mirror of https://github.com/llvm/torch-mlir
566 lines
22 KiB
C++
566 lines
22 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
// Also available under a BSD-style license. See LICENSE.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PassDetail.h"
|
|
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchDialect.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
|
|
#include "torch-mlir/Dialect/Torch/Transforms/Passes.h"
|
|
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::torch;
|
|
using namespace mlir::torch::Torch;
|
|
|
|
// Helper funtion to get rank of `Base tensor type`.
|
|
// -1 is returned if the tensorRank can't be determined.
|
|
static int getTensorRank(Value tensor) {
|
|
int tensorRank = -1;
|
|
BaseTensorType tensorType = tensor.getType().cast<BaseTensorType>();
|
|
|
|
if (tensorType.hasSizes()) {
|
|
ArrayRef<int64_t> tensorShape = tensorType.getSizes();
|
|
tensorRank = tensorShape.size();
|
|
}
|
|
return tensorRank;
|
|
}
|
|
|
|
static Value createSumAlongDimension(PatternRewriter &rewriter, Location loc,
|
|
Operation *op, Value input, Value dim,
|
|
bool keepDim) {
|
|
BaseTensorType tensorType = input.getType().cast<BaseTensorType>();
|
|
Value dimList = rewriter.create<PrimListConstructOp>(
|
|
loc, Torch::ListType::get(dim.getType()), dim);
|
|
Value keepDimCst = rewriter.create<ConstantBoolOp>(loc, keepDim);
|
|
Value dtype = rewriter.create<ConstantNoneOp>(loc);
|
|
SmallVector<int64_t> sizes;
|
|
int64_t dimInt;
|
|
if (tensorType.hasSizes()) {
|
|
ArrayRef<int64_t> inputShape = tensorType.getSizes();
|
|
int64_t inputRank = inputShape.size();
|
|
if (matchPattern(dim, m_TorchConstantInt(&dimInt))) {
|
|
dimInt = toPositiveDim(dimInt, inputRank);
|
|
if (!isValidDim(dimInt, inputRank)) {
|
|
(void)rewriter.notifyMatchFailure(op, "dim is not a valid dim");
|
|
return nullptr;
|
|
}
|
|
sizes.append(inputShape.begin(), inputShape.end());
|
|
sizes[dimInt] = 1;
|
|
} else {
|
|
sizes.resize(inputRank, kUnknownSize);
|
|
}
|
|
}
|
|
|
|
Type resultType = tensorType.getWithSizesAndDtype(
|
|
sizes.size() == 0 ? Optional<ArrayRef<int64_t>>()
|
|
: llvm::makeArrayRef(sizes),
|
|
tensorType.getDtype());
|
|
Value sum = rewriter.create<AtenSumDimIntListOp>(loc, resultType, input,
|
|
dimList, keepDimCst, dtype);
|
|
return sum;
|
|
}
|
|
|
|
// Helper for creating `aten::sub_tensor_op`.
|
|
static Value createTensorSub(PatternRewriter &rewriter, Location loc,
|
|
Type tensorType, Value lhs, Value rhs) {
|
|
Value alpha =
|
|
rewriter.create<ConstantFloatOp>(loc, rewriter.getF64FloatAttr(1));
|
|
Value sub =
|
|
rewriter.create<AtenSubTensorOp>(loc, tensorType, lhs, rhs, alpha);
|
|
return sub;
|
|
}
|
|
|
|
// Share code between `softmax_backward` and `log_softmax_backward` ops.
|
|
// Returns x - y * sum(z, dim).
|
|
static Value createSoftmaxBackwardCommonKernel(PatternRewriter &rewriter,
|
|
Location loc, Operation *op,
|
|
Type tensorType, Value x,
|
|
Value y, Value z, Value dim) {
|
|
Value sum = createSumAlongDimension(rewriter, loc, op, z, dim, /*keepDim=*/true);
|
|
if (!sum)
|
|
return nullptr;
|
|
auto broadcastSizeType =
|
|
Torch::ListType::get(Torch::IntType::get(op->getContext()));
|
|
Value broadcastSize = rewriter.create<AtenSizeOp>(loc, broadcastSizeType, z);
|
|
Value sumBroadcast =
|
|
rewriter.create<AtenBroadcastToOp>(loc, tensorType, sum, broadcastSize);
|
|
Value temp =
|
|
rewriter.create<AtenMulTensorOp>(loc, tensorType, y, sumBroadcast);
|
|
|
|
Value sub = createTensorSub(rewriter, loc, tensorType, x, temp);
|
|
return sub;
|
|
}
|
|
|
|
namespace {
|
|
class DecomposeAtenSizeOp : public OpRewritePattern<AtenSizeOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenSizeOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Value self = op.self();
|
|
MLIRContext *context = op.getContext();
|
|
int64_t rank = getTensorRank(self);
|
|
if (rank < 0)
|
|
return rewriter.notifyMatchFailure(op, "Unimplemented: unranked tensor");
|
|
SmallVector<Value> sizes;
|
|
for (int i = 0; i < rank; i++) {
|
|
Value dim = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(i));
|
|
sizes.push_back(rewriter.create<AtenSizeIntOp>(loc, self, dim));
|
|
}
|
|
|
|
Value sizeList = rewriter.create<PrimListConstructOp>(
|
|
loc, Torch::ListType::get(Torch::IntType::get(context)), sizes);
|
|
rewriter.replaceOp(op, sizeList);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class DecomposeAtenSelectIntOp : public OpRewritePattern<AtenSelectIntOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenSelectIntOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Value one =
|
|
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(1));
|
|
Value end =
|
|
rewriter.create<AtenAddIntOp>(loc, one.getType(), op.index(), one);
|
|
rewriter.replaceOpWithNewOp<AtenSliceTensorOp>(op, op.getResult().getType(),
|
|
op.self(), op.dim(),
|
|
op.index(), end, one);
|
|
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Calculates the softmax function on the given `input` tensor. Softmax(x) =
|
|
// exp(x)/sum(exp(x)).
|
|
template <typename OpTy>
|
|
static Value getSoftmaxResult(OpTy op, Type resultType,
|
|
PatternRewriter &rewriter) {
|
|
Location loc = op.getLoc();
|
|
Value dim = op.dim();
|
|
Value self = op.self();
|
|
|
|
// exp(x)
|
|
Value exp = rewriter.create<AtenExpOp>(loc, resultType, self);
|
|
// sum(exp(x))
|
|
Value sum =
|
|
createSumAlongDimension(rewriter, loc, op, exp, dim, /*keepDim=*/true);
|
|
if (!sum)
|
|
return nullptr;
|
|
// exp(x) / sum(exp(x))
|
|
return rewriter.create<AtenDivTensorOp>(loc, resultType, exp, sum);
|
|
}
|
|
|
|
// Decompose softmax into: exp(x) / sum(exp(x))
|
|
namespace {
|
|
class DecomposeAtenSoftmaxIntOp : public OpRewritePattern<AtenSoftmaxIntOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenSoftmaxIntOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Value self = op.self();
|
|
if (!op.dtype().getType().isa<Torch::NoneType>())
|
|
return rewriter.notifyMatchFailure(
|
|
op, "Unimplemented non-None dtype for softmax");
|
|
|
|
BaseTensorType tensorType = self.getType().cast<BaseTensorType>();
|
|
if (!tensorType.hasDtype() || !tensorType.getDtype().isa<mlir::FloatType>())
|
|
return rewriter.notifyMatchFailure(op, "Only support floating type");
|
|
|
|
Value result = getSoftmaxResult(op, tensorType, rewriter);
|
|
if (!result)
|
|
return failure();
|
|
rewriter.replaceOpWithNewOp<TensorStaticInfoCastOp>(op, op.getType(),
|
|
result);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class DecomposeAten_SoftmaxOp : public OpRewritePattern<Aten_SoftmaxOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(Aten_SoftmaxOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Value self = op.self();
|
|
BaseTensorType tensorType = self.getType().cast<BaseTensorType>();
|
|
if (!tensorType.hasDtype() || !tensorType.getDtype().isa<mlir::FloatType>())
|
|
return rewriter.notifyMatchFailure(op, "Only support floating type");
|
|
bool halfToFloat;
|
|
if (!matchPattern(op.half_to_float(), m_TorchConstantBool(&halfToFloat)))
|
|
return rewriter.notifyMatchFailure(
|
|
op, "Expected a boolean value for half_to_float");
|
|
|
|
// Currently, setting `halfToFloat` is not supported as the E2E testing for
|
|
// the same is not present on CPU.
|
|
if (halfToFloat)
|
|
return rewriter.notifyMatchFailure(
|
|
op, "halfToFloat is currently not supported.");
|
|
|
|
Value result = getSoftmaxResult(op, tensorType, rewriter);
|
|
if (!result)
|
|
return op.emitError("failed to get softmax result");
|
|
rewriter.replaceOpWithNewOp<TensorStaticInfoCastOp>(op, op.getType(),
|
|
result);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Aten_SoftmaxBackwardDataOp(gradOutput, output, dim) =>
|
|
// newGrad = gradOutput * output
|
|
// result = newGrad - output * sum(newGrad, dim))
|
|
//
|
|
// Refer to
|
|
// https://github.com/pytorch/pytorch/blob/15fecc4c830a3907fde4b44c9962dc4144da50a4/torch/csrc/jit/codegen/cuda/ops/normalization.cpp#L31
|
|
namespace {
|
|
class DecomposeAten_SoftmaxBackwardDataOp
|
|
: public OpRewritePattern<Aten_SoftmaxBackwardDataOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(Aten_SoftmaxBackwardDataOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Value gradOutput = op.grad_output();
|
|
Value output = op.output();
|
|
Value dim = op.dim();
|
|
|
|
BaseTensorType tensorType = gradOutput.getType().cast<BaseTensorType>();
|
|
if (!tensorType.hasDtype() || !tensorType.getDtype().isa<mlir::FloatType>())
|
|
return rewriter.notifyMatchFailure(op, "Only support floating type");
|
|
|
|
Value newGrad =
|
|
rewriter.create<AtenMulTensorOp>(loc, tensorType, gradOutput, output);
|
|
Value result = createSoftmaxBackwardCommonKernel(
|
|
rewriter, loc, op, tensorType, newGrad, output, newGrad, dim);
|
|
if (!result)
|
|
return rewriter.notifyMatchFailure(
|
|
op,
|
|
"nullptr returned by createSoftmaxBackwardCommonKernel function.");
|
|
rewriter.replaceOp(op, result);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// AtenTanhBackwardOp(gradOutput, output) =>
|
|
// result = gradOutput * (1 - output^2)
|
|
// To get away from broadcasts the above formula is expanded i.e.,
|
|
// result = gradOutput - (gradOutput * output^2)
|
|
namespace {
|
|
class DecomposeAtenTanhBackwardOp
|
|
: public OpRewritePattern<AtenTanhBackwardOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenTanhBackwardOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Value gradOutput = op.grad_output();
|
|
|
|
// `output` is the value flowing out from tanh. Hence, tanh(x) = output.
|
|
// Since, dTanh(x) = (1 - tanh(x)^2) hence, dOutput = (1 - output^2).
|
|
Value output = op.output();
|
|
|
|
BaseTensorType tensorType = gradOutput.getType().cast<BaseTensorType>();
|
|
if (!tensorType.hasDtype() || !tensorType.getDtype().isa<mlir::FloatType>())
|
|
return rewriter.notifyMatchFailure(op, "Only support floating type");
|
|
|
|
Value tanhSquare =
|
|
rewriter.create<AtenMulTensorOp>(loc, tensorType, output, output);
|
|
Value gradMulTanhSquare = rewriter.create<AtenMulTensorOp>(
|
|
loc, tensorType, tanhSquare, gradOutput);
|
|
|
|
Value newGrad = createTensorSub(rewriter, loc, tensorType, gradOutput,
|
|
gradMulTanhSquare);
|
|
rewriter.replaceOp(op, newGrad);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Aten_LogSoftmaxBackwardDataOp(gradOutput, output, dim) =>
|
|
// result = gradOutput - (exp(output) * sum(gradOutput, dim))
|
|
namespace {
|
|
class DecomposeAten_LogSoftmaxBackwardDataOp
|
|
: public OpRewritePattern<Aten_LogSoftmaxBackwardDataOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(Aten_LogSoftmaxBackwardDataOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Value gradOutput = op.grad_output();
|
|
Value output = op.output();
|
|
Value dim = op.dim();
|
|
|
|
BaseTensorType tensorType = gradOutput.getType().cast<BaseTensorType>();
|
|
if (!tensorType.hasDtype() || !tensorType.getDtype().isa<mlir::FloatType>())
|
|
return rewriter.notifyMatchFailure(op, "Only support floating type");
|
|
|
|
Value expOut = rewriter.create<AtenExpOp>(loc, tensorType, output);
|
|
Value result = createSoftmaxBackwardCommonKernel(
|
|
rewriter, loc, op, tensorType, gradOutput, expOut, gradOutput, dim);
|
|
if (!result)
|
|
return rewriter.notifyMatchFailure(
|
|
op,
|
|
"nullptr returned by createSoftmaxBackwardCommonKernel function.");
|
|
rewriter.replaceOp(op, result);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Decompose aten.log_softmax op into: log(softmax(x))
|
|
namespace {
|
|
class DecomposeAtenLogSoftmaxIntOp
|
|
: public OpRewritePattern<AtenLogSoftmaxIntOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenLogSoftmaxIntOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Value self = op.self();
|
|
Value dim = op.dim();
|
|
if (!op.dtype().getType().isa<Torch::NoneType>())
|
|
return rewriter.notifyMatchFailure(
|
|
op, "Unimplemented non-None dtype for log_softmax");
|
|
|
|
BaseTensorType tensorType = self.getType().cast<BaseTensorType>();
|
|
if (!tensorType.hasDtype() || !tensorType.getDtype().isa<mlir::FloatType>())
|
|
return rewriter.notifyMatchFailure(op, "Only support floating type");
|
|
|
|
// softmax(x, dim)
|
|
Value softmax = rewriter.create<AtenSoftmaxIntOp>(loc, tensorType, self,
|
|
dim, op.dtype());
|
|
rewriter.replaceOpWithNewOp<AtenLogOp>(op, op.getType(), softmax);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Decompose torch.matmul into: torch.mm and torch.bmm according to ranks.
|
|
namespace {
|
|
class DecomposeAtenMatmulOp : public OpRewritePattern<AtenMatmulOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenMatmulOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Value lhs = op.self();
|
|
Value rhs = op.other();
|
|
|
|
int lhsRank = getTensorRank(lhs);
|
|
int rhsRank = getTensorRank(rhs);
|
|
|
|
// If both lhs and rhs ranks are 2 then map it to `aten.mm` op.
|
|
if (lhsRank == 2 && rhsRank == 2)
|
|
rewriter.replaceOpWithNewOp<AtenMmOp>(op, op.getType(), lhs, rhs);
|
|
|
|
// If both lhs and rhs ranks are 3 then map it to `aten.bmm` op.
|
|
if (lhsRank == 3 && rhsRank == 3)
|
|
rewriter.replaceOpWithNewOp<AtenBmmOp>(op, op.getType(), lhs, rhs);
|
|
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Decompose torch.expand into torch.broadcast_to op.
|
|
namespace {
|
|
class DecomposeAtenExpandOp : public OpRewritePattern<AtenExpandOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenExpandOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
bool implicit = false;
|
|
if (!matchPattern(op.implicit(), m_TorchConstantBool(&implicit)) ||
|
|
implicit) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "unimplemented: requires implicit to be false");
|
|
}
|
|
rewriter.replaceOpWithNewOp<AtenBroadcastToOp>(op, op.getType(), op.self(),
|
|
op.size());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Decompose torch.addmm into torch.mm and torch.add.Tensor op.
|
|
namespace {
|
|
class DecomposeAtenAddmmOp : public OpRewritePattern<AtenAddmmOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenAddmmOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Value input = op.self();
|
|
Value mat1 = op.mat1();
|
|
Value mat2 = op.mat2();
|
|
|
|
// The operands `mat1`, `mat2` to aten.addmm must be of rank 2.
|
|
if (getTensorRank(mat1) != 2 || getTensorRank(mat2) != 2) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "expected mat1, mat2 operands to aten.addmm to be rank 2");
|
|
}
|
|
|
|
// TODO: Handle integer type operands.
|
|
if (!input.getType()
|
|
.cast<ValueTensorType>()
|
|
.getDtype()
|
|
.isa<mlir::FloatType>()) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "unimplemented: non-floating point dtype");
|
|
}
|
|
|
|
// matrix multiplication: matmul = mat1 @ mat2
|
|
Value matmul = rewriter.create<AtenMmOp>(loc, op.getType(), mat1, mat2);
|
|
// scaledInput = self * beta
|
|
Value scaledInput = rewriter.create<AtenMulScalarOp>(loc, input.getType(),
|
|
input, op.beta());
|
|
// result = scaledInput + alpha * matmul
|
|
rewriter.replaceOpWithNewOp<AtenAddTensorOp>(op, op.getType(), scaledInput,
|
|
matmul, op.alpha());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Decompose torch.mean into: sum(x)/div(numTensorElements).
|
|
namespace {
|
|
class DecomposeAtenMeanOp : public OpRewritePattern<AtenMeanOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenMeanOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Value input = op.self();
|
|
Value output = op.result();
|
|
BaseTensorType outputTensorType = output.getType().cast<BaseTensorType>();
|
|
Value sum = rewriter.create<AtenSumOp>(loc, outputTensorType, input, op.dtype());
|
|
Value numTensorElements = rewriter.create<AtenNumelOp>(loc, input);
|
|
rewriter.replaceOpWithNewOp<AtenDivScalarOp>(op, outputTensorType, sum,
|
|
numTensorElements);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
template<typename OpTy, typename T1T2Op>
|
|
class DecomposeAtenAddCLikeOp : public OpRewritePattern<OpTy> {
|
|
using OpRewritePattern<OpTy>::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(OpTy op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Value input = op.self();
|
|
Value tensor1 = op.tensor1();
|
|
Value tensor2 = op.tensor2();
|
|
Value value = op.value();
|
|
|
|
Value product = rewriter.create<T1T2Op>(loc, op.getType(), tensor1, tensor2);
|
|
rewriter.replaceOpWithNewOp<AtenAddTensorOp>(op, op.getType(), input, product,
|
|
value);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
class DecomposeAtenLayerNormOp : public OpRewritePattern<AtenLayerNormOp> {
|
|
using OpRewritePattern<AtenLayerNormOp>::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenLayerNormOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
|
|
auto input = op.input().getType().cast<BaseTensorType>();
|
|
if (!input.hasSizes())
|
|
return rewriter.notifyMatchFailure(
|
|
op, "input tensor should have known sizes.");
|
|
int64_t inputRank = input.getSizes().size();
|
|
Value normalizedShape = op.normalized_shape();
|
|
SmallVector<Value> normalizedShapeSizesTorchInt;
|
|
getListConstructElements(normalizedShape, normalizedShapeSizesTorchInt);
|
|
std::vector<int64_t> meanVarSizes;
|
|
for (int i = normalizedShapeSizesTorchInt.size(); i < inputRank; i++)
|
|
meanVarSizes.push_back(input.getSizes()[i]);
|
|
auto meanVarType = input.getWithSizesAndDtype(
|
|
llvm::makeArrayRef(meanVarSizes), input.getDtype());
|
|
auto nativeLayerNorm = rewriter.create<AtenNativeLayerNormOp>(
|
|
loc, op.getType(), meanVarType, meanVarType, op.input(),
|
|
op.normalized_shape(), op.weight(), op.bias(), op.eps());
|
|
rewriter.replaceOp(op, nativeLayerNorm.getResult(0));
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class DecomposeComplexOpsPass
|
|
: public DecomposeComplexOpsBase<DecomposeComplexOpsPass> {
|
|
void runOnOperation() override {
|
|
MLIRContext *context = &getContext();
|
|
RewritePatternSet patterns(context);
|
|
ConversionTarget target(*context);
|
|
target.addLegalDialect<Torch::TorchDialect>();
|
|
|
|
patterns.add<DecomposeAtenSoftmaxIntOp>(context);
|
|
target.addIllegalOp<AtenSoftmaxIntOp>();
|
|
patterns.add<DecomposeAten_SoftmaxOp>(context);
|
|
target.addIllegalOp<Aten_SoftmaxOp>();
|
|
patterns.add<DecomposeAtenLogSoftmaxIntOp>(context);
|
|
target.addIllegalOp<AtenLogSoftmaxIntOp>();
|
|
patterns.add<DecomposeAtenExpandOp>(context);
|
|
target.addIllegalOp<AtenExpandOp>();
|
|
patterns.add<DecomposeAtenSizeOp>(context);
|
|
target.addIllegalOp<AtenSizeOp>();
|
|
patterns.add<DecomposeAten_SoftmaxBackwardDataOp>(context);
|
|
target.addIllegalOp<Aten_SoftmaxBackwardDataOp>();
|
|
patterns.add<DecomposeAtenTanhBackwardOp>(context);
|
|
target.addIllegalOp<AtenTanhBackwardOp>();
|
|
patterns.add<DecomposeAtenAddmmOp>(context);
|
|
target.addIllegalOp<AtenAddmmOp>();
|
|
patterns.add<DecomposeAtenMeanOp>(context);
|
|
target.addIllegalOp<AtenMeanOp>();
|
|
patterns.add<DecomposeAtenSelectIntOp>(context);
|
|
target.addIllegalOp<AtenSelectIntOp>();
|
|
patterns.add<DecomposeAtenMatmulOp>(context);
|
|
patterns.add<DecomposeAten_LogSoftmaxBackwardDataOp>(context);
|
|
target.addIllegalOp<Aten_LogSoftmaxBackwardDataOp>();
|
|
target.addDynamicallyLegalOp<AtenMatmulOp>([](AtenMatmulOp op) {
|
|
int lhsRank = getTensorRank(op.self());
|
|
int rhsRank = getTensorRank(op.other());
|
|
|
|
// Make aten.matmul legal if the following condition is satisfied.
|
|
return (lhsRank != 2 || rhsRank != 2) && (lhsRank != 3 || rhsRank != 3);
|
|
});
|
|
patterns.add<DecomposeAtenAddCLikeOp<AtenAddcmulOp, AtenMulTensorOp>>(context);
|
|
target.addIllegalOp<AtenAddcmulOp>();
|
|
patterns.add<DecomposeAtenAddCLikeOp<AtenAddcdivOp, AtenDivTensorOp>>(context);
|
|
target.addIllegalOp<AtenAddcdivOp>();
|
|
target.addIllegalOp<AtenLayerNormOp>();
|
|
patterns.add<DecomposeAtenLayerNormOp>(context);
|
|
|
|
if (failed(applyPartialConversion(getOperation(), target,
|
|
std::move(patterns)))) {
|
|
return signalPassFailure();
|
|
}
|
|
}
|
|
};
|
|
} // namespace
|
|
std::unique_ptr<OperationPass<FuncOp>>
|
|
mlir::torch::Torch::createDecomposeComplexOpsPass() {
|
|
return std::make_unique<DecomposeComplexOpsPass>();
|
|
}
|