing dims must collapse into it.
// 2. For handling of dynamic dimensions, we first assume they are only
// split if we can easily compute the correct size.
// e.g. [2, -1] -> [2, 3, 4]
// This mainly happens at the edges of boundaries. Otherwise we try to match
// the dynamic dimension with the one across from it and give up if we can't
// reason about how the dimensions are associated.
// e.g. [-1, -1] -> [2, 3, 4]
// For more information, see description of helper functions used in the
// `if-else` cases inside the while loop.
int64_t inputDim = 0, outputDim = 0;
SmallVector<std::pair<int64_t, int64_t>> checkDimPairs;
for (auto [nextUnchangedInput, nextUnchangedOutput] : unchangedDims) {
// Used for ensuring that we don't have an ambiguous expansion
bool assumedDynamicDimNotSplit = false;
while (inputDim < nextUnchangedInput && outputDim < nextUnchangedOutput) {
auto inputShapeSlice =
MutableArrayRef<int64_t>(inputShape)
.slice(inputDim, nextUnchangedInput - inputDim);
auto outputShapeSlice =
MutableArrayRef<int64_t>(outputShape)
.slice(outputDim, nextUnchangedOutput - outputDim);
SmallVector<int64_t> inputSliceIndices;
SmallVector<int64_t> outputSliceIndices;
// TODO: this can be removed by replacing it with a checkDimEqualHelper
// that takes into account the product of all the dimensions being
// reduced
if (assumedDynamicDimNotSplit && inputShapeSlice.size() == 1 &&
outputShapeSlice.size() != 1 &&
inputShapeSlice[0] == kUnknownSize) {
return rewriter.notifyMatchFailure(
op, "found ambiguous expand of dynamic input sizes "
"(e.g. [-1, -1] -> [-1, -1, -1])");
}
if (succeeded(mapAllDimsToSingleDim(inputShapeSlice, outputShapeSlice,
inputSliceIndices,
outputSliceIndices))) {
calculateSingleDynamicSize(inputShapeSlice, outputShapeSlice);
// Update shape to pass the tensor.expand_shape and
// tensor.collapse_shape verifiers. If one of the dimensions of the
// tensor being flattened is dynamic, the size of the flattened tensor
// must also be dynamic.
if (inputShapeSlice.size() == 1 &&
llvm::count(outputShapeSlice, kUnknownSize) > 0) {
inputShapeSlice[0] = kUnknownSize;
} else if (outputShapeSlice.size() == 1 &&
llvm::count(inputShapeSlice, kUnknownSize) > 0) {
outputShapeSlice[0] = kUnknownSize;
}
} else if (succeeded(mapStaticallyKnownDims(
inputShapeSlice, outputShapeSlice, inputSliceIndices,
outputSliceIndices))) {
/// `mapStaticallyKnownDims` maps the smallest number of
/// input and output dimensions in the slice statically
/// known to have the same number of elements.
} else if (succeeded(mapParallelUnknownDims(
inputShapeSlice, outputShapeSlice, inputSliceIndices,
outputSliceIndices, inputMultiplier,
outputMultiplier))) {
/// `mapParallelUnknownDims` maps the smallest number of
/// input and output dimensions in the slice statically known
/// or parallel unknown to have the same number of elements.
assumedDynamicDimNotSplit = true;
} else if (inputShapeSlice[0] == kUnknownSize) {
// Defer the dynamic shape check to avoid DialectConversion assertion:
if (outputShapeSlice[0] != kUnknownSize) {
checkDimPairs.push_back(
std::pair<int64_t, int64_t>(inputDim, outputDim));
}
inputShape[inputDim] = outputShape[outputDim];
inputSliceIndices.push_back(0);
outputSliceIndices.push_back(0);
assumedDynamicDimNotSplit = true;
} else {
return rewriter.notifyMatchFailure(
op, "unimplemented: found unhandled case of expansion/collapse "
"in `aten.view`");
}
inputAssociations.emplace_back();
outputAssociations.emplace_back();
for (int64_t inputSliceIndex : inputSliceIndices)
inputAssociations.back().push_back(inputSliceIndex + inputDim);
for (int64_t outputSliceIndex : outputSliceIndices)
outputAssociations.back().push_back(outputSliceIndex + outputDim);
inputDim = inputAssociations.back().back() + 1;
outputDim = outputAssociations.back().back() + 1;
}
// Handle any leading or trailing size-1 dimensions and append the
// associations for the dims matching `aten.size.int`.
if (nextUnchangedInput != inputRank) {
assert(nextUnchangedOutput != resultRank &&
"`nextUnchangedInput` and `nextUnchangedOutput` should equal "
"the respective input and output rank at the same time");
inputAssociations.emplace_back();
outputAssociations.emplace_back();
}
while (inputDim <= nextUnchangedInput && inputDim < inputRank) {
if (inputDim != nextUnchangedInput && inputShape[inputDim] != 1) {
return rewriter.notifyMatchFailure(
op, "unimplemented: only collapsing of static size-1 into "
"unchanged dim supported");
}
inputAssociations.back().push_back(inputDim++);
}
while (outputDim <= nextUnchangedOutput && outputDim < resultRank) {
if (outputDim != nextUnchangedOutput && outputShape[outputDim] != 1) {
return rewriter.notifyMatchFailure(
op, "unimplemented: only expanding of static size-1 out of "
"unchanged dim supported");
}
outputAssociations.back().push_back(outputDim++);
}
}
SmallVector<Value> inputSize = getTensorSizes(rewriter, loc, input);
SmallVector<Value> outputSizeInt = getTypeConvertedValues(
rewriter, loc, typeConverter, outputSizeTorchInt);
if (resultRank != (int64_t)outputSizeInt.size()) {
return rewriter.notifyMatchFailure(
op, "desired size list length mismatches with the result type rank");
}
for (auto [inputDim, outputDim] : checkDimPairs) {
checkDimEqualHelper(rewriter, loc, inputSize[inputDim],
outputSizeInt[outputDim]);
}
auto cast = [&](Location loc, Type t, Value v) -> Value {
return rewriter.createOrFold<tensor::CastOp>(loc, t, v);
};
// Check if the shapes already match up to dynamic sizes. If so, we can just
// cast as the result type because the previous loop sets up the necessary
// dim checks in case of dynamic sizes.
if (llvm::all_of(
inputAssociations,
[](ReassociationIndices indices) { return indices.size() == 1; }) &&
llvm::all_of(outputAssociations, [](ReassociationIndices indices) {
return indices.size() == 1;
})) {
auto castResult = cast(loc, resultType, input);
rewriter.replaceOp(op, castResult);
return success();
}
// TODO: audit possibility of sparsity on these tensors
Type adjustedResultType = RankedTensorType::get(
makeShapeLLVMCompatible(outputShape), resultType.getElementType());
Type adjustedInputType = RankedTensorType::get(
makeShapeLLVMCompatible(inputShape), resultType.getElementType());
Value castedInput = cast(loc, adjustedInputType, input);
std::optional<Value> expandedInput;
std::optional<Value> collapsedInput;
if (llvm::any_of(inputAssociations, [](ReassociationIndices indices) {
return indices.size() > 1;
})) {
SmallVector<int64_t> intermediateShape;
for (auto i : llvm::seq(0, (int)outputAssociations.size())) {
int sum = 1;
for (auto j : llvm::seq(0, (int)outputAssociations[i].size())) {
if (outputShape[outputAssociations[i][j]] < 0) {
sum = kUnknownSize;
break;
}
sum *= outputShape[outputAssociations[i][j]];
}
intermediateShape.push_back(sum);
}
// TODO: audit possibility of sparsity on these tensor
Type intermediateResultType =
RankedTensorType::get(makeShapeLLVMCompatible(intermediateShape),
resultType.getElementType());
expandedInput =
rewriter
.create<tensor::CollapseShapeOp>(loc, intermediateResultType,
castedInput, inputAssociations)
.getResult();
}
if (llvm::any_of(outputAssociations, [](ReassociationIndices indices) {
return indices.size() > 1;
})) {
collapsedInput = rewriter
.create<tensor::ExpandShapeOp>(
loc, adjustedResultType,
expandedInput.has_value() ? expandedInput.value()
: castedInput,
outputAssociations)
.getResult();
}
Value result = collapsedInput.has_value() ? collapsedInput.value()
: expandedInput.value();
auto castResult = cast(loc, resultType, result);
rewriter.replaceOp(op, castResult);
return success();
}
};
} // namespace
namespace {
class ConvertAtenViewOpToReshape : public OpConversionPattern<AtenViewOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenViewOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (op->getParentOp()->hasAttr("torch.disable_legacy_view"))
return rewriter.notifyMatchFailure(op.getLoc(),
"legacy view lowering diabled");
SmallVector<Value> sizes;
if (!getListConstructElements(op.getSize(), sizes))
return op.emitError(
"unimplemented: the tensor size list is not from list construct");
auto loc = op.getLoc();
ImplicitLocOpBuilder b(loc, rewriter);
auto self = adaptor.getSelf();
const TypeConverter *typeConverter = getTypeConverter();
// Convert to the `linalg` types, count the number of negative values,
// and determine the product of non-negative values. This lets us compute
// the inferred dimensions sizes.
auto sizeTy =
cast<IntegerType>(typeConverter->convertType(sizes.front().getType()));
Value one =
b.create<arith::ConstantOp>(sizeTy, rewriter.getIntegerAttr(sizeTy, 1));
Value zero =
b.create<arith::ConstantOp>(sizeTy, rewriter.getIntegerAttr(sizeTy, 0));
Value count = zero;
Value knownSize = one;
for (auto &size : sizes) {
Value convert = typeConverter->materializeTargetConversion(rewriter, loc,
sizeTy, size);
Value mul = b.create<arith::MulIOp>(knownSize, convert);
Value add = b.create<arith::AddIOp>(count, one);
Value isNeg =
b.create<arith::CmpIOp>(arith::CmpIPredicate::slt, convert, zero);
knownSize = b.create<arith::SelectOp>(isNeg, knownSize, mul);
count = b.create<arith::SelectOp>(isNeg, add, count);
size = convert;
}
// Check we are only inferring one dimension if not in strict mode. In
// strict mode, there will only ever statically be one inferred dim.
if (!isAssumingStrictSymbolicShapes(rewriter)) {
Value countPred =
b.create<arith::CmpIOp>(arith::CmpIPredicate::sle, count, one);
b.create<cf::AssertOp>(
loc, countPred,
b.getStringAttr(
"must have at most one inferred (negative) dimension"));
}
// Determine the total size of the inferred dimension and update the
// inferred dimension:
auto selfTy = cast<RankedTensorType>(self.getType());
Value totalSize = one;
for (int i = 0, s = selfTy.getRank(); i < s; ++i) {
Value index = b.create<arith::ConstantIndexOp>(i);
Value dim = b.create<tensor::DimOp>(self, index);
dim = b.create<arith::IndexCastOp>(sizeTy, dim);
totalSize = b.create<arith::MulIOp>(totalSize, dim);
}
Value inferredSize = b.create<arith::DivSIOp>(totalSize, knownSize);
for (auto &size : sizes) {
Value isNeg =
b.create<arith::CmpIOp>(arith::CmpIPredicate::slt, size, zero);
size = b.create<arith::SelectOp>(isNeg, inferredSize, size);
}
auto ty = RankedTensorType::get(sizes.size(), sizes.front().getType());
auto outputDims = b.create<tensor::FromElementsOp>(ty, sizes);
auto resultType =
cast<RankedTensorType>(typeConverter->convertType(op.getType()));
rewriter.replaceOpWithNewOp<tensor::ReshapeOp>(op, resultType, self,
outputDims);
return success();
}
};
} // namespace
namespace {
class ConvertAtenViewOpStrict : public OpConversionPattern<AtenViewOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenViewOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (!isAssumingStrictSymbolicShapes(rewriter))
return rewriter.notifyMatchFailure(op.getLoc(),
"not strict symbolic shapes");
SmallVector<Value> sizeValues;
if (!getListConstructElements(op.getSize(), sizeValues))
return op.emitError(
"unimplemented: the tensor size list is not from list construct");
auto loc = op.getLoc();
auto resultType =
cast<RankedTensorType>(typeConverter->convertType(op.getType()));
auto self = adaptor.getSelf();
auto selfTy = cast<RankedTensorType>(self.getType());
// Handle collapse to 0D.
if (sizeValues.empty()) {
rewriter.replaceOpWithNewOp<tensor::CollapseShapeOp>(
op, resultType, adaptor.getSelf(), ArrayRef<ReassociationIndices>{});
return success();
}
// If there is a static inferred dimension (-1), then we emit a
// flatten/unflatten and let that proceed through its lowering.
// Otherwise, emit a tensor.reshape. Note that this relies on the fact that
// Torch does not allow such an op to have a symbolic inferred dim.
int inferredDim = -1;
bool staticSizes = true;
for (int i = 0, e = sizeValues.size(); i < e; ++i) {
int64_t dim;
if (!matchPattern(sizeValues[i], m_TorchConstantInt(&dim))) {
staticSizes = false;
continue;
}
if (dim == -1) {
inferredDim = i;
break;
}
}
// While it should be illegal to have a view op with fully known sizes
// and a dynamic shape, in reality, torch IR is a bit loosey and
// progressively resolves to this state. There are delicate invariants
// on the ops we produce that require this, so we enforce.
if (staticSizes && !resultType.hasStaticShape()) {
return rewriter.notifyMatchFailure(loc,
"view cannot be converted with static "
"sizes and a dynamic result type");
}
// Handle inferred dim case.
// TODO: Remove the restriction on staticSizes once flatten/unflatten
// reliably work with multiple dynamic dimensions.
if (inferredDim >= 0 && staticSizes) {
if (!staticSizes) {
return rewriter.notifyMatchFailure(
loc, "view to flatten/unflatten only supported for static sizes");
}
// This is a torch-torch conversion, so only non adapted types are
// involved.
auto selfTy = dyn_cast<ValueTensorType>(op.getSelf().getType());
if (!selfTy || !selfTy.hasSizes())
return failure();
// Work out the 1D flattened type.
int64_t flatDim = 1;
auto selfSizes = selfTy.getSizes();
for (int64_t dim : selfSizes) {
if (dim == kUnknownSize) {
flatDim = kUnknownSize;
break;
}
flatDim *= dim;
}
// Flatten to 1D.
ValueTensorType flatType = rewriter.getType<ValueTensorType>(
ArrayRef<int64_t>{flatDim}, selfTy.getOptionalDtype());
Value dimStart = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(0));
Value dimEnd = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(selfSizes.size() - 1));
Value flatSelf = rewriter.create<Torch::AtenFlattenUsingIntsOp>(
loc, flatType, op.getSelf(), dimStart, dimEnd);
// Unflatten to requested size.
rewriter.replaceOpWithNewOp<AtenUnflattenIntOp>(
op, op.getResult().getType(), flatSelf, dimStart, op.getSize());
return success();
}
// Generate output dims, either based on whether there is an inferred dim
// present or all dims are specified.
auto sizeTy = cast<IntegerType>(
typeConverter->convertType(sizeValues.front().getType()));
SmallVector<Value> outputDimValues;
assert(sizeTy && "Type converter did not handle size");
if (inferredDim >= 0) {
// Inferred dim. If the above flatten/unflatten logic ever catches
// everything, this branch can go away entirely.
Value one = rewriter.create<arith::ConstantOp>(
loc, sizeTy, rewriter.getIntegerAttr(sizeTy, 1));
Value sizeProduct = one;
// Multiply the non-inferred target sizes.
for (int i = 0, e = sizeValues.size(); i < e; ++i) {
if (i == inferredDim)
continue;
Value size = sizeValues[i];
Value convertedSize = typeConverter->materializeTargetConversion(
rewriter, loc, sizeTy, size);
assert(convertedSize && "Type converter did not handle size");
sizeProduct =
rewriter.create<arith::MulIOp>(loc, sizeProduct, convertedSize);
}
// Multiply the self tensor sizes.
Value selfProduct = one;
for (int i = 0, e = selfTy.getRank(); i < e; ++i) {
Value index = rewriter.create<arith::ConstantIndexOp>(loc, i);
Value dim = rewriter.create<tensor::DimOp>(loc, self, index);
dim = rewriter.create<arith::IndexCastOp>(loc, sizeTy, dim);
selfProduct = rewriter.create<arith::MulIOp>(loc, selfProduct, dim);
}
Value inferredSize =
rewriter.create<arith::DivUIOp>(loc, selfProduct, sizeProduct);
for (int i = 0, e = sizeValues.size(); i < e; ++i) {
if (i == inferredDim) {
outputDimValues.push_back(inferredSize);
} else {
outputDimValues.push_back(typeConverter->materializeTargetConversion(
rewriter, loc, sizeTy, sizeValues[i]));
}
}
} else {
// No inferred dim. So output dims are just pass through.
for (Value torchSize : sizeValues) {
outputDimValues.push_back(typeConverter->materializeTargetConversion(
rewriter, loc, sizeTy, torchSize));
}
}
// Normal lowering to reshape with fully computed sizes.
auto outputDimsTy = RankedTensorType::get(
outputDimValues.size(), outputDimValues.front().getType());
auto outputDims = rewriter.create<tensor::FromElementsOp>(loc, outputDimsTy,
outputDimValues);
rewriter.replaceOpWithNewOp<tensor::ReshapeOp>(
op, resultType, adaptor.getSelf(), outputDims);
return success();
}
};
} // namespace
namespace {
class ConvertAtenSqueezeOp : public OpConversionPattern<AtenSqueezeOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenSqueezeOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
Value input = adaptor.getSelf();
auto inputType = cast<RankedTensorType>(input.getType());
auto inputShape = inputType.getShape();
int64_t inputRank = inputType.getRank();
const TypeConverter *typeConverter = getTypeConverter();
auto resultType =
cast<RankedTensorType>(typeConverter->convertType(op.getType()));
auto resultShape = resultType.getShape();
int64_t resultRank = resultType.getRank();
if (inputRank == 0) {
return rewriter.notifyMatchFailure(
op, "zero input rank should have been handled by the folder");
}
// No change in rank so we just cast to the output type:
if (inputRank == resultRank) {
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, input);
return success();
}
// In case the operand tensor type is statically shaped with all dimensions
// being unit extent, it will be collapsed to a 0-D tensor.
if (resultRank == 0) {
SmallVector<ReassociationIndices> reassociation;
rewriter.replaceOpWithNewOp<tensor::CollapseShapeOp>(
op, resultType, input, reassociation);
return success();
}
SmallVector<ReassociationIndices> reassociation(resultRank);
// First dimensions are guaranteed to match to eachother:
int64_t i = 0;
int64_t j = 0;
for (i = 0; i < inputRank && j < resultRank; i++) {
reassociation[j].push_back(i);
j = inputShape[i] == resultShape[j] ? j + 1 : j;
}
// Squeeze in the remaining 1s:
for (; i < inputRank; ++i) {
if (inputShape[i] != 1)
return rewriter.notifyMatchFailure(op,
"non-unary dim cannot be squeezed");
reassociation.back().push_back(i);
}
// Make sure that result type rank is compatible with the squeezed size:
if (j != resultRank)
return rewriter.notifyMatchFailure(
op, "expected output size mismatches with the result type rank");
rewriter.replaceOpWithNewOp<tensor::CollapseShapeOp>(op, resultType, input,
reassociation);
return success();
}
};
} // namespace
namespace {
class ConvertAtenSqueezeDimOp : public OpConversionPattern<AtenSqueezeDimOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenSqueezeDimOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
Value input = adaptor.getSelf();
auto inputType = cast<RankedTensorType>(input.getType());
int64_t inputRank = inputType.getRank();
if (inputRank == 0) {
return rewriter.notifyMatchFailure(
op, "zero input rank should have been handled by the folder");
}
int64_t dim;
if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim)))
return rewriter.notifyMatchFailure(op, "dim must be constant");
dim = toPositiveDim(dim, inputRank);
if (!isValidDim(dim, inputRank))
return rewriter.notifyMatchFailure(op, "dim is statically invalid");
// TODO: Handle the case where the dim(th) dimension is dynamic.
if (inputType.isDynamicDim(dim)) {
return rewriter.notifyMatchFailure(
op, "unimplemented: dim(th) dimension is not expected to be dynamic");
}
const TypeConverter *typeConverter = getTypeConverter();
auto resultType =
cast<RankedTensorType>(typeConverter->convertType(op.getType()));
int64_t resultRank = resultType.getRank();
// If the dim(th) dimension of operand tensor type is not statically unit,
// `aten.squeeze` will behave as an identity operation.
if (inputType.getDimSize(dim) != 1) {
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, input);
return success();
}
SmallVector<ReassociationIndices> reassociationMap(resultRank);
bool alreadyCrossedSqueezedDim = false;
for (int i = 0; i != resultRank; i++) {
if (alreadyCrossedSqueezedDim) {
reassociationMap[i].push_back(i + 1);
} else {
reassociationMap[i].push_back(i);
if (dim != 0 && i != dim - 1)
continue;
alreadyCrossedSqueezedDim = true;
if (dim == 0)
reassociationMap[0].push_back(1);
if (i == dim - 1)
reassociationMap[i].push_back(dim);
}
}
// Note: In case the operand tensor type is of unit rank and is statically
// shaped with unit dimension, the `reassociationMap` will be empty and the
// input will be collapsed to a 0-D tensor.
rewriter.replaceOpWithNewOp<tensor::CollapseShapeOp>(op, resultType, input,
reassociationMap);
return success();
}
};
} // namespace
namespace {
class ConvertAtenUnsqueezeOp : public OpConversionPattern<AtenUnsqueezeOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenUnsqueezeOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
int64_t dim;
if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim)))
return rewriter.notifyMatchFailure(op, "dim must be constant");
auto inputRank =
cast<RankedTensorType>(adaptor.getSelf().getType()).getRank();
dim = toPositiveDim(dim, inputRank + 1);
if (!isValidDim(dim, inputRank + 1))
return rewriter.notifyMatchFailure(op, "dim is statically invalid");
SmallVector<ReassociationIndices> reassociationMap(inputRank);
// From the perspective of the reassociation map, the situation of
// unsqueezing before or after the last dimension is symmetrical.
// Normalize it to the "before" case.
// The 0 case is special here, since there is no last dimension to insert
// before -- we simply rely on the loop below iterating 0 times.
if (dim == inputRank && inputRank != 0)
dim = inputRank - 1;
bool alreadyCrossedExpandedDim = false;
for (int i = 0; i != inputRank; i++) {
if (alreadyCrossedExpandedDim) {
reassociationMap[i].push_back(i + 1);
} else {
reassociationMap[i].push_back(i);
if (i == dim) {
reassociationMap[i].push_back(i + 1);
alreadyCrossedExpandedDim = true;
}
}
}
auto resultType = cast<RankedTensorType>(
getTypeConverter()->convertType(op->getResult(0).getType()));
rewriter.replaceOpWithNewOp<tensor::ExpandShapeOp>(
op, resultType, adaptor.getSelf(), reassociationMap);
return success();
}
};
} // namespace
namespace {
class ConvertAtenTransposeIntOp
: public OpConversionPattern<AtenTransposeIntOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenTransposeIntOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
int64_t dim0;
if (!matchPattern(op.getDim0(), m_TorchConstantInt(&dim0)))
return rewriter.notifyMatchFailure(op, "dim0 must be constant");
int64_t dim1;
if (!matchPattern(op.getDim1(), m_TorchConstantInt(&dim1)))
return rewriter.notifyMatchFailure(op, "dim1 must be constant");
auto inVector = adaptor.getSelf();
auto inType = cast<RankedTensorType>(inVector.getType());
auto inputRank = inType.getRank();
auto outType = cast<RankedTensorType>(
getTypeConverter()->convertType(op->getResult(0).getType()));
if (inputRank <= 1 && inType == outType) {
rewriter.replaceOp(op, {adaptor.getSelf()});
return success();
}
auto elementType = inType.getElementType();
dim0 = toPositiveDim(dim0, inputRank);
if (!isValidDim(dim0, inputRank))
return rewriter.notifyMatchFailure(op, "dim0 out of range");
dim1 = toPositiveDim(dim1, inputRank);
if (!isValidDim(dim1, inputRank))
return rewriter.notifyMatchFailure(op, "dim1 out of range");
auto loc = op.getLoc();
SmallVector<Value> outputDims;
for (auto i = 0; i < inputRank; i++)
outputDims.push_back(getDimOp(rewriter, loc, adaptor.getSelf(), i));
std::swap(outputDims[dim0], outputDims[dim1]);
Value outVector = rewriter.create<tensor::EmptyOp>(
loc, getAsOpFoldResult(outputDims), elementType);
SmallVector<AffineExpr> idExprs;
SmallVector<AffineExpr> swapExprs;
for (auto i = 0; i < inputRank; i++)
idExprs.push_back(getAffineDimExpr(i, rewriter.getContext()));
for (auto i = 0; i < inputRank; i++) {
if (i == dim0)
swapExprs.push_back(idExprs[dim1]);
else if (i == dim1)
swapExprs.push_back(idExprs[dim0]);
else
swapExprs.push_back(idExprs[i]);
}
SmallVector<AffineMap> indexingMaps = {
AffineMap::get(inputRank, 0, idExprs, op.getContext()),
AffineMap::get(inputRank, 0, swapExprs, op.getContext())};
SmallVector<utils::IteratorType> iteratorTypes(
inputRank, utils::IteratorType::parallel);
auto transpose = rewriter
.create<linalg::GenericOp>(
loc, outVector.getType(), inVector, outVector,
indexingMaps, iteratorTypes,
[](OpBuilder &b, Location loc, ValueRange args) {
b.create<linalg::YieldOp>(loc, args[0]);
})
.getResult(0);
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, outType, transpose);
return success();
}
};
} // namespace
namespace {
class ConvertAtenPermuteOp : public OpConversionPattern<AtenPermuteOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenPermuteOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
SmallVector<int64_t> dimensions;
if (!matchPattern(op.getDims(), m_TorchListOfConstantInts(dimensions)))
return rewriter.notifyMatchFailure(op, "all dimensions must be constant");
Value inVector = adaptor.getSelf();
auto inType = cast<RankedTensorType>(inVector.getType());
int64_t inputRank = inType.getRank();
auto outType = cast<RankedTensorType>(
getTypeConverter()->convertType(op->getResult(0).getType()));
Type elementType = inType.getElementType();
// Check if the dimensions are a valid constants.
int64_t numDimensions = dimensions.size();
if (inputRank != numDimensions)
return rewriter.notifyMatchFailure(
op, "size of `dims` must be equal to the rank of the input");
for (unsigned i = 0; i < numDimensions; i++) {
if (dimensions[i] < 0)
dimensions[i] = toPositiveDim(dimensions[i], inputRank);
if (!isValidDim(dimensions[i], inputRank))
return rewriter.notifyMatchFailure(op, "dimension out of range");
}
Location loc = op.getLoc();
SmallVector<Value> outputDims;
for (unsigned i = 0; i < inputRank; i++)
outputDims.push_back(getDimOp(rewriter, loc, inVector, dimensions[i]));
Value outVector = rewriter.create<tensor::EmptyOp>(
loc, getAsOpFoldResult(outputDims), elementType);
SmallVector<AffineExpr> idExprs;
SmallVector<AffineExpr> swapExprs;
for (unsigned i = 0; i < inputRank; i++)
idExprs.push_back(getAffineDimExpr(i, rewriter.getContext()));
for (unsigned i = 0; i < inputRank; i++)
swapExprs.push_back(idExprs[dimensions[i]]);
AffineMap inputMap =
AffineMap::get(inputRank, /*symbolCount=*/0, idExprs, op->getContext());
AffineMap outputMap = AffineMap::get(inputRank, /*symbolCount=*/0,
swapExprs, op->getContext());
SmallVector<AffineMap> indexingMaps{inputMap, outputMap};
SmallVector<utils::IteratorType> iteratorTypes(
inputRank, utils::IteratorType::parallel);
auto transpose = rewriter
.create<linalg::GenericOp>(
loc, outVector.getType(), inVector, outVector,
indexingMaps, iteratorTypes,
[](OpBuilder &b, Location loc, ValueRange args) {
b.create<linalg::YieldOp>(loc, args[0]);
})
.getResult(0);
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, outType, transpose);
return success();
}
};
} // namespace
namespace {
class ConvertAtenSliceTensorOp : public OpConversionPattern<AtenSliceTensorOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenSliceTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
Location loc = op.getLoc();
const TypeConverter *typeConverter = getTypeConverter();
auto input = adaptor.getSelf();
RankedTensorType resultType = cast<RankedTensorType>(
typeConverter->convertType(op->getResult(0).getType()));
SmallVector<Value> resultShape;
SmallVector<Value> offsets;
SmallVector<Value> strides;
if (failed(prepareArgumentsForSlicingOp<AtenSliceTensorOp,
AtenSliceTensorOpAdaptor>(
op, adaptor, rewriter, resultShape, offsets, strides))) {
return failure();
}
SmallVector<int64_t> dynShape(resultType.getRank(), ShapedType::kDynamic);
auto sliceType = RankedTensorType::get(
dynShape, resultType.getElementType(), resultType.getEncoding());
Value result = rewriter.create<tensor::ExtractSliceOp>(
loc, sliceType, input, offsets, resultShape, strides);
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, result);
return success();
}
};
} // namespace
namespace {
class ConvertAtenCatOp : public OpConversionPattern<AtenCatOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenCatOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
Location loc = op.getLoc();
const TypeConverter *typeConverter = getTypeConverter();
// Collect all the tensors to be concatenated.
auto tensorList = op.getTensors();
SmallVector<Value> tensorsTorchType;
if (!getListConstructElements(tensorList, tensorsTorchType))
return op.emitError(
"unimplemented: the tensor list is not from list construct");
auto tensors =
getTypeConvertedValues(rewriter, loc, typeConverter, tensorsTorchType);
RankedTensorType newResultType =
cast<RankedTensorType>(typeConverter->convertType(op.getType()));
int rank = newResultType.getRank();
Value dimValue = op.getDim();
int64_t dim;
if (!matchPattern(dimValue, m_TorchConstantInt(&dim)))
return op.emitError("unimplemented: dim is not constant");
dim = toPositiveDim(dim, rank);
if (!isValidDim(dim, rank))
return rewriter.notifyMatchFailure(op, "dim is statically invalid");
auto outElemType = newResultType.getElementType();
for (size_t i = 0; i < tensors.size(); ++i) {
auto inputType = cast<RankedTensorType>(tensors[i].getType());
if (inputType.getElementType() != outElemType) {
tensors[i] = torch_to_linalg::convertTensorToElementType(
rewriter, loc, tensors[i], outElemType);
}
}
llvm::SmallVector<Value> filteredTensors;
for (auto tensor : tensors) {
auto inputType = cast<RankedTensorType>(tensor.getType());
if (inputType.getDimSize(dim) != 0) {
filteredTensors.push_back(tensor);
}
}
rewriter.replaceOpWithNewOp<tensor::ConcatOp>(op, newResultType, dim,
filteredTensors);
return success();
}
};
} // namespace
namespace {
class ConvertAtenBroadcastToOp : public OpConversionPattern<AtenBroadcastToOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenBroadcastToOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
Value self = adaptor.getSelf();
SmallVector<Value> inShape;
if (!getListConstructElements(adaptor.getSize(), inShape)) {
return rewriter.notifyMatchFailure(
op, "unimplemented: the size list is not from list construct");
}
// For dynamic input dimension we need to use the `broadcastToShape`
// which in this case is `inShapeConverted` because this shape will yield
// us the dimension size of the output.
SmallVector<bool> useBroadcastToShape;
int64_t inputRank = cast<RankedTensorType>(self.getType()).getRank();
for (size_t i = inShape.size() - inputRank, e = inShape.size(); i < e;
++i) {
int64_t dim;
if (matchPattern(inShape[i], m_TorchConstantInt(&dim))) {
if (dim < 0) {
useBroadcastToShape.push_back(false);
} else {
useBroadcastToShape.push_back(true);
}
} else {
// Note: Dynamic -1 (inferred) broadcast shapes are unimplemented.
useBroadcastToShape.push_back(true);
}
}
SmallVector<Value> inShapeConverted = getTypeConvertedValues(
rewriter, op.getLoc(), getTypeConverter(), inShape);
auto newResultType =
cast<RankedTensorType>(getTypeConverter()->convertType(op.getType()));
Value result;
if (failed(torch_to_linalg::broadcastToGivenShape(
op, rewriter, self, inShapeConverted, newResultType, result,
useBroadcastToShape))) {
return rewriter.notifyMatchFailure(
op, "unable to perform broadcast operation");
}
rewriter.replaceOp(op, result);
return success();
}
};
} // namespace
namespace {
class ConvertAtenContiguousOp : public OpConversionPattern<AtenContiguousOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenContiguousOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
Type resultType = getTypeConverter()->convertType(op.getType());
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType,
adaptor.getSelf());
return success();
}
};
} // namespace
namespace {
class ConvertAtenCopyOp : public OpConversionPattern<AtenCopyOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenCopyOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
Location loc = op.getLoc();
Value self = adaptor.getSelf();
Value src = adaptor.getSrc();
RankedTensorType selfType = cast<RankedTensorType>(self.getType());
// The non_blocking should be a constant `False`.
bool nonBlocking;
if (!matchPattern(op.getNonBlocking(), m_TorchConstantBool(&nonBlocking))) {
return rewriter.notifyMatchFailure(
op, "unimplemented: non_blocking must be a constant");
} else if (nonBlocking) {
return rewriter.notifyMatchFailure(
op, "unimplemented: non_blocking is expected to be false");
}
// The size of the src tensor can be different from the self but should be
// broadcastable. Therefore, broadcasting the src tensor to match the size
// of the self tensor.
SmallVector<Value> selfSizes = getTensorSizes(rewriter, loc, self);
for (unsigned i = 0; i < selfSizes.size(); i++)
selfSizes[i] = castIndexToInt64(rewriter, loc, selfSizes[i]);
Value broadcastedSrc;
if (failed(torch_to_linalg::broadcastToGivenShape(
op, rewriter, src, selfSizes, selfType, broadcastedSrc))) {
return rewriter.notifyMatchFailure(
op, "unable to perform broadcast operation");
}
AffineMap id = AffineMap::getMultiDimIdentityMap(selfType.getRank(),
rewriter.getContext());
SmallVector<utils::IteratorType> iteratorTypes(
selfType.getRank(), utils::IteratorType::parallel);
Value result = rewriter
.create<linalg::GenericOp>(
loc,
/*resultType=*/selfType,
/*inputs=*/broadcastedSrc,
/*outputs=*/self,
/*indexingMaps=*/llvm::ArrayRef({id, id}),
/*iteratorTypes=*/iteratorTypes,
[](OpBuilder &b, Location loc, ValueRange args) {
Value result = args[0];
if (args[0].getType() != args[1].getType()) {
result = convertScalarToDtype(b, loc, args[0],
args[1].getType());
}
b.create<linalg::YieldOp>(loc, result);
})
->getResult(0);
Type resultType = getTypeConverter()->convertType(op.getType());
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, result);
return success();
}
};
} // namespace
namespace {
class ConvertAtenSliceScatterOp
: public OpConversionPattern<AtenSliceScatterOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenSliceScatterOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
Location loc = op.getLoc();
const TypeConverter *typeConverter = getTypeConverter();
auto input = adaptor.getSelf();
RankedTensorType resultType = cast<RankedTensorType>(
typeConverter->convertType(op->getResult(0).getType()));
SmallVector<Value> resultShape;
SmallVector<Value> offsets;
SmallVector<Value> strides;
if (failed(prepareArgumentsForSlicingOp<AtenSliceScatterOp,
AtenSliceScatterOpAdaptor>(
op, adaptor, rewriter, resultShape, offsets, strides))) {
return failure();
}
Value src = adaptor.getSrc();
auto srcType = cast<RankedTensorType>(src.getType());
int64_t srcRank = srcType.getRank();
SmallVector<int64_t> srcAbstractSizes(srcRank, kUnknownSize);
// TODO: audit possibility of sparsity on these tensor
auto abstractSrcType = RankedTensorType::get(
makeShapeLLVMCompatible(srcAbstractSizes), srcType.getElementType());
Value abstractSrc =
rewriter.create<tensor::CastOp>(loc, abstractSrcType, src);
Value result = rewriter.create<tensor::InsertSliceOp>(
loc, abstractSrc, input, offsets, resultShape, strides);
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, result);
return success();
}
};
} // namespace
namespace {
class ConvertAtenViewAsComplexOp
: public OpConversionPattern<AtenViewAsComplexOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenViewAsComplexOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
Location loc = op.getLoc();
const TypeConverter *typeConverter = getTypeConverter();
MLIRContext *context = rewriter.getContext();
auto input = adaptor.getSelf();
RankedTensorType resultType =
cast<RankedTensorType>(typeConverter->convertType(op.getType()));
auto elementType = resultType.getElementType();
SmallVector<Value> resultShape;
for (int64_t i = 0; i < resultType.getRank(); i++) {
auto currentDimSize = rewriter.create<tensor::DimOp>(loc, input, i);
resultShape.push_back(currentDimSize);
}
Value outTensor = rewriter.create<tensor::EmptyOp>(
loc, getAsOpFoldResult(resultShape), elementType);
SmallVector<AffineExpr> outputExpr;
for (unsigned i = 0; i < resultType.getRank(); i++) {
outputExpr.push_back(getAffineDimExpr(i, context));
}
Value constantZero =
getConstant(rewriter, loc, 0, mlir::IndexType::get(context));
Value constantOne =
getConstant(rewriter, loc, 1, mlir::IndexType::get(context));
AffineMap outputMap =
AffineMap::get(resultType.getRank(), 0, outputExpr, op->getContext());
SmallVector<AffineMap> indexingMaps{outputMap};
SmallVector<utils::IteratorType> iteratorTypes(
resultType.getRank(), utils::IteratorType::parallel);
auto complexVar =
rewriter
.create<linalg::GenericOp>(
loc, outTensor.getType(), ValueRange{}, outTensor, indexingMaps,
iteratorTypes,
[&](OpBuilder &b, Location loc, ValueRange args) {
SmallVector<Value> indicesZero;
SmallVector<Value> indicesOne;
for (int i = 0; i < resultType.getRank(); i++) {
indicesZero.push_back(b.create<linalg::IndexOp>(loc, i));
indicesOne.push_back(b.create<linalg::IndexOp>(loc, i));
}
indicesZero.push_back(constantZero);
indicesOne.push_back(constantOne);
Value realVal =
b.create<tensor::ExtractOp>(loc, input, indicesZero);
Value imagVal =
b.create<tensor::ExtractOp>(loc, input, indicesOne);
Value complexVal = b.create<complex::CreateOp>(
loc, elementType, realVal, imagVal);
b.create<linalg::YieldOp>(loc, complexVal);
})
.getResult(0);
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, complexVar);
return success();
}
};
} // namespace
namespace {
class ConvertAtenViewAsRealOp : public OpConversionPattern<AtenViewAsRealOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenViewAsRealOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
Location loc = op.getLoc();
const TypeConverter *typeConverter = getTypeConverter();
MLIRContext *context = rewriter.getContext();
auto input = adaptor.getSelf();
RankedTensorType resultType =
cast<RankedTensorType>(typeConverter->convertType(op.getType()));
RankedTensorType inputType = cast<RankedTensorType>(input.getType());
auto inputElementType = getElementTypeOrSelf(input.getType());
if (!isa<ComplexType>(inputElementType)) {
return op.emitError("only ComplexType is allowed as input type");
}
Type elementType = resultType.getElementType();
// returned real tensor has a size increase, where the last dim has size 2
SmallVector<OpFoldResult> resultShape =
tensor::getMixedSizes(rewriter, loc, input);
resultShape.push_back(
rewriter.createOrFold<arith::ConstantIndexOp>(loc, 2));
Value outTensor =
rewriter.create<tensor::EmptyOp>(loc, resultShape, elementType);
SmallVector<AffineExpr> inputExpr;
for (unsigned i = 0; i < resultType.getRank() - 1; i++) {
inputExpr.push_back(getAffineDimExpr(i, context));
}
AffineMap inputMap =
AffineMap::get(resultType.getRank(), 0, inputExpr, op->getContext());
inputExpr.push_back(getAffineDimExpr(resultType.getRank() - 1, context));
AffineMap outputMap =
AffineMap::get(resultType.getRank(), 0, inputExpr, op->getContext());
SmallVector<AffineMap> indexingMaps{inputMap, outputMap};
SmallVector<utils::IteratorType> iteratorTypes(
resultType.getRank(), utils::IteratorType::parallel);
Value constantZero =
getConstant(rewriter, loc, 0, mlir::IndexType::get(context));
auto realVar =
rewriter
.create<linalg::GenericOp>(
loc, outTensor.getType(), input, outTensor, indexingMaps,
iteratorTypes,
[&](OpBuilder &b, Location loc, ValueRange args) {
Value realVal =
b.create<complex::ReOp>(loc, elementType, args[0]);
Value imagVal =
b.create<complex::ImOp>(loc, elementType, args[0]);
Value lastIndex =
b.create<linalg::IndexOp>(loc, inputType.getRank());
Value cmpResult = b.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, lastIndex, constantZero);
Value yieldValue = b.create<arith::SelectOp>(
loc, cmpResult, realVal, imagVal);
b.create<linalg::YieldOp>(loc, yieldValue);
})
.getResult(0);
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, realVar);
return success();
}
};
} // namespace
namespace {
class ConvertAtenDiagonalOp : public OpConversionPattern<AtenDiagonalOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenDiagonalOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
int64_t offset;
if (!matchPattern(op.getOffset(), m_TorchConstantInt(&offset)))
return rewriter.notifyMatchFailure(op, "offset must be constant");
int64_t dim1;
if (!matchPattern(op.getDim1(), m_TorchConstantInt(&dim1)))
return rewriter.notifyMatchFailure(op, "dim1 must be constant");
int64_t dim2;
if (!matchPattern(op.getDim2(), m_TorchConstantInt(&dim2)))
return rewriter.notifyMatchFailure(op, "dim2 must be constant");
Value inputMatrix = adaptor.getSelf();
RankedTensorType inputType = cast<RankedTensorType>(inputMatrix.getType());
int64_t inputRank = inputType.getRank();
if (inputRank < 2)
return rewriter.notifyMatchFailure(
op, "input must have at least two dimensions");
int64_t outputRank = inputRank - 1;
dim1 = toPositiveDim(dim1, inputRank);
if (!isValidDim(dim1, inputRank))
return rewriter.notifyMatchFailure(op, "dim1 out of range");
dim2 = toPositiveDim(dim2, inputRank);
if (!isValidDim(dim2, inputRank))
return rewriter.notifyMatchFailure(op, "dim2 out of range");
if (dim1 == dim2)
return rewriter.notifyMatchFailure(
op, "diagonal dimensions cannot be identical");
Type elementType = inputType.getElementType();
RankedTensorType outputType = cast<RankedTensorType>(
getTypeConverter()->convertType(op->getResult(0).getType()));
Location loc = op.getLoc();
Value dim1Size, dim2Size;
dim1Size = getDimOp(rewriter, loc, inputMatrix, dim1);
dim2Size = getDimOp(rewriter, loc, inputMatrix, dim2);
// compute the length of the diagonal with possible offset
// if the offset is very large or very small, diagSize=0 and an empty tensor
// is returned
Value indexZero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
Value indexMinusOne = rewriter.create<arith::ConstantIndexOp>(loc, -1);
Value indexOffset = rewriter.create<arith::ConstantIndexOp>(loc, offset);
Value offsetIsNegative = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::sle, indexOffset, indexZero);
Value sizeForNegativeOffset = rewriter.create<arith::MaxSIOp>(
loc,
rewriter.create<arith::MinSIOp>(
loc, rewriter.create<arith::AddIOp>(loc, dim1Size, indexOffset),
dim2Size),
indexZero);
Value sizeForPositiveOffset = rewriter.create<arith::MaxSIOp>(
loc,
rewriter.create<arith::MinSIOp>(
loc, rewriter.create<arith::SubIOp>(loc, dim2Size, indexOffset),
dim1Size),
indexZero);
Value diagSize = rewriter.create<arith::SelectOp>(
loc, offsetIsNegative, sizeForNegativeOffset, sizeForPositiveOffset);
// depending on its sign, the offset affects only the row or column indices
// of the diagonal
Value diagStart1 = rewriter.create<arith::SelectOp>(
loc, offsetIsNegative,
rewriter.create<arith::MulIOp>(loc, indexOffset, indexMinusOne),
indexZero);
Value diagStart2 = rewriter.create<arith::SelectOp>(loc, offsetIsNegative,
indexZero, indexOffset);
SmallVector<Value> outputDims;
for (auto i = 0; i < inputRank; i++) {
if (!(i == dim1 || i == dim2))
outputDims.push_back(getDimOp(rewriter, loc, inputMatrix, i));
}
outputDims.push_back(diagSize);
Value outputMatrix = rewriter.create<tensor::EmptyOp>(
loc, getAsOpFoldResult(outputDims), elementType);
SmallVector<AffineMap> indexingMaps = {
AffineMap::getMultiDimIdentityMap(outputRank, rewriter.getContext())};
SmallVector<utils::IteratorType> iteratorTypes(
outputRank, utils::IteratorType::parallel);
auto diagonal =
rewriter
.create<linalg::GenericOp>(
loc, outputMatrix.getType(), ValueRange{}, outputMatrix,
indexingMaps, iteratorTypes,
[&](OpBuilder &b, Location loc, ValueRange args) {
SmallVector<Value> diagIndices;
Value indexOnDiag =
b.create<linalg::IndexOp>(loc, outputRank - 1);
Value dim1Index =
b.create<arith::AddIOp>(loc, indexOnDiag, diagStart1);
Value dim2Index =
b.create<arith::AddIOp>(loc, indexOnDiag, diagStart2);
// specify at which input indices the diagonal values are
// extracted
for (int indIn = 0, indOut = 0; indIn < inputRank; indIn++) {
if (indIn == dim1)
diagIndices.push_back(dim1Index);
else if (indIn == dim2)
diagIndices.push_back(dim2Index);
else {
diagIndices.push_back(
b.create<linalg::IndexOp>(loc, indOut));
indOut++;
}
}
Value diagElt = b.create<tensor::ExtractOp>(
loc, elementType, inputMatrix, diagIndices);
b.create<linalg::YieldOp>(loc, diagElt);
})
.getResult(0);
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, outputType, diagonal);
return success();
}
};
} // namespace
namespace {
class ConvertAtenDiagEmbedOp : public OpConversionPattern<AtenDiagEmbedOp> {
static SmallVector<Value>
getDiagEmbedResultShape(OpBuilder &b, Location loc, Value tensor,
int64_t offset, int64_t dim1, int64_t dim2) {
auto inputType = cast<RankedTensorType>(tensor.getType());
auto inputRank = inputType.getRank();
// output tensor always has 1 extra dimension
auto resultRank = inputRank + 1;
// regardless of offset sign, output tensor is same
Value constOffset = b.create<arith::ConstantIndexOp>(loc, offset);
Value absOffset = b.create<math::AbsIOp>(loc, constOffset);
// diagonal size is determined by last input dimension
auto lastInputDim = getDimOp(b, loc, tensor, inputRank - 1);
Value diagDim = b.create<arith::AddIOp>(loc, lastInputDim, absOffset);
// output shape has same dimensions as input
// except for the diagonal dimensions
int input_dim_idx = 0;
SmallVector<Value> resultShape;
for (unsigned int i = 0; i < resultRank; i++) {
if (i == dim1 || i == dim2)
resultShape.push_back(diagDim);
else
resultShape.push_back(getDimOp(b, loc, tensor, input_dim_idx++));
}
return resultShape;
}
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenDiagEmbedOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
Value input = adaptor.getSelf();
auto inputType = cast<RankedTensorType>(input.getType());
auto inputRank = inputType.getRank();
auto resultRank = inputRank + 1;
int64_t offset;
if (!matchPattern(op.getOffset(), m_TorchConstantInt(&offset)))
return rewriter.notifyMatchFailure(op, "offset is not constant");
int64_t dim1;
if (!matchPattern(op.getDim1(), m_TorchConstantInt(&dim1)))
return rewriter.notifyMatchFailure(op, "dim1 is not constant");
dim1 = toPositiveDim(dim1, resultRank);
if (!isValidDim(dim1, resultRank))
return rewriter.notifyMatchFailure(
op, "dim1 can only be in closed range [" +
std::to_string(-resultRank) + "," +
std::to_string(resultRank - 1) + "]");
int64_t dim2;
if (!matchPattern(op.getDim2(), m_TorchConstantInt(&dim2)))
return rewriter.notifyMatchFailure(op, "dim2 is not constant");
dim2 = toPositiveDim(dim2, resultRank);
if (!isValidDim(dim2, resultRank))
return rewriter.notifyMatchFailure(
op, "dim2 can only be in closed range [" +
std::to_string(-resultRank) + "," +
std::to_string(resultRank - 1) + "]");
if (dim1 == dim2)
return rewriter.notifyMatchFailure(op, "dim1 and dim2 can not be equal");
// add linalg.fill
Type resultElemType = inputType.getElementType();
auto resultShape =
getDiagEmbedResultShape(rewriter, loc, input, offset, dim1, dim2);
Value zeroTensor =
createZeroInitTensor(rewriter, loc, resultShape, resultElemType);
// add linalg.generic with diagonal access pattern affine indexing maps
SmallVector<AffineMap> indexingMaps = {
rewriter.getMultiDimIdentityMap(resultRank),
};
SmallVector<utils::IteratorType> iteratorTypes(
resultRank, utils::IteratorType::parallel);
Value resultTensor =
rewriter
.create<linalg::GenericOp>(
loc, zeroTensor.getType(), ValueRange{}, zeroTensor,
/*indexingMaps=*/indexingMaps,
/*iteratorTypes=*/iteratorTypes,
[&](OpBuilder &b, Location loc, ValueRange args) {
Value dim1Index = b.create<linalg::IndexOp>(loc, dim1);
Value dim2Index = b.create<linalg::IndexOp>(loc, dim2);
// to pick right element from input, first add all dimensions
// except last one, then last will be either dim1 or dim2
// depending upon lower or upper diagonal defined by offset
// sign
SmallVector<Value> inputIndices;
for (unsigned int i = 0; i < resultRank; i++) {
if (i != dim1 && i != dim2) {
inputIndices.push_back(b.create<linalg::IndexOp>(loc, i));
}
}
// adjust output diagonal indices and last input Index based
// on offset
Value dim1IdxAdjusted;
Value dim2IdxAdjusted;
if (offset < 0) {
Value absOffset =
b.create<arith::ConstantIndexOp>(loc, -offset);
dim1IdxAdjusted = dim1Index;
dim2IdxAdjusted =
b.create<arith::AddIOp>(loc, dim2Index, absOffset);
inputIndices.push_back(
b.create<linalg::IndexOp>(loc, dim2));
} else {
Value constOffset =
b.create<arith::ConstantIndexOp>(loc, offset);
dim1IdxAdjusted =
b.create<arith::AddIOp>(loc, dim1Index, constOffset);
dim2IdxAdjusted = dim2Index;
inputIndices.push_back(
b.create<linalg::IndexOp>(loc, dim1));
}
Value isDiagonal =
b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
dim1IdxAdjusted, dim2IdxAdjusted);
Value inputElem = b.create<tensor::ExtractOp>(
loc, resultElemType, input, inputIndices);
Value result = rewriter.create<arith::SelectOp>(
loc, isDiagonal, inputElem, args[0]);
b.create<linalg::YieldOp>(loc, result);
})
.getResult(0);
RankedTensorType resultType = cast<RankedTensorType>(
getTypeConverter()->convertType(op->getResult(0).getType()));
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, resultTensor);
return success();
}
};
} // namespace
namespace {
class ConvertSparseOperatorOp : public OpConversionPattern<OperatorOp> {
public:
using OpConversionPattern::OpConversionPattern;
static bool isSparsePrimitive(StringRef prim) {
return llvm::find(legalizedNames, prim) != legalizedNames.end();
}
// Rewriting method.
LogicalResult
matchAndRewrite(OperatorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (!isSparsePrimitive(op.getNameAttr()))
return failure();
// Conversion is completed specified by information in the sparse tensor
// type. Thus, we can rewrite all legalizedNames to the same construct.
RankedTensorType resultType = cast<RankedTensorType>(
getTypeConverter()->convertType(op->getResult(0).getType()));
rewriter.replaceOpWithNewOp<sparse_tensor::ConvertOp>(
op, resultType, adaptor.getOperands()[0]);
return success();
}
private:
// The operators that legalize to sparse tensor conversions.
static SmallVector<StringRef> legalizedNames;
};
// Static initializer.
SmallVector<StringRef> ConvertSparseOperatorOp::legalizedNames = {
"torch.aten._to_dense", "torch.aten._to_sparse", "torch.aten._to_csr",
"torch.aten._to_csc", "torch.aten._to_bsr", "torch.aten._to_bsc",
};
} // namespace
void mlir::torch::torch_to_linalg::populateDataMovementPatternsAndLegality(
TypeConverter &typeConverter, RewritePatternSet &patterns,
ConversionTarget &target) {
// Add some legal ops for torch-torch lowering.
target.addLegalOp<ConstantIntOp>();
MLIRContext *context = patterns.getContext();
target.addIllegalOp<AtenReflectionPad1dOp>();
patterns.add<ConvertAtenReflectionPad1dOp>(typeConverter, context);
target.addIllegalOp<AtenReflectionPad2dOp>();
patterns.add<ConvertAtenReflectionPad2dOp>(typeConverter, context);
target.addIllegalOp<AtenFlattenUsingIntsOp>();
patterns.add<ConvertAtenFlattenUsingIntsOp>(typeConverter, context);
patterns.add<ConvertAtenUnflattenIntOp>(typeConverter, context);
target.addIllegalOp<AtenUnflattenIntOp>();
// View op sadness: In the future, we only want ConvertAtenViewOpStrict,
// but this requires work upstream to fully generalize reshape handling.
// In the meantime, the analysis based ConvertAtenViewOp tries hard to
// produce expand/collapse shapes, the ConvertAtenViewOpStrict does the
// right thing but cannot be fully supported for dynamic shapes, and
// ConvertAtenViewOpToReshape overly pessimizes and generates a lot of IR
// due to not statically switching between inferred and non-inferred view
// cases. They are ordered by optimiality of the lowerings they generate
// when they are able.
target.addIllegalOp<AtenViewOp>();
patterns.add<ConvertAtenViewOp>(typeConverter, context, /*benefit=*/300);
patterns.add<ConvertAtenViewOpStrict>(typeConverter, context,
/*benefit=*/200);
patterns.add<ConvertAtenViewOpToReshape>(typeConverter, context,
/*benefit=*/100);
target.addIllegalOp<AtenSqueezeOp>();
patterns.add<ConvertAtenSqueezeOp>(typeConverter, context);
target.addIllegalOp<AtenSqueezeDimOp>();
patterns.add<ConvertAtenSqueezeDimOp>(typeConverter, context);
target.addIllegalOp<AtenUnsqueezeOp>();
patterns.add<ConvertAtenUnsqueezeOp>(typeConverter, context);
target.addIllegalOp<AtenTransposeIntOp>();
patterns.add<ConvertAtenTransposeIntOp>(typeConverter, context);
target.addIllegalOp<AtenPermuteOp>();
patterns.add<ConvertAtenPermuteOp>(typeConverter, context);
target.addIllegalOp<AtenSliceTensorOp>();
patterns.add<ConvertAtenSliceTensorOp>(typeConverter, context);
target.addIllegalOp<AtenCatOp>();
patterns.add<ConvertAtenCatOp>(typeConverter, context);
target.addIllegalOp<AtenBroadcastToOp>();
patterns.add<ConvertAtenBroadcastToOp>(typeConverter, context);
target.addIllegalOp<AtenContiguousOp>();
patterns.add<ConvertAtenContiguousOp>(typeConverter, context);
target.addIllegalOp<AtenCopyOp>();
patterns.add<ConvertAtenCopyOp>(typeConverter, context);
target.addIllegalOp<AtenSliceScatterOp>();
patterns.add<ConvertAtenSliceScatterOp>(typeConverter, context);
target.addIllegalOp<AtenViewAsComplexOp>();
patterns.add<ConvertAtenViewAsComplexOp>(typeConverter, context);
target.addIllegalOp<AtenViewAsRealOp>();
patterns.add<ConvertAtenViewAsRealOp>(typeConverter, context);
target.addIllegalOp<AtenDiagonalOp>();
patterns.add<ConvertAtenDiagonalOp>(typeConverter, context);
target.addIllegalOp<AtenDiagEmbedOp>();
patterns.add<ConvertAtenDiagEmbedOp>(typeConverter, context);
// Rewrite all special sparse conversions hidden as operators.
target.addDynamicallyLegalOp<OperatorOp>([&](Torch::OperatorOp op) {
return !ConvertSparseOperatorOp::isSparsePrimitive(op.getNameAttr());
});
patterns.add<ConvertSparseOperatorOp>(typeConverter, context);
}