mirror of https://github.com/llvm/torch-mlir
78 lines
2.7 KiB
C++
78 lines
2.7 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PassDetail.h"
|
|
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
|
|
#include "mlir/Dialect/Shape/IR/Shape.h"
|
|
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
|
#include "npcomp/Dialect/TCP/IR/TCPOps.h"
|
|
#include "npcomp/E2E/E2E.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::NPCOMP;
|
|
|
|
// TODO: Don't just open-code all shape transfer functions here.
|
|
static SmallVector<Value, 6> bypassResultShapes(Operation &op) {
|
|
OpBuilder builder(&op);
|
|
|
|
if (auto broadcastTo = dyn_cast<tcp::BroadcastToOp>(op)) {
|
|
return {broadcastTo.shape()};
|
|
}
|
|
|
|
// Binary elementwise ops.
|
|
if (isa<tcp::AddOp, tcp::MaxOp>(op)) {
|
|
return {builder.create<shape::ShapeOfOp>(op.getLoc(), op.getOperand(0))};
|
|
}
|
|
|
|
if (auto matmul = dyn_cast<tcp::MatmulOp>(op)) {
|
|
auto lhsRows = builder.create<DimOp>(op.getLoc(), matmul.lhs(), 0);
|
|
auto rhsCols = builder.create<DimOp>(op.getLoc(), matmul.rhs(), 1);
|
|
auto shape = builder.create<TensorFromElementsOp>(
|
|
op.getLoc(), ValueRange({lhsRows, rhsCols}));
|
|
return {shape};
|
|
}
|
|
|
|
// No shape transfer function.
|
|
return {};
|
|
}
|
|
|
|
namespace {
|
|
// TODO: There is a coupling between this pass and LowerShapedResults.
|
|
// Any op that is wrapped in tcp.shaped_results here needs to be known how to be
|
|
// lowered by LowerShapedResults.
|
|
class BypassShapes : public BypassShapesBase<BypassShapes> {
|
|
void getDependentDialects(DialectRegistry ®istry) const override {
|
|
registry.insert<shape::ShapeDialect>();
|
|
}
|
|
|
|
void runOnOperation() override {
|
|
auto func = getOperation();
|
|
func.walk([&](Operation *opPtr) {
|
|
Operation &op = *opPtr;
|
|
SmallVector<Value, 6> resultShapes = bypassResultShapes(op);
|
|
if (resultShapes.empty())
|
|
return;
|
|
// We have result shapes, so wrap this op in a tcp.shaped_results op.
|
|
OpBuilder builder(&op);
|
|
auto shapedResults = builder.create<tcp::ShapedResultsOp>(
|
|
op.getLoc(), op.getResultTypes(), resultShapes);
|
|
op.replaceAllUsesWith(shapedResults);
|
|
|
|
// Move the op into the body and yield the results.
|
|
Block *body = builder.createBlock(&shapedResults.body());
|
|
op.moveBefore(body, body->end());
|
|
builder.create<tcp::YieldOp>(op.getLoc(), op.getResults());
|
|
});
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
std::unique_ptr<OperationPass<FuncOp>> mlir::NPCOMP::createBypassShapesPass() {
|
|
return std::make_unique<BypassShapes>();
|
|
}
|