torch-mlir/lib/Dialect/Torch/Transforms/RecomposeComplexOps.cpp

104 lines
3.5 KiB
C++

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
#include "torch-mlir/Dialect/Torch/Transforms/Passes.h"
using namespace mlir;
using namespace mlir::torch;
using namespace mlir::torch::Torch;
namespace {
class RecomposeSliceCopy_ : public OpRewritePattern<AtenCopy_Op> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenCopy_Op op,
PatternRewriter &rewriter) const override {
if (!op.getSelf().getDefiningOp() ||
!isa<AtenSliceTensorOp>(op.getSelf().getDefiningOp()))
return failure();
auto sliceOp = cast<AtenSliceTensorOp>(op.getSelf().getDefiningOp());
// Get indices
int64_t dim;
if (!matchPattern(sliceOp.getDim(), m_TorchConstantInt(&dim)))
return failure();
int64_t end;
if (!matchPattern(sliceOp.getEnd(), m_TorchConstantInt(&end)))
return failure();
Value newEnd = sliceOp.getEnd();
if (end < 0) {
Value dimSize = rewriter.create<AtenSizeIntOp>(
op.getLoc(), sliceOp.getSelf(), sliceOp.getDim());
newEnd =
rewriter.create<AtenAddIntOp>(op.getLoc(), dimSize, sliceOp.getEnd());
}
Value noneVal = rewriter.create<ConstantNoneOp>(op.getLoc());
Value falseVal = rewriter.create<ConstantBoolOp>(op.getLoc(), false);
// Create IndexPut_Op
BaseTensorType tensorType = op->getResultTypes()[0].cast<BaseTensorType>();
Value range = rewriter.create<AtenArangeStartStepOp>(
op.getLoc(), tensorType, sliceOp.getStart(), newEnd, sliceOp.getStep(),
/*dtype=*/noneVal, /*layout=*/noneVal, /*device=*/noneVal,
/*pin_memory=*/noneVal);
SmallVector<Value> indicesVector;
for (auto i = 0; i < dim - 1; i++)
indicesVector.push_back(noneVal);
indicesVector.push_back(range);
Value indices = rewriter.create<PrimListConstructOp>(
op.getLoc(),
Torch::ListType::get(op->getContext(),
Torch::OptionalType::get(tensorType)),
indicesVector);
rewriter.replaceOpWithNewOp<Aten_IndexPutImpl_Op>(
op, op->getResultTypes(), sliceOp.getSelf(), indices, op.getSrc(),
/*accumulate=*/falseVal, /*unsafe=*/falseVal);
return success();
}
};
} // namespace
namespace {
class RecomposeComplexOps
: public DecomposeComplexOpsBase<RecomposeComplexOps> {
public:
RecomposeComplexOps() = default;
void runOnOperation() override {
MLIRContext *context = &getContext();
RewritePatternSet patterns(context);
// pattern.add calls go here
patterns.add<RecomposeSliceCopy_>(context);
GreedyRewriteConfig config;
config.useTopDownTraversal = true;
config.maxIterations = GreedyRewriteConfig::kNoLimit;
if (failed(applyPatternsAndFoldGreedily(getOperation(), std::move(patterns),
config))) {
return signalPassFailure();
}
}
};
} // namespace
std::unique_ptr<OperationPass<func::FuncOp>>
mlir::torch::Torch::createRecomposeComplexOps() {
return std::make_unique<RecomposeComplexOps>();
}