torch-mlir/test/python/fx_importer/sparsity/sparse_test.py

638 lines
24 KiB
Python

# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
# Also available under a BSD-style license. See LICENSE.
# RUN: %PYTHON %s | FileCheck %s
from typing import Any, Callable, Optional, Tuple, Dict
import torch
import torch.nn as nn
import numpy as np
from torch_mlir.extras.fx_decomp_util import get_decomposition_table
from torch_mlir.extras.fx_importer import FxImporter
from torch_mlir import ir
from torch_mlir.dialects import torch as torch_d
from torch_mlir.compiler_utils import run_pipeline_with_repro_report
from torch_mlir_e2e_test.linalg_on_tensors_backends.refbackend import (
RefBackendLinalgOnTensorsBackend,
)
def export_and_import(f, *args, **kwargs):
"""A FX graph importer, stripped down to essentials."""
context = ir.Context()
torch_d.register_dialect(context)
fx_importer = FxImporter(context=context)
prog = torch.export.export(f, args, kwargs)
decomposition_table = get_decomposition_table()
if decomposition_table:
prog = prog.run_decompositions(decomposition_table)
fx_importer.import_frozen_program(prog)
return fx_importer.module
def sparse_jit(f, *args, **kwargs):
"""This method compiles and runs the given callable using linalg backend."""
# Import module and lower into Linalg IR.
module = export_and_import(f, *args, **kwargs)
run_pipeline_with_repro_report(
module,
(
"builtin.module("
"func.func(torch-decompose-complex-ops),"
"torch-backend-to-linalg-on-tensors-backend-pipeline)"
),
"Lowering TorchFX IR -> Linalg IR",
enable_ir_printing=False,
)
# Compile with reference Linalg backend.
# TODO: runtime verification ails with 'rank mismatch' on memref.cast
backend = RefBackendLinalgOnTensorsBackend(generate_runtime_verification=False)
compiled = backend.compile(module)
invoker = backend.load(compiled)
xargs = []
# Prepare all the named buffer parameters (assume all dense).
# All scalar arguments are filtered out since they appear inline.
params = dict(f.named_buffers(remove_duplicate=True))
params_flat, params_spec = torch.utils._pytree.tree_flatten(params)
for p in params_flat:
if len(p.shape) > 0:
xargs.append(p.numpy())
# Prepare input parameters. Sparse input tensors are split into
# their composite tensors. All PyTorch tensors are converted
# to their backing numpy arrays. Note that the output consists
# of numpy arrays as well, which can trivially be reconstructed
# into PyTorch tensors (dense and sparse).
for a in args:
if a.layout is torch.sparse_coo:
# Construct the additional position array required by MLIR with data
# array([0, nnz]). The COO format always uses int64 indices.
xargs.append(np.array([0, a._nnz()], dtype=np.int64))
# Transform a tensor<ndim x nnz> into ndim x tensor<nnz> to conform
# to the MLIR SoA COO representation.
for idx in a._indices():
xargs.append(idx.numpy())
xargs.append(a._values().numpy())
elif a.layout is torch.sparse_csr or a.layout is torch.sparse_bsr:
xargs.append(a.crow_indices().numpy())
xargs.append(a.col_indices().numpy())
xargs.append(a.values().numpy())
elif a.layout is torch.sparse_csc or a.layout is torch.sparse_bsc:
xargs.append(a.ccol_indices().numpy())
xargs.append(a.row_indices().numpy())
xargs.append(a.values().numpy())
else:
xargs.append(a.numpy())
# Invoke.
return invoker.main(*xargs)
def run(f):
# Prompt test name and torch version (for debugging).
print(f"{f.__name__} ({torch.__version__})")
print("-" * len(f.__name__))
f()
print()
@run
#
# CHECK-LABEL: test_sparse_id
# CHECK: #[[$COO:.*]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton(soa)), posWidth = 64, crdWidth = 64 }>
# CHECK: func.func @main(
# CHECK-SAME: %[[A:.*]]: !torch.vtensor<[10,20],f64,#[[$COO]]>) -> !torch.vtensor<[10,20],f64,#[[$COO]]> {
# CHECK: return %[[A]] : !torch.vtensor<[10,20],f64,#[[$COO]]>
# CHECK: }
#
# CHECK: torch.sparse
# CHECK: tensor(indices=tensor({{\[}}[ 0, 1, 2, 9],
# CHECK: [ 0, 1, 10, 19]{{\]}}),
# CHECK: values=tensor([-1000., -1., 1., 1000.]),
# CHECK: size=(10, 20), nnz=4, dtype=torch.float64, layout=torch.sparse_coo)
# CHECK: torch.mlir
# CHECK: [0 4]
# CHECK: [0 1 2 9]
# CHECK: [ 0 1 10 19]
# CHECK: [-1000. -1. 1. 1000.]
#
def test_sparse_id():
class IdNet(torch.nn.Module):
def __init__(self):
super(IdNet, self).__init__()
def forward(self, x):
return x
net = IdNet()
idx = torch.tensor([[0, 1, 2, 9], [0, 1, 10, 19]])
val = torch.tensor([-1000.0, -1.0, 1.0, 1000.0], dtype=torch.float64)
sparse_input = torch.sparse_coo_tensor(idx, val, size=[10, 20])
m = export_and_import(net, sparse_input)
print(m)
# Run it with PyTorch torch.sparse and with TORCH-MLIR sparse_jit.
res1 = net(sparse_input)
res2 = sparse_jit(net, sparse_input)
print("torch.sparse")
print(res1)
print("torch.mlir")
print(res2[0])
print(res2[1])
print(res2[2])
print(res2[3])
@run
#
# CHECK-LABEL: test_sparse_sum
# CHECK: #[[$CSR:.*]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed), posWidth = 64, crdWidth = 64 }>
# CHECK: func.func @main(
# CHECK-SAME: %[[A:.*]]: !torch.vtensor<[64,64],f32,#[[$CSR]]>) -> !torch.vtensor<[],f32> {
# CHECK: %[[N:.*]] = torch.constant.none
# CHECK: %[[R:.*]] = torch.aten.sum %[[A]], %[[N]] : !torch.vtensor<[64,64],f32,#[[$CSR]]>, !torch.none -> !torch.vtensor<[],f32>
# CHECK: return %[[R]] : !torch.vtensor<[],f32>
# CHECK: }
#
# CHECK: torch.sparse = tensor(4096.)
# CHECK: torch.mlir = 4096.0
#
def test_sparse_sum():
class SumNet(torch.nn.Module):
def __init__(self):
super(SumNet, self).__init__()
def forward(self, x):
return x.sum()
net = SumNet()
dense_input = torch.ones(64, 64)
sparse_input = dense_input.to_sparse_csr()
m = export_and_import(net, sparse_input)
print(m)
# Run it with PyTorch torch.sparse and with TORCH-MLIR sparse_jit.
res1 = net(sparse_input)
res2 = sparse_jit(net, sparse_input)
print("torch.sparse =", res1)
print("torch.mlir =", res2)
@run
#
# CHECK-LABEL: test_sparse_SpMV
# CHECK: #[[$BSR:.*]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 floordiv 2 : dense, d1 floordiv 2 : compressed, d0 mod 2 : dense, d1 mod 2 : dense), posWidth = 64, crdWidth = 64 }>
# CHECK: func.func @main(
# CHECK-SAME: %[[A:.*0]]: !torch.vtensor<[10,10],f32,#[[$BSR]]>,
# CHECK-SAME: %[[B:.*1]]: !torch.vtensor<[10],f32>) -> !torch.vtensor<[10],f32> {
# CHECK: %[[R:.*]] = torch.aten.mv %[[A]], %[[B]] : !torch.vtensor<[10,10],f32,#[[$BSR]]>, !torch.vtensor<[10],f32> -> !torch.vtensor<[10],f32>
# CHECK: return %[[R]] : !torch.vtensor<[10],f32>
# CHECK: }
#
# CHECK: torch.sparse = tensor([55., 55., 55., 55., 55., 55., 55., 55., 55., 55.])
# CHECK: torch.mlir = [55. 55. 55. 55. 55. 55. 55. 55. 55. 55.]
#
def test_sparse_SpMV():
class SpMVNet(torch.nn.Module):
def __init__(self):
super(SpMVNet, self).__init__()
def forward(self, x, v):
return torch.mv(x, v)
net = SpMVNet()
dense_vector = torch.arange(1, 11, dtype=torch.float32)
dense_input = torch.ones(10, 10)
sparse_input = dense_input.to_sparse_bsr(blocksize=(2, 2))
m = export_and_import(net, sparse_input, dense_vector)
print(m)
# Run it with PyTorch torch.sparse and with TORCH-MLIR sparse_jit.
res1 = net(sparse_input, dense_vector)
res2 = sparse_jit(net, sparse_input, dense_vector)
print("torch.sparse =", res1)
print("torch.mlir =", res2)
# @run
#
# C_HECK-LABEL: test_sparse_SpMM
# C_HECK: #[[$COO:.*]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton(soa)), posWidth = 64, crdWidth = 64 }>
# C_HECK: func.func @main(
# C_HECK-SAME: %[[A:.*0]]: !torch.vtensor<[8,8],f32,#[[$COO]]>,
# C_HECK-SAME: %[[B:.*1]]: !torch.vtensor<[8,8],f32>) -> !torch.vtensor<[8,8],f32> {
# C_HECK: %[[R:.*]] = torch.aten.{{matmul|mm}} %[[A]], %[[B]] : !torch.vtensor<[8,8],f32,#[[$COO]]>, !torch.vtensor<[8,8],f32> -> !torch.vtensor<[8,8],f32>
# C_HECK: return %[[R]] : !torch.vtensor<[8,8],f32>
# C_HECK: }
##
# C_HECK: torch.sparse
# C_HECK: tensor({{\[}}[8., 8., 8., 8., 8., 8., 8., 8.],
# C_HECK-COUNT-6: [8., 8., 8., 8., 8., 8., 8., 8.],
# C_HECK: [8., 8., 8., 8., 8., 8., 8., 8.]{{\]}})
# C_HECK: torch.mlir
# C_HECK: {{\[}}[8. 8. 8. 8. 8. 8. 8. 8.]
# C_HECK-COUNT-6: [8. 8. 8. 8. 8. 8. 8. 8.]
# C_HECK: [8. 8. 8. 8. 8. 8. 8. 8.]{{\]}}
#
def test_sparse_SpMM():
class MatMulNet(torch.nn.Module):
def __init__(self):
super(MatMulNet, self).__init__()
def forward(self, x, y):
return torch.matmul(x, y)
net = MatMulNet()
dense_input = torch.ones(8, 8)
sparse_input = dense_input.to_sparse_coo()
m = export_and_import(net, sparse_input, dense_input)
print(m)
# Run it with PyTorch torch.sparse and with TORCH-MLIR sparse_jit.
res1 = net(sparse_input, dense_input)
res2 = sparse_jit(net, sparse_input, dense_input)
print("torch.sparse")
print(res1)
print("torch.mlir")
print(res2)
# @run
#
# C_HECK-LABEL: test_sparse_eltwise
# C_HECK: #[[$CSRD:.*]] = #sparse_tensor.encoding<{ map = (d0, d1, d2) -> (d0 : dense, d1 : compressed, d2 : dense), posWidth = 64, crdWidth = 64 }>
# C_HECK: func.func @main(
# C_HECK-SAME: %[[A:.*]]: !torch.vtensor<[4,2,2],f32,#[[$CSRD]]>) -> !torch.vtensor<[4,2,2],f32,#[[$CSRD]]> {
# C_HECK: %[[R:.*]] = torch.aten.neg %[[A]] : !torch.vtensor<[4,2,2],f32,#[[$CSRD]]> -> !torch.vtensor<[4,2,2],f32,#[[$CSRD]]>
# C_HECK: return %[[R]] : !torch.vtensor<[4,2,2],f32,#[[$CSRD]]>
# C_HECK: }
# C_HECK: #[[$BCSR:.*]] = #sparse_tensor.encoding<{ map = (d0, d1, d2) -> (d0 : batch, d1 : dense, d2 : compressed), posWidth = 64, crdWidth = 64 }>
# C_HECK: func.func @main(
# C_HECK-SAME: %[[A:.*]]: !torch.vtensor<[4,2,2],f32,#[[$BCSR]]>) -> !torch.vtensor<[4,2,2],f32,#[[$BCSR]]> {
# C_HECK: %[[R:.*]] = torch.aten.neg %[[A]] : !torch.vtensor<[4,2,2],f32,#[[$BCSR]]> -> !torch.vtensor<[4,2,2],f32,#[[$BCSR]]>
# C_HECK: return %[[R]] : !torch.vtensor<[4,2,2],f32,#[[$BCSR]]>
# C_HECK: }
#
# C_HECK: torch.sparse
# C_HECK: tensor(crow_indices=tensor([0, 2, 4, 6, 8]),
# C_HECK: col_indices=tensor([0, 1, 0, 1, 0, 1, 0, 1]),
# C_HECK: values=tensor({{\[}}[ -1., -2.],
# C_HECK: [ -3., -4.],
# C_HECK: [ -5., -6.],
# C_HECK: [ -7., -8.],
# C_HECK: [ -9., -10.],
# C_HECK: [-11., -12.],
# C_HECK: [-13., -14.],
# C_HECK: [-15., -16.]{{\]}}), size=(4, 2, 2), nnz=8,
# C_HECK: layout=torch.sparse_csr)
# C_HECK: torch.mlir
# C_HECK: [0 2 4 6 8]
# C_HECK: [0 1 0 1 0 1 0 1]
# C_HECK: [ -1. -2. -3. -4. -5. -6. -7. -8. -9. -10. -11. -12. -13. -14.
# C_HECK: -15. -16.]
# C_HECK: torch.mlir.batch
#
def test_sparse_eltwise():
class EltNet(torch.nn.Module):
def __init__(self):
super(EltNet, self).__init__()
def forward(self, x):
return -x
net = EltNet()
dense_input = torch.reshape(
torch.arange(1, 17, dtype=torch.float32), shape=(4, 2, 2)
)
# This yields a plain CSR with dense **sub**tensor
sparse_input = dense_input.to_sparse_csr(dense_dim=1)
m = export_and_import(net, sparse_input)
print(m)
# This yields a **batched** CSR.
batch_input = dense_input.to_sparse_csr(dense_dim=0)
m = export_and_import(net, batch_input)
print(m)
# Run it with PyTorch torch.sparse and with TORCH-MLIR sparse_jit.
res1 = net(sparse_input)
res2 = sparse_jit(net, sparse_input)
# TODO: make this work in MLIR
# res3 = sparse_jit(net, batch_input)
print("torch.sparse")
print(res1)
print("torch.mlir")
print(res2[0])
print(res2[1])
print(res2[2])
print("torch.mlir.batch")
@run
#
# CHECK-LABEL: test_sparse_coo3
# CHECK: #[[$COO3:.*]] = #sparse_tensor.encoding<{ map = (d0, d1, d2) -> (d0 : compressed(nonunique), d1 : singleton(nonunique, soa), d2 : singleton(soa)), posWidth = 64, crdWidth = 64 }>
# CHECK: func.func @main(
# CHECK-SAME: %[[A:.*]]: !torch.vtensor<[10,20,30],f64,#[[$COO3]]>) -> !torch.vtensor<[10,20,30],f64,#[[$COO3]]> {
# CHECK: %[[R:.*]] = torch.aten.relu %[[A]] : !torch.vtensor<[10,20,30],f64,#[[$COO3]]> -> !torch.vtensor<[10,20,30],f64,#[[$COO3]]>
# CHECK: return %[[R]] : !torch.vtensor<[10,20,30],f64,#[[$COO3]]>
# CHECK: }
#
# CHECK: torch.sparse
# CHECK: tensor(indices=tensor({{\[}}[ 0, 1, 1, 4, 9, 9],
# CHECK: [ 0, 1, 1, 5, 19, 19],
# CHECK: [ 0, 1, 3, 6, 28, 29]{{\]}}),
# CHECK: values=tensor([ 0., 0., 1., 2., 3., 1000.]),
# CHECK: size=(10, 20, 30), nnz=6, dtype=torch.float64, layout=torch.sparse_coo)
# CHECK: torch.mlir
# CHECK: [0 6]
# CHECK: [0 1 1 4 9 9]
# CHECK: [ 0 1 1 5 19 19]
# CHECK: [ 0 1 3 6 28 29]
# CHECK: [ 0. 0. 1. 2. 3. 1000.]
#
def test_sparse_coo3():
class COO3Net(torch.nn.Module):
def __init__(self):
super(COO3Net, self).__init__()
self.relu = nn.ReLU()
def forward(self, x):
return self.relu(x)
net = COO3Net()
# Direct 3-dim COO construction.
idx = torch.tensor([[0, 1, 1, 4, 9, 9], [0, 1, 1, 5, 19, 19], [0, 1, 3, 6, 28, 29]])
val = torch.tensor([-1000.0, -1.0, 1.0, 2.0, 3.0, 1000.0], dtype=torch.float64)
sparse_input = torch.sparse_coo_tensor(idx, val, size=[10, 20, 30])
m = export_and_import(net, sparse_input)
print(m)
# Run it with PyTorch torch.sparse and with TORCH-MLIR sparse_jit.
res1 = net(sparse_input)
res2 = sparse_jit(net, sparse_input)
print("torch.sparse")
print(res1)
print("torch.mlir")
print(res2[0])
print(res2[1])
print(res2[2])
print(res2[3])
print(res2[4])
@run
#
# CHECK-LABEL: test_sparse_activation
# CHECK: #[[$COO:.*]] = #sparse_tensor.encoding<{ map = (d0, d1, d2) -> (d0 : compressed(nonunique), d1 : singleton(nonunique, soa), d2 : singleton(soa)), posWidth = 64, crdWidth = 64 }>
# CHECK: func.func @main(
# CHECK-SAME: %[[A:.*]]: !torch.vtensor<[2,2,2],f32>) -> !torch.vtensor<[2,2,2],f32,#[[$COO]]> {
# CHECK: %[[N1:.*]] = torch.constant.none
# CHECK: %[[N2:.*]] = torch.constant.none
# CHECK: %[[N3:.*]] = torch.constant.none
# CHECK: %[[R:.*]] = torch.operator "torch.aten.{{to_sparse|_to_sparse}}"(%[[A]], %[[N1]], %[[N2]], %[[N3]]) : (!torch.vtensor<[2,2,2],f32>, !torch.none, !torch.none, !torch.none) -> !torch.vtensor<[2,2,2],f32,#[[$COO]]>
# CHECK: return %[[R]] : !torch.vtensor<[2,2,2],f32,#[[$COO]]>
# CHECK: }
#
# CHECK: torch.sparse
# CHECK: tensor(indices=tensor({{\[}}[0, 0, 0, 0, 1, 1, 1, 1],
# CHECK: [0, 0, 1, 1, 0, 0, 1, 1],
# CHECK: [0, 1, 0, 1, 0, 1, 0, 1]{{\]}}),
# CHECK: values=tensor([1., 1., 1., 1., 1., 1., 1., 1.]),
# CHECK: size=(2, 2, 2), nnz=8, layout=torch.sparse_coo)
# CHECK: torch.mlir
# CHECK: [0 8]
# CHECK: [0 0 0 0 1 1 1 1]
# CHECK: [0 0 1 1 0 0 1 1]
# CHECK: [0 1 0 1 0 1 0 1]
# CHECK: [1. 1. 1. 1. 1. 1. 1. 1.]
#
def test_sparse_activation():
class SparseActivationCOO(torch.nn.Module):
def forward(self, x):
return x.to_sparse()
net = SparseActivationCOO()
x = torch.ones(2, 2, 2)
m = export_and_import(net, x)
print(m)
# Run it with PyTorch torch.sparse and with TORCH-MLIR sparse_jit.
res1 = net(x)
res2 = sparse_jit(net, x)
print("torch.sparse")
print(res1)
print("torch.mlir")
print(res2[0])
print(res2[1])
print(res2[2])
print(res2[3])
print(res2[4])
# @run
#
# C_HECK-LABEL: test_sparse_network
# C_HECK: func.func @main(
# C_HECK-SAME: %[[A:.*]]: !torch.vtensor<[2,3,8,8],f32>) -> !torch.vtensor<[8],f32> {
# ... lots of IR ...
# C_HECK-COUNT-15: torch.aten.mul.Tensor
# ... lots of IR ...
# C_HECK: }
#
# C_HECK: torch.sparse
# C_HECK: tensor([ 0., 11., 9., 11., 13., 11., 10., 12.])
# C_HECK: torch.mlir
# C_HECK: [ 0. 11. 9. 11. 13. 11. 10. 12.]
#
def test_sparse_network():
def spike(input):
return (input >= 0).float()
def sqSum(input):
return (input * input).sum()
class LIF(nn.Module):
def __init__(self):
super(LIF, self).__init__()
self.thresh = 1.0
self.decay = 0.5
self.act = spike
def forward(self, X):
"""A filter that yields a binary-valued sparse tensor."""
mem = 0
spike_pot = []
T = X.size(-1)
for t in range(T):
mem = mem * self.decay + X[..., t]
spike = self.act(mem - self.thresh)
spike = spike.to_sparse().to_dense() # prop hack
mem = mem * (1.0 - spike)
spike_pot.append(spike)
spike_pot = torch.stack(spike_pot, dim=-1)
return spike_pot
class tdLayer(nn.Module):
def __init__(self, layer):
super(tdLayer, self).__init__()
self.layer = layer
def forward(self, X):
T = X.size(-1)
out = []
for t in range(T):
m = self.layer(X[..., t])
out.append(m)
out = torch.stack(out, dim=-1)
return out
class Block(nn.Module):
def __init__(self):
super(Block, self).__init__()
self.spike = LIF()
self.layer = tdLayer(sqSum)
def forward(self, X):
out = self.spike(X)
out = self.layer(out)
return out
net = Block()
# Get a random (but reproducible) input, so that a
# general sparse tensor appears after LIF.
torch.manual_seed(0)
x = torch.rand(2, 3, 8, 8)
m = export_and_import(net, x)
print(m)
# Run it with PyTorch torch.sparse and with TORCH-MLIR sparse_jit.
res1 = net(x)
res2 = sparse_jit(net, x)
print("torch.sparse")
print(res1)
print("torch.mlir")
print(res2)
# @run
#
# C_HECK-LABEL: test_sparse_feature_scaling
# C_HECK: func.func @main(
# C_HECK-SAME: %[[A:.*]]: !torch.vtensor<[4,4],f32>) -> !torch.vtensor<[4,4],f32> {
# ... more IR ...
# C_HECK: %[[D:.*]] = torch.operator "torch.aten.{{to_sparse|_to_sparse}}"
# C_HECK: %[[R:.*]] = torch.aten.{{matmul|mm}} %[[D]], %[[A]]
# C_HECK return %[[R]] : !torch.vtensor<[4,4],f32>
# C_HECK: }
#
# C_HECK: torch.sparse
# C_HECK: tensor({{\[}}[0.3342, 0.5173, 0.0596, 0.0889],
# C_HECK: [0.1321, 0.2724, 0.2105, 0.3851],
# C_HECK: [0.2478, 0.3439, 0.1898, 0.2185],
# C_HECK: [0.0222, 0.1683, 0.2928, 0.5167]{{\]}})
#
# TODO: first row looks suspect...
#
# C_HECK: torch.mlir
# C_HECK: {{\[}}[0. 0. 0. 0. ]
# C_HECK: [0.13205223 0.27236593 0.21051763 0.38506418]
# C_HECK: [0.24781987 0.34391665 0.18976606 0.2184974 ]
# C_HECK: [0.02224578 0.16825409 0.29283574 0.51666445]{{\]}}
#
def test_sparse_feature_scaling():
class Scale(nn.Module):
def forward(self, F):
sum_vector = torch.sum(F, dim=1)
reciprocal_vector = 1 / sum_vector
reciprocal_vector[reciprocal_vector == float("inf")] = 0
scaling_diagonal = torch.diag(reciprocal_vector).to_sparse()
return scaling_diagonal @ F
net = Scale()
# Get a random (but reproducible) features input.
torch.manual_seed(0)
f = torch.rand(4, 4)
m = export_and_import(net, f)
print(m)
# Run it with PyTorch torch.sparse and with TORCH-MLIR sparse_jit.
res1 = net(f)
res2 = sparse_jit(net, f)
print("torch.sparse")
print(res1)
print("torch.mlir")
print(res2)
@run
#
# CHECK-LABEL: test_sparse_gcn
# CHECK: #[[$COO:.*]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton(soa)), posWidth = 64, crdWidth = 64 }>
# CHECK: func.func @main(
# CHECK-SAME: %[[A:.*]]: !torch.vtensor<[4,4],f32>,
# CHECK-SAME: %[[B:.*]]: !torch.vtensor<[4,4],f32,#[[$COO]]>) -> !torch.vtensor<[4,4],f32> {
# CHECK: %[[LIT:.*]] = torch.vtensor.literal(dense_resource<torch_tensor_4_4_torch.float32> : tensor<4x4xf32>) : !torch.vtensor<[4,4],f32>
# CHECK: %[[MM:.*]] = torch.aten.mm %[[A]], %[[LIT]] : !torch.vtensor<[4,4],f32>, !torch.vtensor<[4,4],f32> -> !torch.vtensor<[4,4],f32>
# CHECK: %[[SMM:.*]] = torch.aten.mm %[[B]], %[[MM]] : !torch.vtensor<[4,4],f32,#sparse>, !torch.vtensor<[4,4],f32> -> !torch.vtensor<[4,4],f32>
# CHECK: %[[BIAS:.*]] = torch.vtensor.literal(dense_resource<torch_tensor_4_torch.float32> : tensor<4xf32>) : !torch.vtensor<[4],f32>
# CHECK: %[[ONE:.*]] = torch.constant.int 1
# CHECK: %[[R:.*]] = torch.aten.add.Tensor %[[SMM]], %[[BIAS]], %[[ONE]] : !torch.vtensor<[4,4],f32>, !torch.vtensor<[4],f32>, !torch.int -> !torch.vtensor<[4,4],f32>
# CHECK return %[[R]] : !torch.vtensor<[4,4],f32>
# CHECK: }
#
# CHECK: torch.sparse
# CHECK: tensor({{\[}}[4.4778, 4.4778, 4.4778, 4.4778],
# CHECK: [5.7502, 5.7502, 5.7502, 5.7502],
# CHECK: [4.6980, 4.6980, 4.6980, 4.6980],
# CHECK: [3.6407, 3.6407, 3.6407, 3.6407]{{\]}})
# CHECK: torch.mlir
# CHECK: {{\[}}[4.477828 4.477828 4.477828 4.477828 ]
# CHECK: [5.7501717 5.7501717 5.7501717 5.7501717]
# CHECK: [4.697952 4.697952 4.697952 4.697952 ]
# CHECK: [3.640687 3.640687 3.640687 3.640687 ]{{\]}}
#
def test_sparse_gcn():
class GraphConv(nn.Module):
def __init__(self, input_dim, output_dim):
super(GraphConv, self).__init__()
self.kernel = nn.Parameter(torch.Tensor(input_dim, output_dim))
nn.init.ones_(self.kernel)
self.bias = nn.Parameter(torch.Tensor(output_dim))
nn.init.ones_(self.bias)
def forward(self, inp, adj_mat):
# Input matrix times weight matrix.
support = torch.mm(inp, self.kernel)
# Sparse adjacency matrix times support matrix.
output = torch.spmm(adj_mat, support)
# Add bias.
output = output + self.bias
return output
net = GraphConv(4, 4)
# Get a random (but reproducible) matrices.
torch.manual_seed(0)
inp = torch.rand(4, 4)
adj_mat = torch.rand(4, 4).to_sparse()
m = export_and_import(net, inp, adj_mat)
print(m)
# Run it with PyTorch torch.sparse and with TORCH-MLIR sparse_jit.
# Set to inference mode to avoid autograd component in result.
with torch.no_grad():
res1 = net(inp, adj_mat)
res2 = sparse_jit(net, inp, adj_mat)
print("torch.sparse")
print(res1)
print("torch.mlir")
print(res2)