mirror of https://github.com/llvm/torch-mlir
88d4c475d3
NonValueSemantic Ops like Add_, div_, etc. expect result DType to be the same as the first input. However, current implementation would result in wrong result type for case like: ```python a = torch.randn(3, 3).half() # float16 b = torch.randn(3, 3) # float32 a += b # i.e. torch.ops.aten.add_(a, b) ``` torch expects `a` to be float16, but dtype refinement would infer float32 type, since it's replaced by `aten.add`. |
||
---|---|---|
.. | ||
GlobalizeObjectGraph | ||
adjust-calling-conventions.mlir | ||
canonicalize.mlir | ||
decompose-complex-ops-legal.mlir | ||
decompose-complex-ops.mlir | ||
drop-abstract-interp-calculations.mlir | ||
erase-module-initializer.mlir | ||
inline-global-slots-analysis.mlir | ||
inline-global-slots-transform.mlir | ||
invalid.mlir | ||
lower-to-backend-contract-error.mlir | ||
maximize-value-semantics.mlir | ||
ops.mlir | ||
prepare-for-globalize-object-graph.mlir | ||
reduce-op-variants-error.mlir | ||
reduce-op-variants.mlir | ||
refine-public-return.mlir | ||
reify-dtype-calculations.mlir | ||
reify-shape-calculations.mlir | ||
simplify-dtype-calculations.mlir | ||
simplify-shape-calculations.mlir | ||
torch-function-to-torch-backend-pipeline.mlir | ||
verify-backend-contract-error.mlir | ||
verify-backend-contract-unimplemented-op.mlir |