torch-mlir/test/Conversion/TorchToLinalg/sparse.mlir

37 lines
1.9 KiB
MLIR

// RUN: torch-mlir-opt <%s -convert-torch-to-linalg -split-input-file -verify-diagnostics | FileCheck %s
// -----
#CSR = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }>
// CHECK: #[[$CSR:.*]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }>
// CHECK-LABEL: func.func @sum(
// CHECK-SAME: %[[A:.*]]: !torch.vtensor<[64,64],f32,#[[$CSR]]>) -> !torch.vtensor<[],f32>
// CHECK: %[[S:.*]] = torch_c.to_builtin_tensor %[[A]] : !torch.vtensor<[64,64],f32,#[[$CSR]]> -> tensor<64x64xf32, #[[$CSR]]>
// CHECK: linalg.generic {{{.*}}} ins(%[[S]] : tensor<64x64xf32, #[[$CSR]]>)
func.func @sum(%arg0: !torch.vtensor<[64,64],f32,#CSR>) -> !torch.vtensor<[],f32> {
%none = torch.constant.none
%0 = torch.aten.sum %arg0, %none
: !torch.vtensor<[64,64],f32,#CSR>, !torch.none -> !torch.vtensor<[],f32>
return %0 : !torch.vtensor<[],f32>
}
// -----
#CSR = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }>
// CHECK: #[[$CSR:.*]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }>
// CHECK-LABEL: func.func @SpMM(
// CHECK-SAME: %[[A:.*]]: !torch.vtensor<[8,16],f32,#[[$CSR]]>,
// CHECK-SAME: %[[B:.*]]: !torch.vtensor<[16,8],f32>) -> !torch.vtensor<[8,8],f32>
// CHECK: %[[S:.*]] = torch_c.to_builtin_tensor %[[A]] : !torch.vtensor<[8,16],f32,#[[$CSR]]> -> tensor<8x16xf32, #[[$CSR]]>
// CHECK: %[[T:.*]] = torch_c.to_builtin_tensor %[[B]] : !torch.vtensor<[16,8],f32> -> tensor<16x8xf32>
// CHECK: linalg.matmul ins(%[[S]], %[[T]] : tensor<8x16xf32, #[[$CSR]]>, tensor<16x8xf32>)
func.func @SpMM(%arg0: !torch.vtensor<[8,16],f32,#CSR>,
%arg1: !torch.vtensor<[16,8],f32>) -> !torch.vtensor<[8,8],f32> {
%0 = torch.aten.matmul %arg0, %arg1
: !torch.vtensor<[8,16],f32,#CSR>,
!torch.vtensor<[16,8],f32> -> !torch.vtensor<[8,8],f32>
return %0 : !torch.vtensor<[8,8],f32>
}