torch-mlir/test/Conversion/TorchOnnxToTorch
jinchen fd759e4b1f
Fix onnx.Gather lowering with dynamic shapes (#3675)
Supports the result with dynamic shape and scalar indices like
```
func.func @test_gather_scalar(%arg0: !torch.vtensor<[3,4,5],f32>, %arg1: !torch.vtensor<[], si64>) -> !torch.vtensor<[?,?],f32> attributes {torch.onnx_meta.opset_version = 13 : si64} {
  %0 = torch.operator "onnx.Gather"(%arg0, %arg1) {torch.onnx.axis = 0 : si64} : (!torch.vtensor<[3,4,5],f32>, !torch.vtensor<[], si64>) -> !torch.vtensor<[?,?],f32>
  return %0 : !torch.vtensor<[?,?],f32>
}
```

`Torch::AtenSqueezeOp` is referring to the result shape, so it will
failed on lowering if the result shape is dynamic.
2024-08-29 17:02:16 -07:00
..
ops Support onnx.If (#2825) 2024-04-30 18:36:40 +00:00
simple_ops_a_to_f.mlir [ONNX] Add training mode support for BatchNormalization op (#3597) 2024-08-14 10:46:38 +05:30
simple_ops_g_to_p.mlir Fix onnx.Gather lowering with dynamic shapes (#3675) 2024-08-29 17:02:16 -07:00
simple_ops_q_to_z.mlir [onnx] Fix onnx.ThresholdedRelu crash (#3638) 2024-08-16 09:23:38 -07:00
unsupported_fb_opt_ops.mlir Add attributes support for onnx cumsum op (#3241) 2024-05-11 02:09:01 +08:00