torch-mlir/lib/Dialect/Torch/IR/TorchDialect.cpp

145 lines
5.7 KiB
C++

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "npcomp/Dialect/Torch/IR/TorchDialect.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/Transforms/InliningUtils.h"
#include "npcomp/Dialect/Basicpy/IR/BasicpyDialect.h"
#include "npcomp/Dialect/Basicpy/IR/BasicpyOps.h"
#include "npcomp/Dialect/Torch/IR/TorchOps.h"
#include "npcomp/Dialect/Torch/IR/TorchTypes.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/TypeSwitch.h"
using namespace mlir;
using namespace mlir::NPCOMP;
using namespace mlir::NPCOMP::Torch;
//===----------------------------------------------------------------------===//
// Dialect Interfaces
//===----------------------------------------------------------------------===//
namespace {
struct TorchInlinerInterface : public DialectInlinerInterface {
using DialectInlinerInterface::DialectInlinerInterface;
bool isLegalToInline(Region *dest, Region *src, bool wouldBeCloned,
BlockAndValueMapping &valueMapping) const final {
return true;
}
bool isLegalToInline(Operation *, Region *, bool wouldBeCloned,
BlockAndValueMapping &) const final {
return true;
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Tablegen Type Definitions
//===----------------------------------------------------------------------===//
#define GET_TYPEDEF_CLASSES
#include "npcomp/Dialect/Torch/IR/TorchTypes.cpp.inc"
//===----------------------------------------------------------------------===//
// Dialect initialize method.
//===----------------------------------------------------------------------===//
void TorchDialect::initialize() {
addOperations<
#define GET_OP_LIST
#include "npcomp/Dialect/Torch/IR/TorchOps.cpp.inc"
>();
addTypes<
#define GET_TYPEDEF_LIST
#include "npcomp/Dialect/Torch/IR/TorchTypes.cpp.inc"
>();
addInterfaces<TorchInlinerInterface>();
getContext()->loadDialect<StandardOpsDialect>();
getContext()->loadDialect<Basicpy::BasicpyDialect>();
}
//===----------------------------------------------------------------------===//
// Type-related Dialect methods.
//===----------------------------------------------------------------------===//
Type TorchDialect::parseType(DialectAsmParser &parser) const {
StringRef keyword;
if (parser.parseKeyword(&keyword))
return Type();
Type type;
if (generatedTypeParser(getContext(), parser, keyword, type).hasValue())
return type;
parser.emitError(parser.getNameLoc(), "invalid 'torch' type: `")
<< keyword << "'";
return Type();
}
void TorchDialect::printType(Type type, DialectAsmPrinter &printer) const {
if (failed(generatedTypePrinter(type, printer)))
llvm_unreachable("unknown 'torch' type");
}
//===----------------------------------------------------------------------===//
// Dialect-level verifiers.
//===----------------------------------------------------------------------===//
LogicalResult TorchDialect::verifyRegionArgAttribute(Operation *op,
unsigned regionIndex,
unsigned argIndex,
NamedAttribute namedAttr) {
if (namedAttr.first == "torch.type_bound") {
auto func = dyn_cast<FuncOp>(op);
if (!func)
return op->emitError() << "'torch.type_bound' must be attached to a func";
TypeAttr attr = namedAttr.second.dyn_cast<TypeAttr>();
if (!attr)
return op->emitError() << "'torch.type_bound' must be TypeAttr";
auto type = attr.getValue().dyn_cast<BaseTensorType>();
if (!type)
return op->emitError() << "'torch.type_bound' must be of "
"!torch.tensor/!torch.vtensor type";
if (!func.getType().getInput(argIndex).isa<BaseTensorType>())
return op->emitError() << "'torch.type_bound' must be attached to an "
"argument of !torch.tensor/!torch.vtensor type";
return success();
}
return op->emitError() << "unknown region arg attribute '" << namedAttr.first
<< "'";
}
//===----------------------------------------------------------------------===//
// Constant materializer.
//===----------------------------------------------------------------------===//
Operation *TorchDialect::materializeConstant(OpBuilder &builder,
Attribute value, Type type,
Location loc) {
// Bool (i1 -> !basicpy.BoolType).
if (type.isa<Basicpy::BoolType>()) {
auto i1Value = value.dyn_cast<IntegerAttr>();
if (i1Value && i1Value.getType().getIntOrFloatBitWidth() == 1)
return builder.create<Basicpy::BoolConstantOp>(loc, type, i1Value);
}
// i64 is how we model TorchScript's "scalar integer type" (we could have a
// proper !torch.int type in theory). None of our canonicalizers should be
// creating any other integer type (except perhaps i1 after we resolve that
// situation). All other integer types live inside tensors (that is, they are
// never the direct result of an operation, and are thus never candidates for
// constant materialization).
if (auto integerType = type.dyn_cast<IntegerType>()) {
if (integerType.getWidth() == 64)
return builder.create<ConstantOp>(loc, value);
}
return nullptr;
}