mirror of https://github.com/llvm/torch-mlir
95 lines
3.3 KiB
Python
95 lines
3.3 KiB
Python
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
# See https://llvm.org/LICENSE.txt for license information.
|
|
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
# Also available under a BSD-style license. See LICENSE.
|
|
|
|
import sys
|
|
from typing import List
|
|
|
|
from PIL import Image
|
|
import requests
|
|
|
|
import torch
|
|
import torch._dynamo as dynamo
|
|
import torchvision.models as models
|
|
from torchvision import transforms
|
|
|
|
import torch_mlir
|
|
from torch_mlir.dynamo import make_simple_dynamo_backend
|
|
from torch_mlir_e2e_test.linalg_on_tensors_backends import refbackend
|
|
|
|
|
|
def load_and_preprocess_image(url: str):
|
|
headers = {
|
|
'User-Agent':
|
|
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.102 Safari/537.36'
|
|
}
|
|
img = Image.open(requests.get(url, headers=headers,
|
|
stream=True).raw).convert("RGB")
|
|
# preprocessing pipeline
|
|
preprocess = transforms.Compose([
|
|
transforms.Resize(256),
|
|
transforms.CenterCrop(224),
|
|
transforms.ToTensor(),
|
|
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
|
std=[0.229, 0.224, 0.225]),
|
|
])
|
|
img_preprocessed = preprocess(img)
|
|
return torch.unsqueeze(img_preprocessed, 0)
|
|
|
|
|
|
def load_labels():
|
|
classes_text = requests.get(
|
|
"https://raw.githubusercontent.com/cathyzhyi/ml-data/main/imagenet-classes.txt",
|
|
stream=True,
|
|
).text
|
|
labels = [line.strip() for line in classes_text.splitlines()]
|
|
return labels
|
|
|
|
|
|
def top3_possibilities(res):
|
|
_, indexes = torch.sort(res, descending=True)
|
|
percentage = torch.nn.functional.softmax(res, dim=1)[0] * 100
|
|
top3 = [(labels[idx], percentage[idx].item()) for idx in indexes[0][:3]]
|
|
return top3
|
|
|
|
|
|
def predictions(torch_func, jit_func, img, labels):
|
|
golden_prediction = top3_possibilities(torch_func(img))
|
|
print("PyTorch prediction")
|
|
print(golden_prediction)
|
|
prediction = top3_possibilities(torch.from_numpy(jit_func(img.numpy())))
|
|
print("torch-mlir prediction")
|
|
print(prediction)
|
|
|
|
image_url = "https://upload.wikimedia.org/wikipedia/commons/2/26/YellowLabradorLooking_new.jpg"
|
|
|
|
print("load image from " + image_url, file=sys.stderr)
|
|
img = load_and_preprocess_image(image_url)
|
|
labels = load_labels()
|
|
|
|
@make_simple_dynamo_backend
|
|
def refbackend_torchdynamo_backend(fx_graph: torch.fx.GraphModule,
|
|
example_inputs: List[torch.Tensor]):
|
|
mlir_module = torch_mlir.compile(
|
|
fx_graph, example_inputs, output_type="linalg-on-tensors")
|
|
backend = refbackend.RefBackendLinalgOnTensorsBackend()
|
|
compiled = backend.compile(mlir_module)
|
|
loaded = backend.load(compiled)
|
|
|
|
def compiled_callable(*inputs):
|
|
inputs = [x.numpy() for x in inputs]
|
|
result = loaded.forward(*inputs)
|
|
if not isinstance(result, tuple):
|
|
result = torch.from_numpy(result)
|
|
else:
|
|
result = tuple(torch.from_numpy(x) for x in result)
|
|
return result
|
|
return compiled_callable
|
|
|
|
resnet18 = models.resnet18(pretrained=True)
|
|
resnet18.train(False)
|
|
dynamo_callable = dynamo.optimize(refbackend_torchdynamo_backend)(resnet18)
|
|
|
|
predictions(resnet18.forward, lambda x: dynamo_callable(torch.from_numpy(x)).numpy(), img, labels)
|